12 September 2007

From: http://www.captcook-ne.co.uk/ccne/themes/objects.htm

Self-dual Gravitational Instantons

are complete four-dimensional Riemannian manifolds that satisfy one of the following equivalent conditions:

- i. hyperkähler
- ii. admits covariantly constant spinors
- iii. Calabi-Yau two-fold
- iv. preserves 1/2 Supersymmetry
- v. self-dual curvature form

$$R_{\alpha\beta\gamma\delta} = \frac{1}{2} \epsilon_{\alpha\beta\mu\nu} R^{\mu\nu}_{\ \gamma\delta}$$

Distinguished by

Asymptotic behaviour:

K3

Topology:

A, D, E, etc.

Questions:

Classification, metrics, Yang-Mills Instantons

Conjecture:

Any gravitational instanton metric with finite Pontrjagin number asymptotically approaches a metric with a local triholomorphic isometry.

$$\int_{M} R \wedge R < \infty \implies ds^{2} \underset{|\vec{x}| \to \infty}{\longrightarrow} V^{-1} (d\theta + \omega)^{2} + V d\vec{x}^{2}$$

ALE
$$V = \frac{1}{|\vec{x}|}$$
 ALF A_k and D_k
$$V = C + \frac{1}{|\vec{x}|}$$
 ALG
$$V = C + \frac{N}{2} \log(x_1^2 + x_2^2)$$
 ALH
$$V = C_1 + C_2 x_1$$

4

The Taub-NUT Space

$$ds^{2} = V^{-1} (d\theta + \omega)^{2} + V d\vec{x}^{2},$$

$$W = 0 + 4\pi$$

$$d\omega = *_3 dV, \theta \sim \theta + 4\pi, \qquad V = l + \frac{1}{|\vec{x}|}$$

Self-dual Abelian connection:

$$a_0 = \frac{s}{4\pi} \frac{d\theta + \omega}{V}$$

Multi-Taub-NUT (Ak ALF)

$$\Sigma_1$$
 Σ_2
 Σ_k
 Σ_3
 V

$$\sum_{l=1}^{\Sigma_2} V = l + \sum_{\alpha=1}^{k+1} \frac{1}{|\vec{x} - \vec{x}_{\alpha}|}$$

$$a_{\alpha} = \frac{1}{4\pi} \left((V_{\alpha} - V_{\alpha+1}) \frac{d\theta + \omega}{V} + \omega_{\alpha} - \omega_{\alpha+1} \right) \qquad V_{\alpha} = \frac{1}{|\vec{x} - \vec{x}_{\alpha}|}$$

$$a_{0} = \frac{s}{4\pi} \frac{d\theta + \omega}{V} \qquad d\omega_{\alpha} = *dV_{\alpha}$$

$$V_{\alpha} = \frac{1}{|\vec{x} - \vec{x}_{\alpha}|}$$

$$d\omega_{\alpha} = *dV_{\alpha}$$

Instantons on ALF Spaces

$$F = *F$$

Action
$$S = \int F \wedge *F$$
 is finite

Monodromy at infinity $\left(\frac{\partial}{\partial \theta} - iA_{\theta}\right) W(\vec{x}, \theta) = 0, W(\vec{x}, 0) = 1$ $W = \lim_{x \to \infty} W(\vec{x}, 4\pi)$

• Maximal Symmetry Breaking:

EigenValues of W are distinct $-\frac{\pi}{l} < \lambda_1 < \lambda_2 < \ldots < \lambda_n < \frac{\pi}{l}$

EigenBundles of W are line bundles $\mathcal{L}_i o S^2_\infty$ with Chern classes \mathbf{j}_i

Monopole Charges: if $M=min(j_1, j_1+j_2,..., j_1+j_2+...+j_n)$

then the monopole charges are $(m_1, m_2, ..., m_n) = (j_1 - M, j_1 + j_2 - M, ..., j_1 + j_2 + ... + j_n - M)$

Instanton Number:

$$n = \frac{1}{32\pi^2} \int \operatorname{Tr} F \wedge F - (m_1(l\lambda_1 + \pi) + m_2 l(\lambda_2 - \lambda_1) + \dots + m_n(\pi - l\lambda_n))$$

Question: Find explicit SD connections on ALF spaces

Explicit Solution on TN: m=1, n=0

SCh & Brian Durcan

$$V = l + \frac{1}{2z},$$

$$a = z + d$$

$$\mathcal{D} = (z+d)^2 - r^2$$

$$\mathcal{K} = (a^2 + r^2) \cosh(2\lambda r) + 2ra \sinh(2\lambda r)$$

$$\mathcal{L} = (a^2 + r^2) \sinh(2\lambda r) + 2ra \cosh(2\lambda r)$$

$$\begin{split} \mathcal{A} &= \frac{1}{\mathcal{L}} \Big\{ \vec{dx} \cdot (\vec{\sigma} \times \vec{r}) \Big(\frac{(2\lambda r - \sinh(2\lambda r))\mathcal{D}}{2r^2} - \sinh(2\lambda r) \left(1 + \frac{a}{r} \tanh(\lambda r) \right) \Big) \\ &+ \frac{\vec{dx} \cdot (\vec{r} \times \vec{z})}{z} \frac{\vec{\sigma} \cdot \vec{r}}{r} \left(1 - \frac{\mathcal{K}}{\mathcal{D}} \right) - \frac{r}{z} \vec{dx} \cdot (\vec{\sigma} \times \vec{z}) \\ &+ \frac{d\theta - \omega}{V} \Big(\frac{\vec{\sigma} \cdot \vec{r}}{r} \left((\lambda + \frac{1}{2z})\mathcal{K} - \frac{\mathcal{L}}{2r} \right) - \frac{r}{z} \vec{\sigma} \cdot \vec{d_{\perp}} \Big) \Big\} \end{split}$$

Next Question: Find explicit m=0, n=1 SD connections on TN

Ingredients I: Arrows and Limbs

$$V = \mathbb{C}^v$$
 and $W = \mathbb{C}^w$

$$g_v: (I,J) \mapsto (g_v^{-1}I,Jg_v)$$

$$g_w: (I,J) \mapsto (Ig_w, g_w^{-1}J)$$

Moment maps:

$$\mu_V^{\mathbb{C}} = \mu_V^1 + i\mu_V^2 = IJ, \quad \mu_V^{\mathbb{R}} = \mu_V^3 = \frac{1}{2}(J^{\dagger}J - II^{\dagger}), \qquad \qquad \mu_W^{\mathbb{C}} = \mu_W^1 + i\mu_W^2 = -JI, \quad \mu_W^{\mathbb{R}} = \mu_W^3 = \frac{1}{2}(I^{\dagger}I - JJ^{\dagger}).$$

$$\mu_W^{\mathbb{C}} = \mu_W^1 + i\mu_W^2 = -JI, \quad \mu_W^{\mathbb{R}} = \mu_W^3 = \frac{1}{2}(I^{\dagger}I - JJ^{\dagger}).$$

A convenient way of writing the moment maps is

$$Q_V = \left(\begin{array}{c} J^\dagger \\ I \end{array} \right)$$

$$Q_V = \begin{pmatrix} J^{\dagger} \\ I \end{pmatrix} \qquad \qquad \downarrow_V = \mu_V^i \sigma_i = \operatorname{Vec}(Q_V Q_V^{\dagger})$$

$$Vec(M^0 + M^j \sigma_j) = M^j \sigma_j$$

Example: ADHM

Instanton Data:

Affine Dynkin diagram

Moment maps at V_1 $\mu^{C}=B_{10} B_{01} - B_{12}B_{21}+I_{1}J_{1}$ $\mu^{R}=B^{+}_{01}B_{01}-B_{10}B^{+}_{10+}B_{12}B^{+}_{12}-B^{+}_{21}B_{21}+I_{1}I^{+}_{11}-J^{+}_{1}J_{11}$

ALE Spaces:

Kronheimer Construction from String Theory

D2-brane on $\mathbb{R}^4/\Gamma \times \mathbb{R}^6$

 $r = |\Gamma| \text{ rank of } \Gamma$

Super Yang-Mills with gauge group U(r)

Equivariance conditions

$$A_{\mu} = \gamma^{-1}(g)A_{\mu}\gamma(g)$$

$$\phi^{p} = \gamma^{-1}(g)\phi^{p}\gamma(g)$$

$$\Phi^{I} = R(g)_{J}^{I}\gamma^{-1}(g)\Phi^{J}\gamma(g)$$

 γ is an r-dimensional representation of Γ ,

R is a two-dimensional representation of Γ .

Douglas & Moore Johnson & Myers

Kronheimer-Nakajima Construction from String Theory

N instantons in U(K) on ALE space

N D2-branes and K D6-branes on $\mathbb{R}^4/\Gamma \times \mathbb{R}^6$ Super Yang-Mills with gauge group U(r) and Kscalar fields in the defining representation.

Ingredients 2: "Strings"

$$(T_0(s), T_1(s), T_2(s), T_3(s))$$

$$g(s): \begin{pmatrix} T_0(s) \\ T_1(s) \\ T_2(s) \\ T_3(s) \end{pmatrix} \mapsto \begin{pmatrix} g^{-1}T_0g + ig^{-1}\frac{d}{ds}g \\ g^{-1}T_1g \\ g^{-1}T_2g \\ g^{-1}T_3g \end{pmatrix}$$

$$\mu^{1} = \frac{d}{ds}T_{1} - i[T_{0}, T_{1}] + i[T_{2}, T_{3}],$$

$$\mu^{2} = \frac{d}{ds}T_{2} - i[T_{0}, T_{2}] + i[T_{3}, T_{1}],$$

$$\mu^{3} = \frac{d}{ds}T_{3} - i[T_{0}, T_{3}] + i[T_{1}, T_{2}].$$

Convenient Notation:

$$T = \sigma_1 \otimes T_1 + \sigma_2 \otimes T_2 + \sigma_3 \otimes T_3$$

$$\mu = \left[\frac{d}{ds} - iT_0, \Upsilon\right] + \operatorname{Vec}(\Upsilon, \Upsilon).$$

Example: Calorons

Nahm

Instantons on
$$\mathbb{R}^3 imes \mathbf{S}^1$$

String Theory derivation via Chalmers-Hanany-Witten configuration

Diaconescu

Taub-NUT Bow Diagram

$$\begin{pmatrix} t_0 \\ t_j \\ b_{01} \\ b_{10} \end{pmatrix} \mapsto \begin{pmatrix} h^{-1}t_0h + ih^{-1}\frac{d}{ds}h \\ h^{-1}t_jh \\ h^{-1}(-\frac{l}{2})b_{01}h(\frac{l}{2}) \\ h^{-1}(\frac{l}{2})b_{10}h(-\frac{l}{2}) \end{pmatrix}$$

 $t = t_1 + it_2 \text{ and } \mathbf{D} = d/ds - it_0 - t_3$

Moment maps:
$$[\mathbf{D}, t] - \delta(s + \frac{1}{2})b_{01}b_{10} + \delta(s - \frac{1}{2})b_{10}b_{01} = 0,$$

$$[\mathbf{D}^{\dagger}, \mathbf{D}] + [t^{\dagger}, t] + \delta(s + \frac{l}{2}) (b_{10}^{\dagger} b_{10} - b_{01} b_{01}^{\dagger}) + \delta(s - \frac{l}{2}) (b_{01}^{\dagger} b_{01} - b_{10} b_{10}^{\dagger}) = 0$$

$$ds^{2} = \frac{1}{4} \left[(l + \frac{1}{r}) d\vec{r}^{2} + \frac{1}{l+1/r} (d\tau + \omega)^{2} \right] + l_{1} \frac{l+1/r}{l_{1}+1/r} \left[dt_{0} + \frac{d\tau + \omega}{2(l+1/r)} \right]^{2}.$$

Metric

$$\phi = -l_1 t_0.$$

Natural Connection:

$$a_0 = \frac{l_1}{2}(d\tau + \omega)/(l + 1/r).$$

k₀ Instantons on Taub-NUT

- a rank k_0 vector bundle $E \to [-l/2, l/2]$ with the Nahm data (T_0, T) on the intervals $[-l/2, -\lambda], [-\lambda, \lambda]$, and $[\lambda, l/2]$ (we do not presume continuity at $s = \pm \lambda$),
- linear maps $B_{10}: E_{-l/2} \to E_{l/2}$ and $B_{01}: E_{l/2} \to E_{-l/2}$,
- linear maps $I_L: W_L \to E_{-\lambda}, \ J_L: E_{-\lambda} \to W_L, \ I_R: W_R \to E_{\lambda},$ and $J_R: E_{\lambda} \to W_R.$

$$\begin{pmatrix} T_0 \\ T_j \\ B_{01} \\ B_{10} \\ I_{\alpha} \\ J_{\alpha} \end{pmatrix} \mapsto \begin{pmatrix} g^{-1}(s)T_0g(s) + ig^{-1}(s)\frac{d}{ds}g(s) \\ g^{-1}(s)T_jg(s) \\ g^{-1}(-\frac{l}{2})B_{01}g(\frac{l}{2}) \\ g^{-1}(\frac{l}{2})B_{10}g(-\frac{l}{2}) \\ g^{-1}(\lambda_{\alpha})I_{\alpha} \\ J_{\alpha}g(\lambda_{\alpha}) \end{pmatrix}$$

Let

$$D = \frac{d}{ds} - iT_0 - T_3$$
 and $T = T_1 + iT_2$,

Moment map conditions:

$$[D,T] - \delta(s+\frac{l}{2})B_{01}B_{10} + \delta(s-\frac{l}{2})B_{10}B_{01} + \sum_{\alpha \in \{L,R\}} \delta(s-\lambda_{\alpha})I_{\alpha}J_{\alpha} = 0$$

$$[D^{\dagger},D] + [T^{\dagger},T] + \delta(s+\frac{l}{2})(B_{10}^{\dagger}B_{10} - B_{01}B_{01}^{\dagger}) + \delta(s-\frac{l}{2})(B_{01}^{\dagger}B_{01} - B_{10}B_{10}^{\dagger}) + \sum_{\alpha \in \{L,R\}} \delta(s-\lambda_{\alpha})(J_{\alpha}^{\dagger}J_{\alpha} - I_{\alpha}I_{\alpha}^{\dagger}) = 0.$$

Massless fundamental hypermultiplet: f

Massive fundamental hypermultiplet from D3-D5 open string mode

Massless bifundamental hypemultiplet: B

Massive bifundamental hypemultiplet from D3-D3 open string mode

Impurity Theory on D3

5

Χ

X

7

N=2, D=4 Yang-Mills with hyperplanes of impurities

Χ

0

X

X

X

D5

D3

2

X

3

Χ

	NS5	X	X	X					X	X	X			
	Vector Multiplet	A 0	Aı	A 2					Yı	Y 3		$\lambda_{\alpha}, \alpha = 1, 2$	Majorana	
	Adjoint Hyper				lm Hı		Re H2					$ \psi angle$	Dirac	
$L = L_1 + L_2$ $\mu = 0, 1, 2$ $\alpha = 1, 2$ $i, j = 1, 2, 3$														
$L_{1} = R_{6} \int d^{3}x_{\mu} dx_{6} \left\{ \frac{1}{2} F_{\mu\nu} ^{2} + \frac{1}{2} D_{\mu}Y^{i} ^{2} - \frac{1}{2} D_{6}Y^{i} ^{2} - \frac{1}{2} \sum_{i < i} [Y^{i}, Y^{j}] ^{2} + \frac{1}{2} D_{\mu}H^{j} ^{2} - \sum_{i, i} [Y^{i}, H^{j}] ^{2} \right\}$														
$L_2 = l \int d^3x_{\mu} dx_6 \left\{ \frac{1}{l} \left(\sum_{p} \delta(x_6 - \lambda_p) \left(D_{\mu} f^p ^2 - Y^i f^p ^2 \right) + \right\} \right\}$														
$+ D_{\mu}B ^{2}+\delta(x_{6}) Y^{i}(x_{6}+)B-BY^{i}(x_{6}-) ^{2}+$														
$+ \frac{1}{2} \mathcal{D} ^2 + \operatorname{Tr} i\mathcal{D}^{\alpha}_{\beta} \left([H_{\alpha}, H^{\dagger \beta}] + \frac{1}{l} \left[\sum_{p} \delta(x_6 - \lambda_p) f^p_{\alpha} \otimes f^{\dagger p\beta} + \right] \right)$														
	$+\delta(x_6)B\otimes B^{\dagger}+\delta(x_6-l)B^{\dagger}\otimes B])$													
$\mathcal{D}^{lpha}_{eta}=\mathcal{D}^{i}(\sigma$	$(\sigma^i)^lpha_eta$				$\frac{1}{}$	$\frac{1}{2}\frac{\partial}{\partial x_{\epsilon}}$	R	eH_1		_				

\mathcal{D} -flatness conditions

$$T_{0} = -\sqrt{2} \operatorname{Re} H_{1}, \ T_{1} = -\sqrt{2} \operatorname{Im} H_{1}, \ T_{2} + iT_{3} = -\sqrt{2} H_{2},$$

$$f_{p} = \begin{pmatrix} f_{p} \\ \tilde{f}_{p}^{\dagger} \end{pmatrix} = \begin{pmatrix} j_{p}^{\dagger} \\ i_{p} \end{pmatrix}$$

$$\frac{dT_{1}}{dx_{1}} + [T_{0}, T_{1}] + [T_{2}, T_{3}] = -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta(s - \lambda_{p}) \left(f^{p} \otimes f^{\dagger p} - \tilde{f}^{\dagger p} \otimes \tilde{f}^{p} \right) + \\
+ \delta(s) (B_{01} B_{01}^{\dagger} - B_{10}^{\dagger} B_{10}) + \delta(s - l) (B_{10} B_{10}^{\dagger} - B_{01}^{\dagger} B_{01}), \\
\frac{dT_{2}}{dx_{1}} + [T_{0}, T_{2}] + [T_{3}, T_{1}] = -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta(s - \lambda_{p}) \left(-if^{p} \otimes \tilde{f}^{p} + i\tilde{f}^{\dagger p} \otimes f^{\dagger p} \right) + \\
+ \delta(s) (-iB_{01} B_{10} + iB_{10}^{\dagger} B_{01}^{\dagger}) + \delta(s - l) (iB_{10} B_{01} - iB_{01}^{\dagger} B_{10}^{\dagger}), \\
\frac{dT_{3}}{dx_{1}} + [T_{0}, T_{3}] + [T_{1}, T_{2}] = -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta(s - \lambda_{p}) \left(f^{p} \otimes \tilde{f}^{p} + \tilde{f}^{\dagger p} \otimes f^{\dagger p} \right) + \\
+ \delta(s) (B_{01} B_{10} + B_{10}^{\dagger} B_{01}^{\dagger}) + \delta(s - l) (B_{10} B_{10} + B_{01}^{\dagger} B_{01}^{\dagger})$$

Exactly the HKM of the proposed diagrams.

Nahm Transform

Given Bow data consider Weyl Operator:

$$\mathfrak{D}: f \mapsto \begin{pmatrix} \left(-\frac{d}{ds} + iT_0 + \mathfrak{T}\right)f \\ (J_L, I_L^{\dagger})f(-\lambda) \\ (J_R, I_R^{\dagger})f(\lambda) \\ (B_{01}, B_{10}^{\dagger})f(l/2) \\ \left(-B_{10}, B_{01}^{\dagger}\right)f(-l/2) \end{pmatrix}$$
 $\chi_{\alpha} \in E_{\lambda_{\alpha}}, v_{-} \in E_{-l/2} \text{ and } v_{+} \in E_{l/2}$ cokernel of \mathfrak{D} is given by $(\psi(s), y_{-})$

$$\chi_{\alpha} \in E_{\lambda_{\alpha}}, v_{-} \in E_{-l/2} \text{ and } v_{+} \in E_{l/2}$$

cokernel of \mathfrak{D} is given by $(\psi(s), \chi_L, \chi_R, v_-, v_+)$

$$\begin{pmatrix} \left(\frac{d}{ds} - iT_0 + \mathcal{T}\right)\psi = 0, \text{ on } \mathcal{I} \setminus \{\alpha_L, \alpha_R\}, \\ \psi(\lambda_{\alpha} +) - \psi(\lambda_{\alpha} -) = -Q_{\alpha}\chi_{\alpha}, \\ \psi(\frac{l}{2}) = \begin{pmatrix} B_{01}^{\dagger} \\ B_{10} \end{pmatrix} v_{-}, \\ \psi(-\frac{l}{2}) = -\begin{pmatrix} -B_{10}^{\dagger} \\ B_{01} \end{pmatrix} v_{+}. \end{pmatrix}$$

$$\mathfrak{D}^{\dagger} = \begin{pmatrix} -D^{\dagger} & T^{\dagger} \\ T & D \end{pmatrix} \oplus \begin{pmatrix} \bigoplus_{\alpha \in \{L,R\}} \delta(s - \lambda_{\alpha}) \begin{pmatrix} J_{\alpha}^{\dagger} \\ I_{\alpha} \end{pmatrix} \end{pmatrix}$$
$$\oplus \begin{pmatrix} \delta(s + \frac{l}{2}) \begin{pmatrix} B_{10}^{\dagger} \\ -B_{01} \end{pmatrix}, \ \delta(s - \frac{l}{2}) \begin{pmatrix} B_{01}^{\dagger} \\ B_{10} \end{pmatrix} \end{pmatrix}.$$

Moment map conditions are equivalent to $Vec(\mathfrak{D}^{\dagger}\mathfrak{D}) = 0$.

Twisted dual Weyl Operator:

given a point of the Taub-NUT space $(t_0, \vec{t}, b_{10}, b_{01})$

$$\mathfrak{D}_{t}^{\dagger} = \begin{pmatrix} -D^{\dagger} - t_{3} & T^{\dagger} - t^{\dagger} \\ T - t & D + t_{3} \end{pmatrix} \oplus \begin{pmatrix} \bigoplus_{\alpha \in \{L,R\}} \delta(s - \lambda_{\alpha}) \begin{pmatrix} J_{\alpha}^{\dagger} \\ I_{\alpha} \end{pmatrix} \end{pmatrix}$$
$$\oplus \begin{pmatrix} \delta(s + \frac{l}{2}) \begin{pmatrix} B_{10}^{\dagger} & -b_{10}^{\dagger} \\ -B_{01} & -b_{01} \end{pmatrix} + \delta(s - \frac{l}{2}) \begin{pmatrix} -b_{01}^{\dagger} & B_{01}^{\dagger} \\ b_{10} & B_{10} \end{pmatrix} \end{pmatrix}.$$

$$\psi$$
 a section of $E \otimes e \otimes \mathbb{C}^2 \to \mathcal{I} \setminus \{-\lambda, \lambda\}$, $v_- \in E_{-l/2} \otimes e_{l/2}$ and $v_+ \in E_{l/2} \otimes e_{-l/2}$.

For
$$\psi_1 = (\psi_1(s), \chi_{L1}, \chi_{R1}^+, v_1)$$
 $\psi_2 = (\psi_2(s), \chi_{L2}, \chi_{R2}, v_2)$

there is a natural Hermitian product

$$(\boldsymbol{\psi}_1, \boldsymbol{\psi}_2) = v_1^{\dagger} v_2 + (\chi_{L1})^{\dagger} \chi_{L2} + (\chi_{R1})^{\dagger} \chi_{R2} + \int_{-l/2}^{l/2} \psi_1^{\dagger}(s) \psi_2(s) ds.$$

the operator **s** acting on ψ as follows

$$\mathfrak{D}_t^{\dagger} \mathbf{\Psi} = 0$$

$$\mathbf{s}: (\psi(s), \chi_L, \chi_R, v) \mapsto \left(s\psi(s), -\lambda \chi_L, \lambda \chi_R, \begin{pmatrix} \lambda & 0 \\ 0 & -\lambda \end{pmatrix} v\right).$$

the self-dual connection on TN is

$$A = \left(\Psi, \left(\frac{\partial}{\partial \tau} + \frac{\mathbf{s}}{V}\right)\Psi\right) d\tau + \left(\Psi, \left(\frac{\partial}{\partial x_j} + \omega_j \frac{\mathbf{s}}{V}\right)\Psi\right) dx_j$$

Solution of $\mathfrak{D}_t^{\dagger} \Psi = 0$

Taub-NUT data

$$b_{-} = \begin{pmatrix} -b_{01}^{\dagger} \\ b_{10} \end{pmatrix}, b_{+} = \begin{pmatrix} -b_{10}^{\dagger} \\ -b_{01} \end{pmatrix}$$

$$b_{\pm}b_{\pm}^{\dagger} = |\vec{t}| \pm \hbar$$

$$\mathcal{D} = F\bar{F} = (T_1 + t)^2 - z_1^2.$$

$$\mu_{\pm} = \sqrt{\frac{T_1 + t + \sqrt{\mathcal{D}}}{2}} \pm \sqrt{\frac{T_1 + t - \sqrt{\mathcal{D}}}{2}} \frac{\chi_1}{z_1},$$

Instanton data is simple:

$$\vec{T}(s) = \begin{cases} \vec{T}_1 & \text{for } -l/2 < s < -\lambda \text{ or } \lambda > s > l/2 \\ \vec{T}_2 & \text{for } -\lambda < s < \lambda \end{cases}$$
$$\vec{y} = \vec{T}_2 - \vec{T}_1 = \vec{z}_1 - \vec{z}_2$$

$$B_{-} = \begin{pmatrix} B_{10}^{\dagger} \\ -B_{01} \end{pmatrix}, B_{+} = \begin{pmatrix} B_{01}^{\dagger} \\ B_{10} \end{pmatrix} \qquad Q_{R} = Q_{+} \text{ and } Q_{L} = Q_{-}.$$

$$B_{\pm}B_{\pm}^{\dagger}=|\vec{T}_{1}|\pm T_{1}$$

Solution:

$$Q_{\pm}Q_{\pm}^{\dagger} = y \pm \dot{y}.$$

$$\Pi = \frac{1}{2a} \left(e^{-i\theta} e^{\lambda \xi_2} (y - y) e^{-(l/2 - \lambda)\xi_1} \mu_- + e^{i\theta} e^{-\lambda \xi_2} (y + y) e^{(l/2 - \lambda)\xi_1} \mu_+ \right)$$

$$v = \frac{1}{\sqrt{\mathcal{D}}} \begin{pmatrix} e^{i\tau/2} B_{-}^{\dagger} \mu_{+} \\ e^{-i\tau/2} B_{+}^{\dagger} \mu_{-} \end{pmatrix}$$

$$\begin{pmatrix} \chi_R \\ \chi_L \end{pmatrix} = \begin{pmatrix} Q_+^{\dagger} e^{-\lambda \not \chi_2} \\ Q_-^{\dagger} e^{\lambda \not \chi_2} \end{pmatrix} \frac{e^{-i\theta} e^{-\lambda \not \chi_2} e^{-(\frac{l}{2} - \lambda) \not \chi_1} \mu_- - e^{i\theta} e^{\lambda \not \chi_2} e^{(\frac{l}{2} - \lambda) \not \chi_1} \mu_+}{2g}$$

$$\left(\begin{array}{c} v = \frac{1}{\sqrt{\mathcal{D}}} \left(\begin{array}{c} e^{i\tau/2} B_{-}^{\dagger} \mu_{+} \\ e^{-i\tau/2} B_{+}^{\dagger} \mu_{-} \end{array} \right) \\ \left(\begin{array}{c} \chi_{R} \\ \chi_{L} \end{array} \right) = \left(\begin{array}{c} Q_{+}^{\dagger} e^{-\lambda \chi_{2}} \\ Q_{-}^{\dagger} e^{\lambda \chi_{2}} \end{array} \right) \frac{e^{-i\theta} e^{-\lambda \chi_{2}} e^{-(\frac{l}{2} - \lambda)\chi_{1}} \mu_{-} - e^{i\theta} e^{\lambda \chi_{2}} e^{(\frac{l}{2} - \lambda)\chi_{1}} \mu_{+}}{2g} . \right)$$

$$g = y \cosh 2z_2 \lambda - \frac{\vec{z}_2 \cdot \vec{y}}{z_2} \sinh 2z_2 \lambda$$

For this Ψ $(\Psi,\Psi)=m\mathbb{I}$

$$m = 2 + \frac{1}{g} \left\{ -\sqrt{\mathcal{D}} \cos 2\theta + \frac{(T_1 + t) \sinh z_1 d - z_1 \cosh z_1 d}{z_1} \left(y \cosh 2\lambda z_2 + \frac{\vec{z}_1 \cdot \vec{z}_2 - y^2}{z_2} \sinh 2\lambda z_2 \right) + \frac{(T_1 + t) \cosh z_1 d - z_1 \sinh z_1 d}{z_2} (z_2 \cosh 2\lambda z_2 + y \sinh 2\lambda z_2) \right\}.$$
 (50)

$$v = \frac{1}{\sqrt{\mathcal{D}}} \begin{pmatrix} e^{i\tau/2} B_{-}^{\dagger} \mu_{+} \\ e^{-i\tau/2} B_{+}^{\dagger} \mu_{-} \end{pmatrix} \qquad \psi(s) = \begin{cases} e^{\frac{1}{\lambda_{1}}(s+l/2)} \psi_{\mu_{+}} & \text{for } -l/2 < s < -\lambda \\ e^{\frac{1}{\lambda_{2}}s} \Pi & \text{for } -\lambda < s < \lambda \\ e^{\frac{1}{\lambda_{1}}(s-l/2)} \psi_{R}^{i\theta} \mu_{-} & \text{for } \lambda < s < l/2 \end{cases}$$

$$\begin{pmatrix} \chi_{R} \\ \chi_{L} \end{pmatrix} = \begin{pmatrix} Q_{+}^{\dagger} e^{-\lambda \lambda_{2}} \\ Q_{-}^{\dagger} e^{\lambda \lambda_{2}} \end{pmatrix} \frac{e^{-i\theta} e^{-\lambda \lambda_{2}} e^{-(\frac{l}{2}-\lambda)\lambda_{1}} \mu_{-} - e^{i\theta} e^{\lambda \lambda_{2}} e^{(\frac{l}{2}-\lambda)\lambda_{1}} \mu_{+}}{2q}$$

$$A = \left(\Psi, \left(\frac{\partial}{\partial \theta} + \frac{\mathbf{s}}{V}\right)\Psi\right) d\tau + \left(\Psi, \left(\frac{\partial}{\partial x_j} + \omega_j \frac{\mathbf{s}}{V}\right)\Psi\right) dx_j$$

Moduli Space of N SU(2) Instantons on Taub-NUT

One SU(2) instanton on TN

$$G$$
 is $U(N)$

$$T^*G_{d_L} \times \mathbb{H}^N \times T^*G_{d_M} \times \mathbb{H}^N \times T^*G_{d_R} \times \mathbb{H}^{N^2} /\!\!/\!/ G_{-l/2} \times G_{-\lambda} \times G_{\lambda} \times G_{l/2}$$

To have algebraic description of this space introduce monodromy H on each interval:

$$D_MH_M(s)=0$$
, $H_M(-\lambda)=1$, $H_M=H_M(\lambda)$

Moment maps can be written as:

$$T_R-H^{-1}_MT_M H_M=I_RJ_R$$
, $H^{-1}_RT_R H_R=B_{10}B_{01}$
 $T_M-H^{-1}_LT_L H_L=I_LJ_L$, $T_L=B_{01}B_{10}$

Up to the gauge equivalence

$$\begin{pmatrix} T_L, H_L \\ T_M, H_M \\ T_R, H_R \\ B_{01}, B_{10} \end{pmatrix} \longmapsto \begin{pmatrix} g^{-1} \cdot 1/2 T_L \ g \cdot 1/2, \ g^{-1} \cdot 1/2 \ H_L \ g \cdot \lambda \\ g^{-1} \cdot \lambda T_M \ g \cdot \lambda, \ g^{-1} \cdot \lambda H_M \ g \lambda \\ g^{-1} \lambda T_R \ g \lambda, \ g^{-1} \lambda H_R \ g I/2 \\ g^{-1} I/2 B_{01} \ g \cdot I/2, \ g^{-1} \cdot I/2 B_{10} \ g I/2 \end{pmatrix}$$

matches to de Boer, Hori, Ooguri, Oz hep-th/9611063

$$ds^{2} = \left(l + \frac{1}{2r_{1}}\right) d\vec{r}_{1}^{2} - 4\lambda d\vec{r}_{1} d\vec{q} + \left(2\lambda + \frac{1}{q}\right) d\vec{q}^{2}$$

$$+ \frac{\left(d\theta - \frac{1}{4}\omega_{r}\right)^{2}}{l - 2\lambda + 1/q + 1/(2r)} + \frac{\left(d\alpha + \frac{1}{2}\omega_{q}\right)^{2}}{2\lambda + 1/q}$$

$$d\omega_{r} = *d\frac{1}{r_{1}}$$

$$d\omega_{q} = *d\frac{1}{q}$$

$$\alpha \sim \alpha + 2\pi$$

Data Determining N U(m) Instantons on TN_k Bow Diagrams

N SU(2) on TN

N SU(m) on TN

N SU(m) on multi-TN

N SU(2) "monopoles" on TN

Instantons on ALF Spaces:

Instantons on A₂ ALF

D₆ ALF

U(I)

Instantons on D₆ ALF

Dancer

Electric-Magnetic Duality

Bow Doublet

Higgs Branch

Coulomb Branch

Higgs Branch

Mixed Branch

$$H_{\alpha} \sim I, Y_J \sim I$$

Coulomb Branch

$$< H^2 > = 0, < Y^2 > \neq 0$$

N U(k) Inst / TN_m

Summary:

- I. Problem: Instantons & Monopoles
- 2. Explicit Monopole Solution
- 3. Ingredients: Arrows & Strings
- 4. Answer: Bow Diagrams
- 5. String Dualities
- 6. Gauge theory with Impurity walls
- 7. Explicit Instanton Solution
- 8. Moduli spaces of instantons on ALF
- 9. EM duality of Bows

$$\left(e^{-\vec{\sigma}\cdot\vec{z}_{1}(l-\lambda_{2})}\begin{pmatrix} -b_{01}^{\dagger} & B_{01}^{\dagger} \\ b_{10} & B_{10} \end{pmatrix} + e^{\vec{\sigma}\cdot\vec{z}_{2}(\lambda_{2}-\lambda_{1})}e^{\vec{\sigma}\cdot\vec{z}_{1}\lambda_{1}}\begin{pmatrix} B_{10}^{\dagger} & -b_{10}^{\dagger} \\ -B_{01} & -b_{01} \end{pmatrix}\right)\begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} + e^{\vec{\sigma}\cdot\vec{z}_{2}(\lambda_{2}-\lambda_{1})}\begin{pmatrix} j_{1}^{\dagger} \\ i_{1} \end{pmatrix}\Delta_{1} + \begin{pmatrix} j_{2}^{\dagger} \\ i_{2} \end{pmatrix}\Delta_{2} = 0$$

Compare to ADHM condition:

$$\begin{pmatrix} B_{10}^{\dagger} - b_{01}^{\dagger} & B_{01}^{\dagger} - b_{10}^{\dagger} \\ -B_{01} + b_{10} & B_{10} - b_{01} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} j_1^{\dagger} & j_2^{\dagger} \\ i_1 & i_2 \end{pmatrix} \begin{pmatrix} \Delta_1 \\ \Delta_2 \end{pmatrix} = 0$$