I2 September 2007

From: http://www.captcook-ne.co.uk/ccne/themes/objects.htm

Self-dual Gravitational Instantons

are complete four-dimensional Riemannian manifolds that satisfy one of the following equivalent conditions:
i. hyperkähler
ii. admits covariantly constant spinors
iii. Calabi-Yau two-fold
iv. preserves I/2 Supersymmetry
v. self-dual curvature form

$$
R_{\alpha \beta \gamma \delta}=\frac{1}{2} \epsilon_{\alpha \beta \mu \nu} R_{\gamma \delta}^{\mu \nu}
$$

Distinguished by

- Asymptotic behaviour:
- Topology:
A, D, E, etc.

Questions:
Classification, metrics, Yang-Mills Instantons

Conjecture:

Any gravitational instanton metric with finite Pontrjagin number asymptotically approaches a metric with a local triholomorphic isometry.
$\int_{M} R \wedge R<\infty \quad \Rightarrow \quad d s^{2} \underset{|\vec{x}| \rightarrow \infty}{ } V^{-1}(d \theta+\omega)^{2}+V d \vec{x}^{2}$

ALE

$$
V=\frac{1}{|\vec{x}|}
$$

ALF $\quad A_{k}$ and D_{k}
ALG

$$
\begin{aligned}
V & =C+\frac{1}{|\vec{x}|} \\
V & =C+\frac{N}{2} \log \left(x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

ALH

$$
V=C_{1}+C_{2} x_{1}
$$

The Taub-NUT Space

$$
\begin{gathered}
d s^{2}=V^{-1}(d \theta+\omega)^{2}+V d \vec{x}^{2}, \\
d \omega=*_{3} d V, \theta \sim \theta+4 \pi, \quad V=l+\frac{1}{|\vec{x}|}
\end{gathered}
$$

Self-dual Abelian connection:

Self-dual Abelian connections:

$$
\begin{array}{ll}
a_{\alpha}=\frac{1}{4 \pi}\left(\left(V_{\alpha}-V_{\alpha+1}\right) \frac{d \theta+\omega}{V}+\omega_{\alpha}-\omega_{\alpha+1}\right) & V_{\alpha}=\frac{1}{\left|\vec{x}-\vec{x}_{\alpha}\right|} \\
a_{0}=\frac{s}{4 \pi} \frac{d \theta+\omega}{V} & d \omega_{\alpha}=* d V_{\alpha}
\end{array}
$$

Instantons on ALF Spaces

$$
F=* F
$$

Action $S=\int F \wedge * F$ is finite
Monodromy at infinity $\left(\frac{\partial}{\partial \theta}-i A_{\theta}\right) W(\vec{x}, \theta)=0, W(\vec{x}, 0)=1 \quad W=\lim _{x \rightarrow \infty} W(\vec{x}, 4 \pi)$
-Maximal Symmetry Breaking:
EigenValues of W are distinct $\quad-\frac{\pi}{l}<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}<\frac{\pi}{l}$
EigenBundles of W are line bundles $\quad \mathcal{L}_{i} \rightarrow S_{\infty}^{2}$ with Chern classes j_{i}
Monopole Charges: if $\mathrm{M}=\min \left(\mathrm{j}_{1}, \mathrm{j}_{1}+\mathrm{j}_{2}, \ldots, \mathrm{j}_{1}+\mathrm{j}_{2}+\ldots+\mathrm{j}_{n}\right)$ then the monopole charges are $\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\left(j_{1}-M, j_{1}+j_{2}-M, \ldots, j_{1}+j_{2}+\ldots+j_{n}-M\right)$

Instanton Number:

$$
n=\frac{1}{32 \pi^{2}} \int \operatorname{Tr} F \wedge F-\left(m_{1}\left(l \lambda_{1}+\pi\right)+m_{2} l\left(\lambda_{2}-\lambda_{1}\right)+\ldots m_{n}\left(\pi-l \lambda_{n}\right)\right)
$$

Question: Find explicit SD connections on ALF spaces

Explicit Solution on TN: m=I, n=0

$$
\begin{gathered}
V=l+\frac{1}{2 z}, \quad a=z+d \\
\mathcal{D}=(z+d)^{2}-r^{2} \\
\mathcal{K}=\left(a^{2}+r^{2}\right) \cosh (2 \lambda r)+2 r a \sinh (2 \lambda r) \\
\mathcal{L}=\left(a^{2}+r^{2}\right) \sinh (2 \lambda r)+2 r a \cosh (2 \lambda r)
\end{gathered}
$$

Monopole

$$
\mathcal{A}=\frac{1}{\mathcal{L}}\left\{\overrightarrow{d x} \cdot(\vec{\sigma} \times \vec{r})\left(\frac{(2 \lambda r-\sinh (2 \lambda r)) \mathcal{D}}{2 r^{2}}-\sinh (2 \lambda r)\left(1+\frac{a}{r} \tanh (\lambda r)\right)\right)\right.
$$

$$
+\frac{\overrightarrow{d x} \cdot(\vec{r} \times \vec{z})}{z} \frac{\vec{\sigma} \cdot \vec{r}}{r}\left(1-\frac{\mathcal{K}}{\mathcal{D}}\right)-\frac{r}{z} \overrightarrow{d x} \cdot(\vec{\sigma} \times \vec{z})
$$

$$
\left.+\frac{d \theta-\omega}{V}\left(\frac{\vec{\sigma} \cdot \vec{r}}{r}\left(\left(\lambda+\frac{1}{2 z}\right) \mathcal{K}-\frac{\mathcal{L}}{2 r}\right)-\frac{r}{z} \vec{\sigma} \cdot \vec{d}_{\perp}\right)\right\}
$$

Next Question: Find explicit $m=0, n=\mid S D$ connections on TN

Ingredients I: Arrows and Limbs

$$
g_{v}:(I, J) \mapsto\left(g_{v}^{-1} I, J g_{v}\right)
$$

$$
g_{w}:(I, J) \mapsto\left(I g_{w}, g_{w}^{-1} J\right)
$$

Moment maps:

$$
\mu_{V}^{\mathbb{C}}=\mu_{V}^{1}+i \mu_{V}^{2}=I J, \quad \mu_{V}^{\mathbb{R}}=\mu_{V}^{3}=\frac{1}{2}\left(J^{\dagger} J-I I^{\dagger}\right), \quad \quad \mu_{W}^{\mathbb{C}}=\mu_{W}^{1}+i \mu_{W}^{2}=-J I, \quad \mu_{W}^{\mathbb{R}}=\mu_{W}^{3}=\frac{1}{2}\left(I^{\dagger} I-J J^{\dagger}\right) .
$$

A convenient way of writing the moment maps is

$$
Q_{V}=\binom{J^{\dagger}}{I} \quad \lambda_{V}=\mu_{V}^{i} \sigma_{i}=\operatorname{Vec}\left(Q_{V} Q_{V}^{\dagger}\right) \quad \operatorname{Vec}\left(M^{0}+M^{j} \sigma_{j}\right)=M^{j} \sigma_{j}
$$

Example: ADHM

Example: Kronheimer \& Nakajima (Instantons on \mathbb{R}^{4} / Γ)
$\mathrm{A}_{k} \mathrm{ALE}: \mathbb{R}^{4} / \mathbb{Z}_{k+1}$

Affine Dynkin diagram

Moment maps at V_{I}

$$
\begin{aligned}
& \mu^{C}=B_{10} B_{01}-B_{12} B_{21}+l_{1} J_{1} \\
& \mu^{R}=B^{+}{ }_{01} B_{01}-B_{10} B^{+}{ }_{10}+B_{12} B^{+}{ }_{12}-B^{+}{ }_{21} B_{21}+l_{1} 1^{+} 1-J^{+} J_{1}
\end{aligned}
$$

ALE Spaces:

Douglas \& Moore Johnson \& Myers

Kronheimer Construction from String Theory

D2-brane on $\mathbb{R}^{4} / \Gamma \times \mathbb{R}^{6}$

$r=|\Gamma|$ rank of Γ
Super Yang-Mills with gauge group $U(r)$
Equivariance conditions

$$
\begin{aligned}
A_{\mu} & =\gamma^{-1}(g) A_{\mu} \gamma(g) \\
\phi^{p} & =\gamma^{-1}(g) \phi^{p} \gamma(g) \\
\Phi^{I} & =R(g)_{J}^{I} \gamma^{-1}(g) \Phi^{J} \gamma(g)
\end{aligned}
$$

γ is an r-dimensional representation of Γ,
R is a two-dimensional representation of Γ.

Kronheimer-Nakajima Construction from String Theory

N instantons in $U(K)$ on ALE space

N D2-branes and K D6-branes on $\mathbb{R}^{4} / \Gamma \times \mathbb{R}^{6}$
Super Yang-Mills with gauge group $U(r)$ and K scalar fields in the defining representation.

Ingredients 2: "Strings"

$U(n)$

$$
\begin{gathered}
\left(T_{0}(s), T_{1}(s), T_{2}(s), T_{3}(s)\right) . \\
g(s):\left(\begin{array}{c}
T_{0}(s) \\
T_{1}(s) \\
T_{2}(s) \\
T_{3}(s)
\end{array}\right) \mapsto\left(\begin{array}{c}
g^{-1} T_{0} g+i g^{-1} \frac{d}{d s} g \\
g^{-1} T_{1} g \\
g^{-1} T_{2} g \\
g^{-1} T_{3} g
\end{array}\right) \\
\mu^{1}=\frac{d}{d s} T_{1}-i\left[T_{0}, T_{1}\right]+i\left[T_{2}, T_{3}\right], \\
\mu^{2}=\frac{d}{d s} T_{2}-i\left[T_{0}, T_{2}\right]+i\left[T_{3}, T_{1}\right], \\
\mu^{3}=\frac{d}{d s} T_{3}-i\left[T_{0}, T_{3}\right]+i\left[T_{1}, T_{2}\right] .
\end{gathered}
$$

Convenient Notation:

$$
\begin{aligned}
& \Gamma=\sigma_{1} \otimes T_{1}+\sigma_{2} \otimes T_{2}+\sigma_{3} \otimes T_{3} \\
& \qquad \lambda=\left[\frac{d}{d s}-i T_{0}, T\right]+\operatorname{Vec}(T, T) .
\end{aligned}
$$

Example: Calorons

$\mathbb{R}^{3} \times \mathbf{S}^{1}$

String Theory derivation via
Chalmers-Hanany-Witten
configuration

Instantons on $\mathbb{R}^{3} \times \mathbf{S}^{1}$

Taub-NUT Bow Diagram

$$
\begin{gathered}
\left(\begin{array}{c}
t_{0} \\
t_{j} \\
b_{01} \\
b_{10}
\end{array}\right) \mapsto\left(\begin{array}{c}
h^{-1} t_{0} h+i h^{-1} \frac{d}{d s} h \\
h^{-1} t_{j} h \\
h^{-1}\left(-\frac{l}{2}\right) b_{01} h\left(\frac{l}{2}\right) \\
h^{-1}\left(\frac{l}{2}\right) b_{10} h\left(-\frac{l}{2}\right)
\end{array}\right) \\
t=t_{1}+i t_{2} \text { and } \mathbf{D}=d / d s-i t_{0}-t_{3}
\end{gathered}
$$

Moment maps: $\quad[\mathbf{D}, t]-\delta\left(s+\frac{l}{2}\right) b_{01} b_{10}+\delta\left(s-\frac{l}{2}\right) b_{10} b_{01}=0$,

$$
\left[\mathbf{D}^{\dagger}, \mathbf{D}\right]+\left[t^{\dagger}, t\right]+\delta\left(s+\frac{l}{2}\right)\left(b_{10}^{\dagger} b_{10}-b_{01} b_{01}^{\dagger}\right)+\delta\left(s-\frac{l}{2}\right)\left(b_{01}^{\dagger} b_{01}-b_{10} b_{10}^{\dagger}\right)=0
$$

$$
\begin{gathered}
d s^{2}=\frac{1}{4}\left[\left(l+\frac{1}{r}\right) d \vec{r}^{2}+\frac{1}{l+1 / r}(d \tau+\omega)^{2}\right] \\
\text { Metric }
\end{gathered} l_{1} \frac{l+1 / r}{l_{1}+1 / r}\left[d t_{0}+\frac{d \tau+\omega}{2(l+1 / r)}\right]^{2} .
$$

Natural Connection: $a_{0}=\frac{l_{1}}{2}(d \tau+\omega) /(l+1 / r)$.

k_{0} Instantons on Taub-NUT

- a rank k_{0} vector bundle $E \rightarrow[-l / 2, l / 2]$ with the Nahm data $\left(T_{0}, \vec{T}\right)$ on the intervals $[-l / 2,-\lambda],[-\lambda, \lambda]$, and $[\lambda, l / 2]$ (we do not presume continuity at $s= \pm \lambda$),
- linear maps $B_{10}: E_{-l / 2} \rightarrow E_{l / 2}$ and $B_{01}: E_{l / 2} \rightarrow E_{-l / 2}$,
- linear maps $I_{L}: W_{L} \rightarrow E_{-\lambda}, J_{L}: E_{-\lambda} \rightarrow W_{L}, I_{R}: W_{R} \rightarrow E_{\lambda}$, and $J_{R}: E_{\lambda} \rightarrow W_{R}$.

$$
\left(\begin{array}{c}
T_{0} \\
T_{j} \\
B_{01} \\
B_{10} \\
I_{\alpha} \\
J_{\alpha}
\end{array}\right) \mapsto\left(\begin{array}{c}
g^{-1}(s) T_{0} g(s)+i g^{-1}(s) \frac{d}{d s} g(s) \\
g^{-1}(s) T^{\prime} g(s) \\
g^{-1}\left(-\frac{1}{2}\right) B_{01} g\left(\frac{1}{2}\right) \\
g^{-1}\left(\frac{1}{2}\right) B_{10} g\left(-\frac{1}{2}\right) \\
g^{-1}\left(\lambda_{\alpha}\right) I_{\alpha} \\
J_{\alpha} g\left(\lambda_{\alpha}\right)
\end{array}\right)
$$

Let
Moment map conditions:
$D=\frac{d}{d s}-i T_{0}-T_{3}$ and $T=T_{1}+i T_{2}$,

$$
\begin{aligned}
& {[D, T]-\delta\left(s+\frac{l}{2}\right) B_{01} B_{10}+\delta\left(s-\frac{l}{2}\right) B_{10} B_{01}+\sum_{\alpha \in\{L, R\}} \delta\left(s-\lambda_{\alpha}\right) I_{\alpha} J_{\alpha}=0} \\
& {\left[D^{\dagger}, D\right]+\left[T^{\dagger}, T\right]+\delta\left(s+\frac{l}{2}\right)\left(B_{10}^{\dagger} B_{10}-B_{01} B_{01}^{\dagger}\right)+\delta\left(s-\frac{l}{2}\right)\left(B_{01}^{\dagger} B_{01}-B_{10} B_{10}^{\dagger}\right)+} \\
& +\sum_{\alpha \in\{L, R\}} \delta\left(s-\lambda_{\alpha}\right)\left(J_{\alpha}^{\dagger} J_{\alpha}-I_{\alpha} I_{\alpha}^{\dagger}\right)=0 .
\end{aligned}
$$

D3

Taub-NUT

Gauge Theory on D3-brane

Massless fundamental hypermultiplet: f

Massless bifundamental hypemultiplet: B

Massive fundamental hypermultiplet from D3-D5 open string mode

Massive bifundamental hypemultiplet from D3-D3 open string mode
$\mathrm{N}=2$, $\mathrm{D}=4$ Yang-Mills with hyperplanes of impurities

	0	I	2	3	4	5	6	7	8	9
D 5	x	x	x	x	x	x				
D 3	x	x	x				x			
NS	x	x	x					x	x	x
Vector Multiple	A 0	$\mathrm{~A}^{2}$	$\mathrm{~A}_{2}$					Y_{1}	Y_{3}	Y_{3}
Adjoint Hyper				lm H।	$\lambda_{\alpha}, \alpha=1,2$ Majorana					

$$
\begin{aligned}
& L=L_{1}+L_{2} \\
& \mu=0,1,2 \\
& \alpha=1,2 \\
& i, j=1,2,3
\end{aligned}
$$

$$
\begin{aligned}
& L_{2}=l \int d^{3} x_{\mu} d x_{6} \quad\left\{\frac { 1 } { l } \left(\sum_{p} \delta\left(x_{6}-\lambda_{p}\right)\left(\left|D_{\mu} f^{p}\right|^{2}-\left|Y^{i} f^{p}\right|^{2}\right)+\right.\right. \\
& \left.+\left|D_{\mu} B\right|^{2}+\delta\left(x_{6}\right)\left|Y^{i}\left(x_{6}+\right) B-B Y^{i}\left(x_{6}-\right)\right|^{2}\right)+ \\
& \begin{array}{l}
+\frac{1}{2}|\mathcal{D}|^{2}+\operatorname{Tr} i \mathcal{D}_{\beta}^{\alpha}\left(\left[H_{\alpha}, H^{\dagger \beta}\right]+\frac{1}{l}\left[\sum_{p} \delta\left(x_{6}-\lambda_{p}\right) f_{\alpha}^{p} \otimes f^{\dagger p \beta}+\right.\right. \\
\left.\left.\left.+\delta\left(x_{6}\right) B \otimes B^{\dagger}+\delta\left(x_{6} \mid-l\right) B^{\dagger} \otimes B\right]\right)\right\}
\end{array} \\
& \mathcal{D}_{\beta}^{\alpha}=\mathcal{D}^{i}\left(\sigma^{i}\right)_{\beta}^{\alpha} \\
& \frac{1}{\sqrt{2}} \frac{\partial}{\partial x_{6}}-\operatorname{Re} H_{1}
\end{aligned}
$$

\mathcal{D}-flatness conditions

$$
T_{0}=-\sqrt{2} \operatorname{Re} H_{1}, T_{1}=-\sqrt{2} \operatorname{Im} H_{1}, \quad T_{2}+i T_{3}=-\sqrt{2} H_{2},
$$

$$
f_{p}=\binom{f_{p}}{f_{p}^{\dagger}}=\binom{j_{p}^{\dagger}}{i_{p}}
$$

$$
\begin{aligned}
\frac{d T_{1}}{d x_{1}}+\left[T_{0}, T_{1}\right]+\left[T_{2}, T_{3}\right]= & -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta\left(s-\lambda_{p}\right)\left(f^{p} \otimes f^{\dagger p}-\tilde{f}^{\dagger p} \otimes \tilde{f}^{p}\right)+ \\
& +\delta(s)\left(B_{01} B_{01}^{\dagger}-B_{10}^{\dagger} B_{10}\right)+\delta(s-l)\left(B_{10} B_{10}^{\dagger}-B_{01}^{\dagger} B_{01}\right), \\
\frac{d T_{2}}{d x_{1}}+\left[T_{0}, T_{2}\right]+\left[T_{3}, T_{1}\right]= & -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta\left(s-\lambda_{p}\right)\left(-i f^{p} \otimes \tilde{f}^{p}+i \tilde{f}^{\dagger p} \otimes f^{\dagger p}\right)+ \\
& +\delta(s)\left(-i B_{01} B_{10}+i B_{10}^{\dagger} B_{01}^{\dagger}\right)+\delta(s-l)\left(i B_{10} B_{01}-i B_{01}^{\dagger} B_{10}^{\dagger}\right), \\
\frac{d T_{3}}{d x_{1}}+\left[T_{0}, T_{3}\right]+\left[T_{1}, T_{2}\right]= & -\frac{i}{R_{1}} \sum_{p=1}^{k} \delta\left(s-\lambda_{p}\right)\left(f^{p} \otimes \tilde{f}^{p}+\tilde{f}^{\dagger p} \otimes f^{\dagger p}\right)+ \\
& +\delta(s)\left(B_{01} B_{10}+B_{10}^{\dagger} B_{01}^{\dagger}\right)+\delta(s-l)\left(B_{10} B_{10}+B_{01}^{\dagger} B_{01}^{\dagger}\right)
\end{aligned}
$$

Exactly the HKM of the proposed diagrams.

Nahm Transform

Given Bow data consider Weyl Operator:

$$
\mathfrak{D}: f \mapsto\left(\begin{array}{c}
\left(-\frac{d}{d s}+i T_{0}+\mp\right) f \\
\left(J_{L}, I_{L}^{\dagger}\right) f(-\lambda) \\
\left(J_{R}, I_{R}^{\dagger}\right) f(\lambda) \\
\left(B_{01}, B_{10}^{\dagger}\right) f(l / 2) \\
\left(-B_{10}, B_{01}^{\dagger}\right) f(-l / 2)
\end{array}\right) \quad \begin{aligned}
& \chi_{\alpha} \in E_{\lambda_{\alpha}}, v_{-} \in E_{-l / 2} \text { and } v_{+} \in E_{l / 2} \\
& \\
& \text { cokernel of } \mathfrak{D} \text { is given by }\left(\psi(s), \chi_{L}, \chi_{R}, v_{-}, v_{+}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{d}{d s}-i T_{0}+\mathbb{F}\right) \psi=0, \text { on } \mathcal{I} \backslash\left\{\alpha_{L}, \alpha_{R}\right\}, \\
& \psi\left(\lambda_{\alpha}+\right)-\psi\left(\lambda_{\alpha}-\right)=-Q_{\alpha} \chi_{\alpha}, \\
& \psi\left(\frac{l}{2}\right)=\binom{B_{01}^{\dagger}}{B_{10}} v_{-}, \\
& \psi\left(-\frac{l}{2}\right)=-\binom{-B_{10}^{\dagger}}{B_{01}} v_{+} .
\end{aligned}
$$

$$
\begin{aligned}
\mathfrak{D}^{\dagger}= & \left(\begin{array}{cc}
-D^{\dagger} & T^{\dagger} \\
T & D
\end{array}\right) \oplus\left(\underset{\alpha \in\{L, R\}}{\oplus} \delta\left(s-\lambda_{\alpha}\right)\binom{J_{\alpha}^{\dagger}}{I_{\alpha}}\right) \\
& \oplus\left(\delta\left(s+\frac{l}{2}\right)\binom{B_{10}^{\dagger}}{-B_{01}}, \delta\left(s-\frac{l}{2}\right)\binom{B_{01}^{\dagger}}{B_{10}}\right) .
\end{aligned}
$$

Moment map conditions are equivalent to $\operatorname{Vec}\left(\mathfrak{D}^{\dagger} \mathfrak{D}\right)=0$.

Twisted dual Weyl Operator:

given a point of the Taub-NUT space $\left(t_{0}, \vec{t}, b_{10}, b_{01}\right)$

$$
\begin{aligned}
\mathfrak{D}_{t}^{\dagger}= & \left(\begin{array}{cc}
-D^{\dagger}-t_{3} & T^{\dagger}-t^{\dagger} \\
T-t & D+t_{3}
\end{array}\right) \oplus\left(\underset{\alpha \in\{L, R\}}{\oplus} \delta\left(s-\lambda_{\alpha}\right)\binom{J_{\alpha}^{\dagger}}{I_{\alpha}}\right) \\
& \oplus\left(\delta\left(s+\frac{l}{2}\right)\left(\begin{array}{cc}
B_{10}^{\dagger} & -b_{10}^{\dagger} \\
-B_{01} & -b_{01}
\end{array}\right)+\delta\left(s-\frac{l}{2}\right)\left(\begin{array}{cc}
-b_{01}^{\dagger} & B_{01}^{\dagger} \\
b_{10} & B_{10}
\end{array}\right)\right) .
\end{aligned}
$$

ψ a section of $E \otimes e \otimes \mathbb{C}^{2} \rightarrow \mathcal{I} \backslash\{-\lambda, \lambda\}, \quad v_{-} \in E_{-l / 2} \otimes e_{l / 2}$ and $v_{+} \in E_{l / 2} \otimes e_{-l / 2}$.
For $\begin{array}{lr}\boldsymbol{\psi}_{1}=\left(\psi_{1}(s), \chi_{L 1}, \chi_{R 1}^{+}, v_{1}\right) \\ \boldsymbol{\psi}_{2}=\left(\psi_{2}^{-}(s), \chi_{L 2}, \chi_{R 2}, v_{2}\right) & \text { there is a natural Hermitian product } \\ & \left(\boldsymbol{\psi}_{1}, \boldsymbol{\psi}_{2}\right)=v_{1}^{\dagger} v_{2}+\left(\chi_{L 1}\right)^{\dagger} \chi_{L 2}+\left(\chi_{R 1}\right)^{\dagger} \chi_{R 2}+\int_{-l / 2}^{l / 2} \psi_{1}^{\dagger}(s) \psi_{2}(s) d s .\end{array}$
the operator \mathbf{s} acting on $\boldsymbol{\psi}$ as follows

$$
\mathfrak{D}_{t}^{\dagger} \boldsymbol{\Psi}=0
$$

$$
\mathbf{s}:\left(\psi(s), \chi_{L}, \chi_{R}, v\right) \mapsto\left(s \psi(s),-\lambda \chi_{L}, \lambda \chi_{R},\left(\begin{array}{cc}
\lambda & 0 \\
0 & -\lambda
\end{array}\right) v\right) .
$$

the self-dual connection on TN is

$$
A=\left(\Psi,\left(\frac{\partial}{\partial \tau}+\frac{\mathbf{s}}{V}\right) \Psi\right) d \tau+\left(\Psi,\left(\frac{\partial}{\partial x_{j}}+\omega_{j} \frac{\mathbf{s}}{V}\right) \Psi\right) d x_{j}
$$

Solution of $\mathfrak{D}_{t}^{\dagger} \boldsymbol{\Psi}=0$

Taub-NUT data

$$
\begin{aligned}
& b_{-}=\binom{-b_{01}^{\dagger}}{b_{10}}, b_{+}=\binom{-b_{10}^{\dagger}}{-b_{01}} \\
& b_{ \pm} b_{ \pm}^{\dagger}=|\vec{t}| \pm \neq \dagger
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \vec{T}(s)=\left\{\begin{array}{cc}
\vec{T}_{1} & \text { for }-l / 2<s<-\lambda \text { or } \lambda>s>l / 2 \\
\vec{T}_{2} & \text { for }-\lambda<s<\lambda
\end{array}\right. \\
& \vec{y}=\vec{T}_{2}-\vec{T}_{1}=\vec{z}_{1}-\vec{z}_{2}
\end{aligned} \quad \begin{aligned}
& B_{-}=\binom{B_{10}^{\dagger}}{-B_{01}}, B_{+}=\binom{B_{01}^{\dagger}}{B_{10}} \quad Q_{R}=Q_{+} \text {and } Q_{L}=Q_{-} \\
& \text {Solution: }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{D}=F \bar{F}=\left(T_{1}+t\right)^{2}-z_{1}^{2} . \\
& \mu_{ \pm}=\sqrt{\frac{T_{1}+t+\sqrt{\mathcal{D}}}{2}} \pm \sqrt{\frac{T_{1}+t-\sqrt{\mathcal{D}}}{2}} \frac{\chi_{1}}{z_{1}},
\end{aligned}
$$

$$
\Pi=\frac{1}{2 g}\left(e^{-i \theta} e^{\lambda \hbar_{2}}(y-\lambda) e^{-(l / 2-\lambda) \xi_{1}} \mu_{-}+e^{i \theta} e^{-\lambda \star_{2}}(y+\lambda) e^{(l / 2-\lambda) \xi_{1}} \mu_{+}\right)
$$

$v=\frac{1}{\sqrt{\mathcal{D}}}\binom{e^{i \tau / 2} B_{-}^{\dagger} \mu_{+}}{e^{-i \tau / 2} B_{+}^{\dagger} \mu_{-}}$

$$
\psi(s)= \begin{cases}e^{\chi_{1}(s+l / 2} e^{i \theta} \mu_{+} & \text {for }-l / 2<s<-\lambda \\ e^{\chi_{2} s} \Pi & \text { for }-\lambda<s<\lambda \\ e^{\chi_{1}(s-l / 2} e^{-i \theta} \mu_{-} \text {for } \lambda<s<l / 2\end{cases}
$$

$g=y \cosh 2 z_{2} \lambda-\frac{\overrightarrow{z_{2}} \cdot \vec{y}}{z_{2}} \sinh 2 z_{2} \lambda$

$$
\begin{align*}
& m=2+\frac{1}{g}\{-\sqrt{\mathcal{D}} \cos 2 \theta \\
& +\frac{\left(T_{1}+t\right) \sinh z_{1} d-z_{1} \cosh z_{1} d}{z_{1}}\left(y \cosh 2 \lambda z_{2}+\frac{\vec{z}_{1} \cdot \vec{z}_{2}-y^{2}}{z_{2}} \sinh 2 \lambda z_{2}\right) \\
& \left.+\frac{\left(T_{1}+t\right) \cosh z_{1} d-z_{1} \sinh z_{1} d}{z_{2}}\left(z_{2} \cosh 2 \lambda z_{2}+y \sinh 2 \lambda z_{2}\right)\right\} . \tag{50}\\
& v=\frac{1}{\sqrt{\mathcal{D}}}\binom{e^{i \tau / 2} B_{-}^{\dagger} \mu_{+}}{e^{-i \tau / 2} B_{+}^{\dagger} \mu_{-}} \quad \psi(s)=\left\{\begin{array}{ll}
e^{\chi_{1}(s+l / 2)} a_{i \phi}{ }^{i} \mu_{\mu_{+}} & \text {for }-l / 2<s<-\lambda \\
e^{\hbar_{2} s} \Pi & \text { for }-\lambda<s<\lambda \\
e^{\chi_{1}(s-l / 2)} a_{R}^{i \theta} \mu_{-} \text {for } \lambda<s<l / 2
\end{array} .\right. \\
& \binom{\chi_{R}}{\chi_{L}}=\binom{Q_{+}^{\dagger} e^{-\lambda ظ_{2}}}{Q_{-}^{\dagger} e^{\hbar_{2}}} \frac{e^{-i \theta} e^{-\lambda \hbar_{2}} e^{-\left(\frac{l}{2}-\lambda\right) Ł_{1}} \mu_{-}-e^{i \theta} e^{\lambda Ł_{2}} e^{\left(\frac{l}{2}-\lambda\right) Ł_{1}} \mu_{+}}{2 g}
\end{align*}
$$

$$
A=\left(\Psi,\left(\frac{\partial}{\partial \theta}+\frac{\mathbf{s}}{V}\right) \Psi\right) d \tau+\left(\Psi,\left(\frac{\partial}{\partial x_{j}}+\omega_{j} \frac{\mathbf{s}}{V}\right) \Psi\right) d x_{j}
$$

Moduli Space of N SU(2) Instantons on Taub-NUT

One $\mathrm{SU}(2)$ instanton on TN

$$
T^{*} G_{d_{L}} \times \mathbb{H}^{N} \times T^{*} G_{d_{M}} \times \mathbb{H}^{N} \times T^{*} G_{d_{R}} \times \mathbb{H}^{N^{2} / / /} G_{-l / 2} \times G_{-\lambda} \times G_{\lambda} \times G_{l / 2}
$$

To have algebraic description of this space introduce monodromy H on each interval:
$D_{M} H_{M}(s)=0, H_{M}(-\lambda)=1, H_{M}=H_{M}(\lambda)$
Moment maps can be written as:

$$
\begin{aligned}
& T_{R}-H^{-1} T_{M} H_{M}=I_{R} J_{R}, H^{-1} T_{R} T_{R} H_{R}=B_{10} B_{01} \\
& T_{M-}-H^{-1} T_{L} H_{L}=I_{L} J_{L}, \quad T_{L}=B_{01} B_{10}
\end{aligned}
$$

Up to the gauge equivalence

$$
\left(\begin{array}{l}
T_{L}, H_{L} \\
T_{M}, H_{M} \\
T_{R}, H_{R} \\
B_{01}, B_{10}
\end{array}\right) \mapsto\left(\begin{array}{c}
g^{-1}-1 / 2 T_{L} g_{-1 / 2}, g^{-1-1 / 2} H_{L} g_{-\lambda} \\
g^{-1}-T_{M} g_{-\lambda}, g^{-1}-H_{M} g_{\lambda} \\
g_{1}^{-1} T_{R} g_{\lambda}, g^{-1} H_{R} g_{/ 2} \\
g^{-1 / 2} B_{01} g_{-1 / 2}, g^{-1-1 / 2} B_{10} g_{1 / 2}
\end{array}\right)
$$

matches to de Boer, Hori, Ooguri, Oz hep-th/961 1063

$$
\begin{array}{rr}
d s^{2}= & \left(l+\frac{1}{2 r_{1}}\right) d \vec{r}_{1}^{2}-4 \lambda d \vec{r}_{1} d \vec{q}+\left(2 \lambda+\frac{1}{q}\right) d \vec{q}^{2} \\
d \omega_{r}=* d \frac{1}{r_{1}} & +\frac{\left(d \theta-\frac{1}{4} \omega_{r}\right)^{2}}{l-2 \lambda+1 / q+1 /(2 r)}+\frac{\left(d \alpha+\frac{1}{2} \omega_{q}\right)^{2}}{2 \lambda+1 / q} \\
d \omega_{q}=* d \frac{1}{q} & \theta \sim \theta+2 \pi \\
& \alpha \sim \alpha+2 \pi
\end{array}
$$

Instantons on ALF Spaces:

$\mathrm{A}_{2} \mathrm{ALF}$

Gibbons \& Rychenkova

$\mathrm{D}_{6} \mathrm{ALF}$

$\mathrm{U}(\mathrm{I})$

Dancer

Instantons on A_{2} ALF

U(I)

Instantons on D_{6} ALF

Electric-Magnetic Duality

Adjoint

Bifundamental

Bow Doublet

Higgs Branch

Coulomb Branch

Mixed Branch

$$
H_{\alpha} \sim I, Y_{J} \sim I
$$

Coulomb Branch
$<H^{2}>=0,<Y^{2}>\neq 0$
$\mathrm{N} \mathbf{U}(\mathrm{k})$ Inst / TN_{m}

Summary:

I. Problem: Instantons \& Monopoles
2. Explicit Monopole Solution
3. Ingredients: Arrows \& Strings
4. Answer: Bow Diagrams
5. String Dualities
6. Gauge theory with Impurity walls
7. Explicit Instanton Solution
8. Moduli spaces of instantons on ALF
9. EM duality of Bows

$$
\begin{aligned}
&\left(e^{-\overrightarrow{\sigma \cdot z_{1}}\left(l-\lambda_{2}\right)}\left(\begin{array}{cc}
-b_{01}^{\dagger} & B_{01}^{\dagger} \\
b_{10} & B_{10}
\end{array}\right)\right.+e^{\left.\overrightarrow{\sigma \cdot z_{2}\left(\lambda_{2}-\lambda_{1}\right)} e^{\overrightarrow{\sigma \cdot z_{1}} \lambda_{1}}\left(\begin{array}{cc}
B_{10}^{\dagger} & -b_{10}^{\dagger} \\
-B_{01} & -b_{01}
\end{array}\right)\right)\binom{v_{1}}{v_{2}}+} \\
&+e^{\partial \cdot \vec{z}_{2}\left(\lambda_{2}-\lambda_{1}\right)}\binom{j_{1}^{\dagger}}{i_{1}} \Delta_{1}+\binom{j_{2}^{\dagger}}{i_{2}} \Delta_{2}=0
\end{aligned}
$$

Compare to ADHM condition:

$$
\left(\begin{array}{cc}
B_{10}^{\dagger}-b_{01}^{\dagger} & B_{01}^{\dagger}-b_{10}^{\dagger} \\
-B_{01}+b_{10} & B_{10}-b_{01}
\end{array}\right)\binom{v_{1}}{v_{2}}+\left(\begin{array}{cc}
j_{1}^{\dagger} & j_{2}^{\dagger} \\
i_{1} & i_{2}
\end{array}\right)\binom{\Delta_{1}}{\Delta_{2}}=0
$$

