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Self-dual Gravitational Instantons

are complete four-dimensional Riemannian manifolds that satisfy one of the 
following equivalent conditions:

i. hyperkähler
ii. admits covariantly constant spinors
iii. Calabi-Yau two-fold
iv. preserves 1/2 Supersymmetry
v. self-dual curvature form

Self-dual Gravitational Instantons6

are complete four-dimensional Riemannian

manifolds that satisfy one of the following

equivalent conditions:

• hyperkähler.

• admit covariantly constant spinor.

• preserve 1/2 of SUSY.

• Calabi-Yau two-folds.

• curvature is self-dual

Rαβγδ =
1

2
εαβµνRµν

γδ

.

Distinguished by

• Asymptotic behaviour

• Topology

Here we focus on ALE and ALF spaces.

Distinguished by

Asymptotic behaviour:  
Topology:              

ALE,   ALF,   ALG,   ALH,   K3

A, D, E, etc. 

Questions:

Classification,  metrics,  Yang-Mills Instantons
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Conjecture:

Any gravitational instanton metric with finite Pontrjagin number 
asymptotically approaches a metric with a local triholomorphic 
isometry.
∫

M

R ∧ R < ∞ ⇒

ALE

V
−1(dθ + ω)2 + V d#x

2−−−−−→
|!x| → ∞ds

2

V =
1

|!x|

ALF

ALG

ALH

V = C +
1

|!x|

V = C +
N

2
log(x2

1 + x
2

2)

V = C1 + C2x1

Ak and Dk
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The Taub-NUT Space
ALF Spaces

Example: multi-Taub-NUT

ds2 = V −1 (dθ + ω)2 + V d#x2,

where dω = ∗3dV, θ ∼ θ + 4π, and

V = 1 +
k

∑

α=1

1

|#x − #xα|
.

General metric asymptotes to that of
{

ds2 = V −1 (dθ + ω)2 + V d#x2
}

Γ

where V = 1 + k
|"x| .

Group Γ Zk+1 ,Dk−2

Topology Ak≥−1, Dk≥0,

R3 × S1, Taub-NUT, and Atiyah-Hitchin spaces

correspond to k = 0, k = 1, and k = −2

respectively.

ALF Spaces

Example: multi-Taub-NUT

ds2 = V −1 (dθ + ω)2 + V d#x2,

where dω = ∗3dV, θ ∼ θ + 4π, and

V = 1 +
k

∑

α=1

1

|#x − #xα|
.

General metric asymptotes to that of
{

ds2 = V −1 (dθ + ω)2 + V d#x2
}

Γ

where V = 1 + k
|"x| .

Group Γ Zk+1 ,Dk−2
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V = l +
1

|!x|

a0 =
s

4π

dθ + ω

V

Self-dual Abelian 
connection:

Multi-Taub-NUT  (Ak ALF)

x1 x2

x3

. . .
. . .

xα

xk

Σ1
Σ1

Σ2

Σ3

Σk

. . .

V = l +

k+1∑

α=1

1

|!x − !xα|

Self-dual Abelian 
connections:

aα =
1
4π

(
(Vα − Vα+1)

dθ + ω

V
+ ωα − ωα+1

)
Vα =

1
|!x− !xα|

a0 =
s

4π

dθ + ω

V
dωα = ∗dVα
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Instantons on ALF Spaces

F = ∗F
S =

∫
F ∧ ∗FAction

Monodromy at infinity

is finite

EigenValues of  W are distinct
•Maximal Symmetry Breaking:

EigenBundles of W are line bundles Li → S2
∞

Monopole Charges:

with Chern classes ji

Instanton Number:

Question: Find explicit SD connections on ALF spaces 

(

∂

∂θ
− iAθ

)

W (#x, θ) = 0, W (!x, 0) = 1 W = lim
x→∞

W (!x, 4π)

6

−π

l
< λ1 < λ2 < . . . < λn <

π

l

if M=min(j1, j1+j2,..., j1+j2+...+jn)

then the monopole charges are (m1,m2,...,mn)=(j1-M, j1+j2-M,..., j1+j2+...+jn-M)

n =
1

32π2

∫
Tr F ∧ F − (m1(lλ1 + π) + m2l(λ2 − λ1) + . . .mn(π − lλn))
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Explicit Solution on TN:  m=1, n=0

Next Question: Find explicit m=0, n=1 SD connections on TN 

SCh & Brian Durcan

Monopole

TN Origin

!x
!d

!r

!z

∗a = z + d

D = (z + d)2 − r2

K = (a2 + r2) cosh(2λr) + 2ra sinh(2λr)
L = (a2 + r2) sinh(2λr) + 2ra cosh(2λr)
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Ingredients 1:  Arrows and Limbs

Consider a sphere S2
R ∈ R3 of large radius |!x| = R then the restriction E|S2

of the bundle E splits into eigenbundles of W (!x, 4π), i.e. E = Lλ⊕L−λ. The
magnetic charge m of the configuration is the Chern class of Lλ → S2

R→∞.
Kronheimer [7] demonstrated equivalence of the ‘pure monopole’ case of

k0 = 0 to singular monopoles studied in [15, 14]. Explicit solutions for k0 = 0
and m = 1 will appear in [16]. In this paper we focus our attention on the
case of m = 0, and obtain the explicit solution with k0 = 1, i.e. a single
instanton on the Taub-NUT space.

2 Ingredients

There are two basic ingredients in our construction:

J

I

VW

(a) Linear maps (arrows and limbs). (b) Nahm Data (string).

Figure 1: Components of bow and quiver diagrams. {ingredients}

Figure 1a represents a pair of complex vector spaces V = Cv and W = Cw

with maps J : V → W and I : W → V. The linear space of the pair of
maps (I, J) has a natural hyperkähler structure, which is respected by the
action of U(v) and U(w). The hyperkähler moment map of the U(v) action
gv : (I, J) $→ (g−1

v I, Jgv) is

µC
V = µ1

V + iµ2
V = IJ, µR

V = µ3
V =

1

2
(J†J − II†), (5)

while for the U(w) action gw : (I, J) $→ (Igw, g−1
w J) the moment map is

µC
W = µ1

W + iµ2
W = −JI, µR

W = µ3
W =

1

2
(I†I − JJ†). (6)

It is convenient to assemble the pair (I, J) into

QV =

(
J†

I

)
and

Q

W =

(
−I†

J

)
, (7)

then the moment maps are

\µV = µi
V σi = Vec(QV Q†

V ) and \µW = µi
W σi = Vec(

Q

W

Q†
W ). (8)
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2

A convenient way of writing the moment maps is

Moment maps:

Vec(M0 + M
j
σj) = M

j
σj

Example:  ADHM

R
4 Instanton Data:

B10

B01
b10

b01

I J
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Example:  Kronheimer & Nakajima (Instantons on          )

˜R4/Zk+1
Ak ALE:

Instantons on Ak 

ALE
b32

b21
b54

b43

b12

b05

b45

b34
b23

b50

b10

b01

B01

B12

B23
B34

B45

B50

B10

B21

B32

B43

B54

B05

I0 J0

I1

I2

I3

I4
J4

I5

J5

J3

J2

J1

Affine Dynkin diagram

R̃4/Γ

μC=B10 B01  - B12B21+I1J1

μR=B+01 B01  - B10B+10+B12 B+12  - B+21B21+I1I+1 -J+1J1

Moment maps at  V1

9
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Kronheimer Construction from
String Theory Douglas & Moore

D2-brane on R4/Γ × R6

r = |Γ| rank of Γ

Super Yang-Mills with gauge group U(r)

Equivariance conditions

Aµ = γ−1(g)Aµγ(g)

φp = γ−1(g)φpγ(g)

ΦI = R(g)I
Jγ−1(g)ΦJγ(g)

γ is an r-dimensional representation of Γ,

R is a two-dimensional representation of Γ.

ALE Spaces: Douglas & Moore
Johnson & Myers

Kronheimer-Nakajima Construction
from String Theory

N instantons in U(K) on ALE space

N D2-branes and K D6-branes on R4/Γ × R6

Super Yang-Mills with gauge group U(r) and K

scalar fields in the defining representation.

10



Ingredients 2:  “Strings”

Consider a sphere S2
R ∈ R3 of large radius |!x| = R then the restriction E|S2
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instanton on the Taub-NUT space.
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J
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VW
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Figure 1: Components of bow and quiver diagrams. {ingredients}

Figure 1a represents a pair of complex vector spaces V = Cv and W = Cw

with maps J : V → W and I : W → V. The linear space of the pair of
maps (I, J) has a natural hyperkähler structure, which is respected by the
action of U(v) and U(w). The hyperkähler moment map of the U(v) action
gv : (I, J) $→ (g−1

v I, Jgv) is

µC
V = µ1

V + iµ2
V = IJ, µR

V = µ3
V =

1

2
(J†J − II†), (5)

while for the U(w) action gw : (I, J) $→ (Igw, g−1
w J) the moment map is

µC
W = µ1

W + iµ2
W = −JI, µR

W = µ3
W =

1

2
(I†I − JJ†). (6)

It is convenient to assemble the pair (I, J) into

QV =

(
J†

I

)
and

Q

W =

(
−I†

J

)
, (7)

then the moment maps are

\µV = µi
V σi = Vec(QV Q†

V ) and \µW = µi
W σi = Vec(

Q

W

Q†
W ). (8)

2

Here for a 2× 2 matrix M we denote by Vec(M) its traceless part, i.e. for a
decomposition M = M0 + Miσi we define Vec(M) = Miσi.

Figure 1b represents an interval I parameterised by s with a bundle
E → I endowed with a Hermitian structure, a connection Ds = d/ds− iT0,
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3 Taub-NUT as Hyperkähler Quotient

This section contains a description of the Taub-NUT space using the ingredi-
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h(s) acts on these data as follows:




t0
tj
b01

b10



 !→





h−1t0h + ih−1 d
dsh

h−1tjh
h−1(− l

2)b01h( l
2)

h−1( l
2)b10h(− l

2)



 (13)

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the moment maps can be
written in complex notation as

[D, t]− δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (14)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†10b10 − b01b

†
01) + δ(s− l

2 )(b†01b01 − b10b
†
10) = 0.

Let us distinguish some point on the Nahm interval. Say this point divides
this interval into two intervals of lengths l1 and l2, i.e. l1 + l2 = l and at
this distinguished point s = s0 = l1 − l/2. We shall perform the hyperkähler
quotient step-by-step, so that the last step is the quotient with respect to the
U(1) at the distinguished point. This will allow us to compute the natural
line bundle and its natural connection corresponding to this U(1).

First we perform HKQ on each open interval separately. The intervals
are of lengths l1 and l2. Since the computations are identical we focus on
the interval of length l2 to the right of s0. Since the Nahm data is Abelian,
the vanishing of the moment maps implies dtj/ds = 0, thus t1, t2 and t3 are
constant. t0 can be made constant using the gauge transformations. There
is a large gauge transformation G = exp(2πi(s − s0)/l2) satisfying g(s0) =
g(l) = 1 remaining. This gauge transformation takes t0 to t0 + 2π/l2. Thus

4
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The group action on the original coordinates is eiφ : (t′0, t0) !→ (t′0−φ/l2, t0 +
φ/l1) and thus eiφ : (σ, t0) !→ (σ+2φ, t0+φ/l1). The moment map is #µ = 1

2#r+#t
and the invariant coordinate is τ = σ− 2l1t0. In these coordinates the above
metric can be rewritten as

ds2 =
1

4

[
(l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2

]
+ l1

l + 1/r

l1 + 1/r

[
dt0 +

dτ + ω

2(l + 1/r)

]2

.

(21) {eq:hkq}
Any t0 can be transformed 0 by choosing φ = −l1t0. The first part of the
expression (21) is the resulting hyperkahler metric of the Taub-NUT space

4 ds2
TN = (l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2, (22)

while the second becomes

1

l1

1 + rl

1 + rl1

[
dφ− l1

2

dτ + ω

l + 1/r

]2

, (23)

leading to the natural connection a0 = l1
2 (dτ + ω)/(l + 1/r).

4 Instanton Data

Instanton data is represented by the bow diagram in Figure 3. It consists of

• a rank k0 vector bundle E → [−l/2, l/2] with the Nahm data (T0, #T ) on
the intervals [−l/2,−λ], [−λ, λ], and [λ, l/2] (we do not presume conti-
nuity at s = ±λ),

• linear maps B10 : E−l/2 → El/2 and B01 : El/2 → E−l/2,

• linear maps IL : WL → E−λ, JL : E−λ → WL, IR : WR → Eλ, and
JR : Eλ → WR.

The group of gauge transformations acts on this data as follows




T0

Tj

B01

B10

Iα

Jα




!→





g−1
(s)T0g(s) + ig−1

(s)
d
dsg(s)

g−1
(s)Tjg(s)

g−1(− l
2 )B01g( l

2)
g−1( l

2)B10g(− l
2)

g−1
(λα)Iα

Jαg(λα)




, (24)

6

The group action on the original coordinates is eiφ : (t′0, t0) !→ (t′0−φ/l2, t0 +
φ/l1) and thus eiφ : (σ, t0) !→ (σ+2φ, t0+φ/l1). The moment map is #µ = 1

2#r+#t
and the invariant coordinate is τ = σ− 2l1t0. In these coordinates the above
metric can be rewritten as

ds2 =
1

4

[
(l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2

]
+ l1

l + 1/r

l1 + 1/r

[
dt0 +

dτ + ω

2(l + 1/r)

]2

.

(21) {eq:hkq}
Any t0 can be transformed 0 by choosing φ = −l1t0. The first part of the
expression (21) is the resulting hyperkahler metric of the Taub-NUT space

4 ds2
TN = (l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2, (22)

while the second becomes

1

l1

1 + rl

1 + rl1

[
dφ− l1

2

dτ + ω

l + 1/r

]2

, (23)

leading to the natural connection a0 = l1
2 (dτ + ω)/(l + 1/r).

4 Instanton Data

Instanton data is represented by the bow diagram in Figure 3. It consists of

• a rank k0 vector bundle E → [−l/2, l/2] with the Nahm data (T0, #T ) on
the intervals [−l/2,−λ], [−λ, λ], and [λ, l/2] (we do not presume conti-
nuity at s = ±λ),

• linear maps B10 : E−l/2 → El/2 and B01 : El/2 → E−l/2,

• linear maps IL : WL → E−λ, JL : E−λ → WL, IR : WR → Eλ, and
JR : Eλ → WR.

The group of gauge transformations acts on this data as follows




T0

Tj

B01

B10

Iα

Jα




!→





g−1
(s)T0g(s) + ig−1

(s)
d
dsg(s)

g−1
(s)Tjg(s)

g−1(− l
2 )B01g( l

2)
g−1( l

2)B10g(− l
2)

g−1
(λα)Iα

Jαg(λα)




, (24)

6

The group action on the original coordinates is eiφ : (t′0, t0) !→ (t′0−φ/l2, t0 +
φ/l1) and thus eiφ : (σ, t0) !→ (σ+2φ, t0+φ/l1). The moment map is #µ = 1

2#r+#t
and the invariant coordinate is τ = σ− 2l1t0. In these coordinates the above
metric can be rewritten as

ds2 =
1

4

[
(l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2

]
+ l1

l + 1/r

l1 + 1/r

[
dt0 +

dτ + ω

2(l + 1/r)

]2

.

(21) {eq:hkq}
Any t0 can be transformed 0 by choosing φ = −l1t0. The first part of the
expression (21) is the resulting hyperkahler metric of the Taub-NUT space

4 ds2
TN = (l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2, (22)

while the second becomes

1

l1

1 + rl

1 + rl1

[
dφ− l1

2

dτ + ω

l + 1/r

]2

, (23)

leading to the natural connection a0 = l1
2 (dτ + ω)/(l + 1/r).

4 Instanton Data

Instanton data is represented by the bow diagram in Figure 3. It consists of

• a rank k0 vector bundle E → [−l/2, l/2] with the Nahm data (T0, #T ) on
the intervals [−l/2,−λ], [−λ, λ], and [λ, l/2] (we do not presume conti-
nuity at s = ±λ),

• linear maps B10 : E−l/2 → El/2 and B01 : El/2 → E−l/2,

• linear maps IL : WL → E−λ, JL : E−λ → WL, IR : WR → Eλ, and
JR : Eλ → WR.

The group of gauge transformations acts on this data as follows




T0

Tj

B01

B10

Iα

Jα




!→





g−1
(s)T0g(s) + ig−1

(s)
d
dsg(s)

g−1
(s)Tjg(s)

g−1(− l
2 )B01g( l

2)
g−1( l

2)B10g(− l
2)

g−1
(λα)Iα

Jαg(λα)




, (24)

6

Metric

Natural Connection:

b10

b01

l1 l2

Figure 2: Taub-NUT Bow Diagram. {fig:TN}

h(s) acts on these data as follows:




t0
tj
b01

b10



 !→





h−1t0h + ih−1 d
dsh

h−1tjh
h−1(− l

2)b01h( l
2)

h−1( l
2)b10h(− l

2)



 (13)

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the moment maps can be
written in complex notation as

[D, t]− δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (14)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†10b10 − b01b

†
01) + δ(s− l

2 )(b†01b01 − b10b
†
10) = 0.

Let us distinguish some point on the Nahm interval. Say this point divides
this interval into two intervals of lengths l1 and l2, i.e. l1 + l2 = l and at
this distinguished point s = s0 = l1 − l/2. We shall perform the hyperkähler
quotient step-by-step, so that the last step is the quotient with respect to the
U(1) at the distinguished point. This will allow us to compute the natural
line bundle and its natural connection corresponding to this U(1).

First we perform HKQ on each open interval separately. The intervals
are of lengths l1 and l2. Since the computations are identical we focus on
the interval of length l2 to the right of s0. Since the Nahm data is Abelian,
the vanishing of the moment maps implies dtj/ds = 0, thus t1, t2 and t3 are
constant. t0 can be made constant using the gauge transformations. There
is a large gauge transformation G = exp(2πi(s − s0)/l2) satisfying g(s0) =
g(l) = 1 remaining. This gauge transformation takes t0 to t0 + 2π/l2. Thus

4

b10

b01

l1 l2

Figure 2: Taub-NUT Bow Diagram. {fig:TN}

h(s) acts on these data as follows:




t0
tj
b01

b10



 !→





h−1t0h + ih−1 d
dsh

h−1tjh
h−1(− l

2)b01h( l
2)

h−1( l
2)b10h(− l

2)



 (13)

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the moment maps can be
written in complex notation as

[D, t]− δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (14)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†10b10 − b01b

†
01) + δ(s− l

2 )(b†01b01 − b10b
†
10) = 0.

Let us distinguish some point on the Nahm interval. Say this point divides
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quotient step-by-step, so that the last step is the quotient with respect to the
U(1) at the distinguished point. This will allow us to compute the natural
line bundle and its natural connection corresponding to this U(1).

First we perform HKQ on each open interval separately. The intervals
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where the index α takes the values L and R and we introduced λL = −λ and
λR = λ.

Introducing the complex notation D = d
ds − iT0 − T3 and T = T1 + iT2,

the moment maps are written as

[D, T ]− δ(s+ l
2 )B01B10 + δ(s− l

2 )B10B01 +
∑

α∈{L,R}

δ(s−λα)IαJα = 0

(25) {Eq:InstMom}

[D†, D] + [T †, T ] + δ(s+ l
2 )(B†

10B10 −B01B
†
01) + δ(s− l

2 )(B†
01B01 −B10B

†
10)+

+
∑

α∈{L,R}

δ(s−λα)(J†
αJα − IαI†

α) = 0.

In this paper we limit our attention to the case of a single instanton, thus
E is a line bundle and all the data in the bow diagram is Abelian.

5 The Nahm Transform

5.1 Weyl Operator

A central role in the ADHM-Nahm transform [1, ?] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.

7

The group action on the original coordinates is eiφ : (t′0, t0) !→ (t′0−φ/l2, t0 +
φ/l1) and thus eiφ : (σ, t0) !→ (σ+2φ, t0+φ/l1). The moment map is #µ = 1

2#r+#t
and the invariant coordinate is τ = σ− 2l1t0. In these coordinates the above
metric can be rewritten as

ds2 =
1

4

[
(l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2

]
+ l1

l + 1/r

l1 + 1/r

[
dt0 +

dτ + ω

2(l + 1/r)

]2

.

(21) {eq:hkq}
Any t0 can be transformed 0 by choosing φ = −l1t0. The first part of the
expression (21) is the resulting hyperkahler metric of the Taub-NUT space

4 ds2
TN = (l +

1

r
)d#r2 +

1

l + 1/r
(dτ + ω)2, (22)

while the second becomes

1

l1

1 + rl

1 + rl1

[
dφ− l1

2

dτ + ω

l + 1/r

]2

, (23)

leading to the natural connection a0 = l1
2 (dτ + ω)/(l + 1/r).

4 Instanton Data

Instanton data is represented by the bow diagram in Figure 3. It consists of

• a rank k0 vector bundle E → [−l/2, l/2] with the Nahm data (T0, #T ) on
the intervals [−l/2,−λ], [−λ, λ], and [λ, l/2] (we do not presume conti-
nuity at s = ±λ),

• linear maps B10 : E−l/2 → El/2 and B01 : El/2 → E−l/2,

• linear maps IL : WL → E−λ, JL : E−λ → WL, IR : WR → Eλ, and
JR : Eλ → WR.

The group of gauge transformations acts on this data as follows




T0

Tj

B01

B10

Iα

Jα




!→





g−1
(s)T0g(s) + ig−1

(s)
d
dsg(s)

g−1
(s)Tjg(s)

g−1(− l
2 )B01g( l

2)
g−1( l

2)B10g(− l
2)

g−1
(λα)Iα

Jαg(λα)




, (24)
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where the index α takes the values L and R and we introduced λL = −λ and
λR = λ.

Introducing the complex notation D = d
ds − iT0 − T3 and T = T1 + iT2,

the moment maps are written as

[D, T ]− δ(s+ l
2 )B01B10 + δ(s− l

2 )B10B01 +
∑

α∈{L,R}

δ(s−λα)IαJα = 0

(25) {Eq:InstMom}

[D†, D] + [T †, T ] + δ(s+ l
2 )(B†

10B10 −B01B
†
01) + δ(s− l

2 )(B†
01B01 −B10B

†
10)+

+
∑

α∈{L,R}

δ(s−λα)(J†
αJα − IαI†

α) = 0.

In this paper we limit our attention to the case of a single instanton, thus
E is a line bundle and all the data in the bow diagram is Abelian.

5 The Nahm Transform

5.1 Weyl Operator

A central role in the ADHM-Nahm transform [1, ?] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.
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String Theory Reasoning
D6

T duality

D2

Taub-NUT
T duality

NS5

2 D6 and D2
on Taub-NUT

T duality

D5

D3
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Gauge Theory on D3-brane
D5

D3

Massive fundamental hypermultiplet
from D3-D5 open string mode

Massless fundamental 
hypermultiplet:  f

NS5
D3

Massive bifundamental hypemultiplet
from D3-D3 open string mode

Massless bifundamental 
hypemultiplet:  B
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0 1 2 3 4 5 6 7 8 9

D5 x x x x x x

D3 x x x x

NS5 x x x x x x

Vector 
Multiplet

A0 A1 A2 Y1 Y3 Y3

Adjoint
Hyper

Im H1 Im H2 Re H2 Re H1

λα,α = 1, 2 Majorana

ψ
              

Dirac

L1 = R6

∫
d3xµdx6





1
2

|Fµν |2 +
1
2

|DµY i|2 − 1
2

|D6Y
i|2 − 1

2

∑

i<j

|[Y i, Y j ]|2 +
1
2

|DµHj |2 −
∑

ij

|[Y i,Hj ]|2





Impurity Theory on D3

L = L1 + L2
µ = 0, 1, 2 α = 1, 2 i, j = 1, 2, 3

Dα
β = Di(σi)α

β

1√
2

∂

∂x6
− ReH1

L2 = l
∫

d3xµdx6

{

1

l

(

∑

p

δ(x6 − λp)
(

|Dµfp|2 − |Y ifp|2
)

+

+|DµB|2 + δ(x6)|Y
i(x6+)B − BY i(x6−)|2

)

+

+
1

2
|D|2 + TriDα

β

(

[Hα, H†β ] +
1

l

[

∑

p

δ(x6 − λp)f
p
α ⊗ f †pβ+

+δ(x6)B ⊗ B† + δ(x6 − l)B† ⊗ B
])}

N=2, D=4 Yang-Mills with hyperplanes of impurities
à la Kapustin & Sethi
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fp =
(

fp

f̃†
p

)
=

(
j†p
ip

)

dT1

dx1
+ [T0, T1] + [T2, T3] = − i

R1

k∑

p=1

δ(s− λp)
(
fp ⊗ f†p − f̃†p ⊗ f̃p

)
+

+δ(s)(B01B
†
01 −B†

10B10) + δ(s− l)(B10B
†
10 −B†

01B01),

dT2

dx1
+ [T0, T2] + [T3, T1] = − i

R1

k∑

p=1

δ(s− λp)
(
−ifp ⊗ f̃p + if̃†p ⊗ f†p

)
+

+δ(s)(−iB01B10 + iB†
10B

†
01) + δ(s− l)(iB10B01 − iB†

01B
†
10),

dT3

dx1
+ [T0, T3] + [T1, T2] = − i

R1

k∑

p=1

δ(s− λp)
(
fp ⊗ f̃p + f̃†p ⊗ f†p

)
+

+δ(s)(B01B10 + B†
10B

†
01) + δ(s− l)(B10B10 + B†

01B
†
01)

T0 = −
√

2 ReH1,

-flatness conditionsD

λp

Wp

fp f̃p

Exactly the HKM of the proposed diagrams.
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Nahm Transform

The details of similar construction can be found in [18, 13] for the case of
calorons.

Let H be the space of L2 sections of E⊗C2 that are continuous at λL and
λR and have L2 derivatives on I\{αL, αR}. Let L be the direst sum of the
space of L2 sections of E⊗C2, EλL , EλR , E−l/2, and El/2. Given the instanton
data of the bow diagram in Figure 3 we introduce the operator D : H → L
by

D : f #→





(
− d

ds + iT0 + \T
)
f

(JL, I†
L)f(−λ)

(JR, I†
R)f(λ)(

B01, B
†
10

)
f(l/2)(

−B10, B
†
01

)
f(−l/2)




. (26)

Let us denote by ψ an L2 section of the restriction of E⊗C2 to I\{αL, αR},
χα ∈ Eλα , v− ∈ E−l/2 and v+ ∈ El/2. Integrating by parts we find that the
cokernel of D is given by (ψ(s), χL, χR, v−, v+) ∈ L satisfying

(
d

ds
− iT0 + \T

)
ψ = 0, on I\{αL, αR}, (27)

ψ(λα+)− ψ(λα−) = −Qαχα, (28)

ψ(
l

2
) =

(
B†

01

B10

)
v−, (29)

ψ(− l

2
) = −

(
−B†

10

B01

)
v+. (30)

In other words the dual operator takes the form

D† =

(
−D† T †

T D

)
⊕

(
⊕

α∈{L,R}
δ(s−λα)

0

@ J†
α

Iα

1

A

)
(31)

⊕
(

δ(s+ l
2 )

(
B†

10

−B01

)
, δ(s− l

2 )

(
B†

01

B10

))
. (32)

In terms of D and D† the moment map conditions of Eqs. (25) can be written
as Vec(D†D) = 0.

For a given point of the Taub-NUT space of Figure 2, corresponding to

8
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space of L2 sections of E⊗C2, EλL , EλR , E−l/2, and El/2. Given the instanton
data of the bow diagram in Figure 3 we introduce the operator D : H → L
by

D : f #→





(
− d

ds + iT0 + \T
)
f

(JL, I†
L)f(−λ)

(JR, I†
R)f(λ)(

B01, B
†
10

)
f(l/2)(

−B10, B
†
01

)
f(−l/2)




. (26)

Let us denote by ψ an L2 section of the restriction of E⊗C2 to I\{αL, αR},
χα ∈ Eλα , v− ∈ E−l/2 and v+ ∈ El/2. Integrating by parts we find that the
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(
d

ds
− iT0 + \T

)
ψ = 0, on I\{αL, αR}, (27)

ψ(λα+)− ψ(λα−) = −Qαχα, (28)

ψ(
l

2
) =

(
B†

01

B10

)
v−, (29)

ψ(− l

2
) = −

(
−B†

10

B01

)
v+. (30)

In other words the dual operator takes the form

D† =

(
−D† T †

T D

)
⊕

(
⊕

α∈{L,R}
δ(s−λα)

0

@ J†
α

Iα

1

A

)
(31)

⊕
(

δ(s+ l
2 )

(
B†

10

−B01

)
, δ(s− l

2 )

(
B†

01

B10

))
. (32)

In terms of D and D† the moment map conditions of Eqs. (25) can be written
as Vec(D†D) = 0.
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Moment map conditions are equivalent to
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Twisted dual Weyl Operator:
(t0,!t, b10, b01) satisfying Eqs.(14), we can twist the above operator as follows

D†
t =

(
−D† − t3 T † − t†

T − t D + t3

)
⊕

(
⊕

α∈{L,R}
δ(s− λα)

(
J†

α

Iα

))
(33)

⊕
(

δ(s+ l
2 )

(
B†

10 −b†10

−B01 −b01

)
+ δ(s− l

2 )

(
−b†01 B†

01

b10 B10

))
.

From now on we understand ψ to be a section of E ⊗ e⊗ C2 → I\{−λ, λ},
v− ∈ E−l/2 ⊗ el/2 and v+ ∈ El/2 ⊗ e−l/2.

5.2 Connection

We shall denote the data (ψ(s), χL, χR, v) by ψ. For ψ1 = (ψ1(s), χL1, χ
+
R1, v1)

and ψ2 = (ψ2(s), χL2, χR2, v2) the natural Hermitian product is given by

(ψ1, ψ2) = v†
1v2 +(χL1)†χL2 +(χR1)†χR2 +

∫ l/2

−l/2 ψ†
1(s)ψ2(s)ds. We also define

the operator s acting on ψ as follows

s : (ψ(s), χL, χR, v) &→
(

sψ(s),−λχL, λχR,
(

λ 0

0 −λ

)
v

)
. (34)

Once we found the orthonormal basis of solutions of D†ψ = 0 we arrange
them as columns of the matrix Ψ. Then the orthonormality condition reads
(Ψ, Ψ) = I, and the instanton connection is given by

A =

(
Ψ,

( ∂

∂τ
+

s

V

)
Ψ

)
dτ +

(
Ψ,

( ∂

∂xj
+ ωj

s

V

)
Ψ

)
dxj (35) {eq:connection}

6 ADHM Limit
NB:
How
do the
moment
maps
degenerate
to
ADHM?

To compare with the ADHM construction we find

ψ(− l
2 ) = −

(
B†

10 −b†10

−B01 −b01

) (
v+

v−

)
, ψ( l

2 ) =

(
−b†01 B†

01

b10 B10

) (
v+

v−

)
, (36) {eq:ends}

The Nahm equations imply that !t is constant on [−l/2, l/2], that !T is constant
on each of the intervals three intervals of I\{−λ, λ}. Moreover, the values on
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Figure 3: Bow diagram for Instanton on Taub-NUT. {fig:Instanton}

where the index α takes the values L and R and we introduced λL = −λ and
λR = λ.

Introducing the complex notation D = d
ds − iT0 − T3 and T = T1 + iT2,

the moment maps are written as

[D, T ]− δ(s+ l
2 )B01B10 + δ(s− l

2 )B10B01 +
∑

α∈{L,R}

δ(s−λα)IαJα = 0

(25) {Eq:InstMom}

[D†, D] + [T †, T ] + δ(s+ l
2 )(B†

10B10 −B01B
†
01) + δ(s− l

2 )(B†
01B01 −B10B

†
10)+

+
∑

α∈{L,R}

δ(s−λα)(J†
αJα − IαI†

α) = 0.

In this paper we limit our attention to the case of a single instanton, thus
E is a line bundle and all the data in the bow diagram is Abelian.

5 The Nahm Transform

5.1 Weyl Operator

A central role in the ADHM-Nahm transform [1, ?] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.

7

b10

b01

l1 l2

Figure 2: Taub-NUT Bow Diagram. {fig:TN}

h(s) acts on these data as follows:




t0
tj
b01

b10



 !→





h−1t0h + ih−1 d
dsh

h−1tjh
h−1(− l

2)b01h( l
2)

h−1( l
2)b10h(− l

2)



 (13)

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the moment maps can be
written in complex notation as

[D, t]− δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (14)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†10b10 − b01b

†
01) + δ(s− l

2 )(b†01b01 − b10b
†
10) = 0.

Let us distinguish some point on the Nahm interval. Say this point divides
this interval into two intervals of lengths l1 and l2, i.e. l1 + l2 = l and at
this distinguished point s = s0 = l1 − l/2. We shall perform the hyperkähler
quotient step-by-step, so that the last step is the quotient with respect to the
U(1) at the distinguished point. This will allow us to compute the natural
line bundle and its natural connection corresponding to this U(1).

First we perform HKQ on each open interval separately. The intervals
are of lengths l1 and l2. Since the computations are identical we focus on
the interval of length l2 to the right of s0. Since the Nahm data is Abelian,
the vanishing of the moment maps implies dtj/ds = 0, thus t1, t2 and t3 are
constant. t0 can be made constant using the gauge transformations. There
is a large gauge transformation G = exp(2πi(s − s0)/l2) satisfying g(s0) =
g(l) = 1 remaining. This gauge transformation takes t0 to t0 + 2π/l2. Thus
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B†

10 −b†10
−B01 −b01

)
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on each of the intervals three intervals of I\{−λ, λ}. Moreover, the values on
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(t0,!t, b10, b01) satisfying Eqs.(14), we can twist the above operator as follows

D†
t =

(
−D† − t3 T † − t†

T − t D + t3

)
⊕

(
⊕

α∈{L,R}
δ(s− λα)

(
J†

α

Iα

))
(33)

⊕
(

δ(s+ l
2 )

(
B†

10 −b†10
−B01 −b01

)
+ δ(s− l

2 )

(
−b†01 B†

01

b10 B10

))
.

From now on we understand ψ to be a section of E ⊗ e⊗ C2 → I\{−λ, λ},
v− ∈ E−l/2 ⊗ el/2 and v+ ∈ El/2 ⊗ e−l/2.
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+
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and ψ2 = (ψ2(s), χL2, χR2, v2) the natural Hermitian product is given by

(ψ1, ψ2) = v†
1v2 +(χL1)†χL2 +(χR1)†χR2 +

∫ l/2

−l/2 ψ†
1(s)ψ2(s)ds. We also define

the operator s acting on ψ as follows

s : (ψ(s), χL, χR, v) &→
(

sψ(s),−λχL, λχR,
(

λ 0

0 −λ

)
v

)
. (34)

Once we found the orthonormal basis of solutions of D†ψ = 0 we arrange
them as columns of the matrix Ψ. Then the orthonormality condition reads
(Ψ, Ψ) = I, and the instanton connection is given by

A =
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( ∂

∂τ
+

s

V

)
Ψ

)
dτ +

(
Ψ,

( ∂

∂xj
+ ωj

s

V

)
Ψ

)
dxj (35) {eq:connection}
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9

the self-dual connection on TN is
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given a point of the Taub-NUT space

D
†
tΨ = 0
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Solution of          
the left and on the right intervals are equal, thus for some constant vectors
!T1 and !T2

!T (s) =

{
!T1 for− l/2 < s < −λ or λ > s > l/2
!T2 for− λ < s < λ

. (37) {eq:piece}

Let !z1 = !t− !T1 and !z2 = !t− !T2, then

[
e−\z1( l

2−λ2)
(
−b†01 B†

01

b10 B10

)
+ e\z2(λ2−λ1)e\z1(λ1+ l

2 )
(

B†
10 −b†10

−B01 −b01

)](
v+

v−

)
+

+ e"σ·"z2(λ2−λ1)
(

J†
L

IL

)
χL +

(
J†

R

IR

)
χR = 0. (38)

Clearly in the limit of l → 0 (and since λ < l/2, we have λ → 0) the above
expression reduces to the ADHM linear equation.

7 Solving the Linear Equation

We interpret !T1 and !T2 as the locations of the instanton constituents and let
!y = !T2− !T1 = !z1−!z2 be the displacement between them. Define Q+ and Q− NB:

Getting
rid
of T0

and t0.

by Q±Q†
± = y ± \y. To simplify our notation we introduce

b− =

(
−b†01

b10

)
, b+ =

(
−b†10
−b01

)
, B− =

(
B†

10

−B01

)
, B+ =

(
B†

01

B10

)
, (39)

and observe that

b†−B− = B†
+b+ = −F = −e2θi

√
D, b†+B+ = B†

−b− = −F̄ = −e−2θi
√
D, (40)

where
D = FF̄ = (T1 + t)2 − z2

1 . (41)

The moment maps at s = ±l/2 imply that

b±b†± = |!t | ± \t , B±B†
± = |!T1| ± \T 1, (42)

and moment maps at s = ±λ that QR = Q+ and QL = Q−.
On each interval Dt = −∂s+\T−\t = −∂s−\z and D†

t = ∂s+\T−\t = ∂s−\z,
with \z = \z1 or \z2 in accordance with (37). It follows therefore that ψ(s) has
the form NB:

Matrix
vs
vector
in Π
etc.
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!T2 for− λ < s < λ

. (37) {eq:piece}
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01

b10 B10
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2 )
(

B†
10 −b†10

−B01 −b01

)](
v+

v−

)
+

+ e"σ·"z2(λ2−λ1)
(

J†
L

IL

)
χL +

(
J†

R

IR

)
χR = 0. (38)

Clearly in the limit of l → 0 (and since λ < l/2, we have λ → 0) the above
expression reduces to the ADHM linear equation.

7 Solving the Linear Equation
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rid
of T0

and t0.

by Q±Q†
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√
D, b†+B+ = B†
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√
D, (40)
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1 . (41)
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Figure 3: Bow diagram for Instanton on Taub-NUT. {fig:Instanton}

where the index α takes the values L and R and we introduced λL = −λ and
λR = λ.

Introducing the complex notation D = d
ds − iT0 − T3 and T = T1 + iT2,

the moment maps are written as

[D, T ]− δ(s+ l
2 )B01B10 + δ(s− l

2 )B10B01 +
∑

α∈{L,R}

δ(s−λα)IαJα = 0

(25) {Eq:InstMom}

[D†, D] + [T †, T ] + δ(s+ l
2 )(B†

10B10 −B01B
†
01) + δ(s− l

2 )(B†
01B01 −B10B

†
10)+

+
∑

α∈{L,R}

δ(s−λα)(J†
αJα − IαI†

α) = 0.

In this paper we limit our attention to the case of a single instanton, thus
E is a line bundle and all the data in the bow diagram is Abelian.

5 The Nahm Transform

5.1 Weyl Operator

A central role in the ADHM-Nahm transform [1, ?] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.

7

b10

b01

l1 l2

Figure 2: Taub-NUT Bow Diagram. {fig:TN}

h(s) acts on these data as follows:




t0
tj
b01

b10



 !→





h−1t0h + ih−1 d
dsh

h−1tjh
h−1(− l

2)b01h( l
2)

h−1( l
2)b10h(− l

2)



 (13)

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the moment maps can be
written in complex notation as

[D, t]− δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (14)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†10b10 − b01b

†
01) + δ(s− l

2 )(b†01b01 − b10b
†
10) = 0.

Let us distinguish some point on the Nahm interval. Say this point divides
this interval into two intervals of lengths l1 and l2, i.e. l1 + l2 = l and at
this distinguished point s = s0 = l1 − l/2. We shall perform the hyperkähler
quotient step-by-step, so that the last step is the quotient with respect to the
U(1) at the distinguished point. This will allow us to compute the natural
line bundle and its natural connection corresponding to this U(1).

First we perform HKQ on each open interval separately. The intervals
are of lengths l1 and l2. Since the computations are identical we focus on
the interval of length l2 to the right of s0. Since the Nahm data is Abelian,
the vanishing of the moment maps implies dtj/ds = 0, thus t1, t2 and t3 are
constant. t0 can be made constant using the gauge transformations. There
is a large gauge transformation G = exp(2πi(s − s0)/l2) satisfying g(s0) =
g(l) = 1 remaining. This gauge transformation takes t0 to t0 + 2π/l2. Thus
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ψ(s) =






e\z1(s+l/2)ψL for− l/2 < s < −λ

e\z2sΠ for− λ < s < λ

e\z1(s−l/2)ψR forλ < s < l/2

. (43) {eq:psi}

for some ψL, ψR, and Π.
Let AL = (B−, b+) and AR = (b−, B+) then the vanishing moment map

conditions at s = ±l/2 as in Eq.(36) read ψL = −ALv and ψR = ARv while
at ±λ the moment maps vanish for

e−\z1(l/2−λ)ψR − e\z2λΠ + QRχR = 0, (44)

e−\z2λΠ− e\z1(l/2−λ)ψL + QLχL = 0. (45)

we observe that

ALA†
L = T1 + t + \z1, A†

RAL = ALA†
R = −F, ALA−1

R = −T1 + t + \z1

F̄
,

ARA†
R = T1 + t− \z1, A†

LAR = ARA†
L = −F̄ , ARA−1

L = −T1 + t− \z1

F
,

and define µ+ and µ− to be such that µ2
+ = ALA†

L and µ2
− = ARA†

R namely

µ± =

√
T1 + t +

√
D

2
±

√
T1 + t−

√
D

2

\z1

z1
, (46) {eq:v}

then µ+µ− =
√
D.

We choose v = −eiθA†
L

µ−√
D = e−iθA†

R
µ+√
D , so that now ψL = eiθµ+, ψR =

e−iθµ− and

Π =
1

2g

(
e−iθeλ\z2(y − \y)e−(l/2−λ)\z1µ− + eiθe−λ\z2(y + \y)e(l/2−λ)\z1µ+

)
, (47) {eq:Pi}

where the function g is given by

g = y cosh 2z2λ−
$z2 · $y
z2

sinh 2z2λ = e2\z2λQ−Q†
− + Q+Q†

+e−2\z2λ. (48)

(
χR

χL

)
=

(
Q†

+e−λ\z2

Q†
−eλ\z2

)
e−iθe−λ\z2e−( l

2−λ)\z1µ− − eiθeλ\z2e( l
2−λ)\z1µ+

2g
. (49) {eq:chi}
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We find the normalization factor m in (Ψ, Ψ) = mI to be

m =2 +
1

g

{
−
√
D cos 2θ

+
(T1 + t) sinh z1d− z1 cosh z1d

z1

(
y cosh 2λz2 +

#z1 · #z2 − y2

z2
sinh 2λz2

)

+
(T1 + t) cosh z1d− z1 sinh z1d

z2
(z2 cosh 2λz2 + y sinh 2λz2)

}
. (50)

8 The Connection

We rewrite the Eq.(35) as A = A(0) + A(3) + Φ 1
V (dτ + #ω · d#x), where

Φ = (Ψ, sΨ), A(0) = (Ψ,
d

dτ
Ψ)dτ, A(3) = (Ψ,

∂

∂xj
Ψ)dxj. (51)

Given our solution for Ψ of Eqs.(43, 46, 47, 49) one can straightforwardly
apply the above formulas, integrating over s. These are some useful integrals:

λ∫

−λ

e2\z2sds =
sinh 2z2λ

z2
,

λ∫

−λ

se2\z2sds =
λ

\z2

− sinh 2λz2

2z2\z2

, (52)

λ∫

−λ

[e\z2s,
∂

∂tj
e\z2s]ds =

[\z2, ∂j\z2]

z2
2

(
sinh 2λz2

2z2
− λ

)
(53)

l/2∫

λ

e2\z1(s−l/2)ds =
1− e\z1(l−2λ)

2\z1

, (54)

l/2∫

λ

se2\z1(s−l/2)ds =
1

2\z1

(
l

2
− 1

2\z1

− (λ− 1

2\z1

)e\z1(l−2λ)

)
, (55)

l/2∫

λ

[e\z1(s−l/2),
∂

∂tj
e\z2(s−l/2)]ds =

(
sinh z1(l − 2λ)

2z1
− l

2
− λ

)
[\z1, ∂j\z1]

2z2
1

(56)
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v =
1√
D

(
eiτ/2B†

−µ+

e−iτ/2B†
+µ−

)

ψ(s) =






e\z1(s+l/2)ψL for− l/2 < s < −λ

e\z2sΠ for− λ < s < λ

e\z1(s−l/2)ψR forλ < s < l/2

. (43) {eq:psi}

for some ψL, ψR, and Π.
Let AL = (B−, b+) and AR = (b−, B+) then the vanishing moment map

conditions at s = ±l/2 as in Eq.(36) read ψL = −ALv and ψR = ARv while
at ±λ the moment maps vanish for

e−\z1(l/2−λ)ψR − e\z2λΠ + QRχR = 0, (44)

e−\z2λΠ− e\z1(l/2−λ)ψL + QLχL = 0. (45)

we observe that

ALA†
L = T1 + t + \z1, A†

RAL = ALA†
R = −F, ALA−1

R = −T1 + t + \z1

F̄
,

ARA†
R = T1 + t− \z1, A†

LAR = ARA†
L = −F̄ , ARA−1

L = −T1 + t− \z1

F
,

and define µ+ and µ− to be such that µ2
+ = ALA†

L and µ2
− = ARA†

R namely

µ± =

√
T1 + t +

√
D

2
±

√
T1 + t−

√
D

2

\z1

z1
, (46) {eq:v}

then µ+µ− =
√
D.

We choose v = −eiθA†
L

µ−√
D = e−iθA†

R
µ+√
D , so that now ψL = eiθµ+, ψR =

e−iθµ− and

Π =
1

2g

(
e−iθeλ\z2(y − \y)e−(l/2−λ)\z1µ− + eiθe−λ\z2(y + \y)e(l/2−λ)\z1µ+

)
, (47) {eq:Pi}

where the function g is given by

g = y cosh 2z2λ−
$z2 · $y
z2

sinh 2z2λ = e2\z2λQ−Q†
− + Q+Q†

+e−2\z2λ. (48)

(
χR

χL

)
=

(
Q†

+e−λ\z2

Q†
−eλ\z2

)
e−iθe−λ\z2e−( l

2−λ)\z1µ− − eiθeλ\z2e( l
2−λ)\z1µ+

2g
. (49) {eq:chi}
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A =
(

Ψ,
( ∂

∂θ
+

s
V

)
Ψ

)
dτ +

(
Ψ,

( ∂

∂xj
+ ωj

s
V

)
Ψ

)
dxj

22



Moduli Space of N SU(2) 
Instantons on Taub-NUT

One SU(2) instanton on TN

IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ

DMHM(s)=0,  HM(-λ)=1, HM= HM(λ)

To have algebraic description of this space 
introduce monodromy H on each interval:

Moment maps can be written as:

TR-H-1MTM HM=IRJR,   H-1RTR HR=B10B01

TM-H-1LTL HL=ILJL,      TL = B01B10

Up to the gauge equivalence
TL, HL                     g-1-l/2TL g-l/2, g-1-l/2 HL g-λ
TM, HM                    g-1-λTM g-λ, g-1-λHM gλ
TR, HR                      g-1λTR gλ, g-1λHR gl/2

B01, B10            g-1l/2B01 g-l/2, g-1-l/2B10 gl/2 
) )((
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!→

!→

23



ds2 =
(

l +
1

2r1

)
d!r2

1 − 4λd!r1d!q +
(

2λ +
1
q

)
d!q2

+
(
dθ − 1

4ωr

)2

l − 2λ + 1/q + 1/(2r)
+

(
dα + 1

2ωq

)2

2λ + 1/q
dωr = ∗d 1

r1

dωq = ∗d1
q

θ ∼ θ + 2π

α ∼ α + 2π

IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ
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matches to de Boer, Hori, Ooguri, Oz
hep-th/9611063
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Data Determining 
N U(m) Instantons on TNk
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W1 W2
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λ1
λ2 λn

IL IR
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JL JR

WL WR
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−λ λ

N SU(2) on TN

N SU(m) on multi-TN

N SU(m) on TN

IL IR

U(1)

JL JR

U(N)

WL WR

−l/2 l/2
−λ λ

N SU(2) “monopoles” on TN

Bow Diagrams

25

25



Instantons on ALF Spaces:

A2 ALF

C
on

si
de

r
a

sp
he

re
S2 R
∈

R3
of

la
rg

e
ra

di
us

|!x
|=

R
th

en
th

e
re

st
ri
ct

io
n

E
|S2

of
th

e
bu

nd
le

E
sp

lit
s
in

to
ei
ge

nb
un

dl
es

of
W

(!x
,4

π)
,i

.e
.
E

=
Lλ
⊕
L−

λ.
T
he

m
ag

ne
ti
c

ch
ar

ge
m

of
th

e
co

nfi
gu

ra
ti
on

is
th

e
C
he

rn
cl
as

s
of
Lλ
→

S2 R
→
∞
.

K
ro

nh
ei
m

er
[7

]d
em

on
st

ra
te

d
eq

ui
va

le
nc

e
of

th
e

‘p
ur

e
m

on
op

ol
e’

ca
se

of

k0
=

0
to

si
ng

ul
ar

m
on

op
ol

es
st

ud
ie
d

in
[1

5,
14

].
E
xp

lic
it

so
lu

ti
on

s
fo

r
k0

=
0

an
d

m
=

1
w
ill

ap
pe

ar
in

[1
6]

.
In

th
is

pa
pe

r
w
e

fo
cu

s
ou

r
at

te
nt

io
n

on
th

e

ca
se

of
m

=
0,

an
d

ob
ta

in
th

e
ex

pl
ic
it

so
lu

ti
on

w
it
h

k0
=

1,
i.e

.
a

si
ng

le

in
st

an
to

n
on

th
e

T
au

b-
N
U
T

sp
ac

e.

2
In

gr
ed

ie
nt

s

T
he

re
ar

e
tw

o
ba

si
c

in
gr

ed
ie
nt

s
in

ou
r
co

ns
tr

uc
ti
on

:

J

I

V

W

(a
)

Li
ne

ar
m

ap
s(

ar
ro

ws
an

d
lim

bs
).

(b
)

N
ah

m
D
at

a
(s

tr
in

g)
.

F
ig

ur
e

1:
C
om

po
ne

nt
s
of

bo
w

an
d

qu
iv

er
di

ag
ra

m
s.

{i
ng
re
di
en
ts
}

F
ig

ur
e

1a
re

pr
es

en
ts

a
pa

ir
of

co
m

pl
ex

ve
ct

or
sp

ac
es

V
=

Cv
an

d
W

=
Cw

w
it
h

m
ap

s
J

:
V
→

W
an

d
I

:
W
→

V
.
T
he

lin
ea

r
sp

ac
e

of
th

e
pa

ir
of

m
ap

s
(I

,J
)

ha
s

a
na

tu
ra

l
hy

pe
rk

äh
le
r

st
ru

ct
ur

e,
w
hi

ch
is

re
sp

ec
te

d
by

th
e

ac
ti
on

of
U

(v
)
an

d
U

(w
).

T
he

hy
pe

rk
äh

le
r
m

om
en

t
m

ap
of

th
e

U
(v

)
ac

ti
on

gv
:(

I,
J
)
$→

(g
−

1 v
I,

J
gv

)
is

µC V
=

µ1 V
+

iµ
2 V

=
IJ

,
µR V

=
µ3 V

=
1

2(J
†
J
−

II
†
),

(5
)

w
hi

le
fo

r
th

e
U

(w
)
ac

ti
on

gw
:(

I,
J
)
$→

(I
gw

,g
−

1 w
J
)
th

e
m

om
en

t
m

ap
is

µC W
=

µ1 W
+

iµ
2 W

=
−J

I,
µR W

=
µ3 W

=
1

2(I
†
I
−

J
J†

).

(6
)

It
is

co
nv

en
ie
nt

to
as

se
m

bl
e

th
e

pa
ir

(I
,J

)
in

to

Q
V

=(
J† I)

an
d

Q W
=(
−I

† J)
,

(7
)

th
en

th
e

m
om

en
t
m

ap
s
ar

e

\µV
=

µi V
σ

i
=

V
ec

(Q
V
Q† V

)
an

d
\µW

=
µi W

σ
i
=

V
ec

(

Q W

Q†
W
).

(8
)

2Consider a sphere S2
R ∈ R3 of large radius |!x| = R then the restriction E|S2

of the bundle E splits into eigenbundles of W (!x, 4π), i.e. E = Lλ⊕L−λ. The
magnetic charge m of the configuration is the Chern class of Lλ → S2

R→∞.
Kronheimer [7] demonstrated equivalence of the ‘pure monopole’ case of

k0 = 0 to singular monopoles studied in [15, 14]. Explicit solutions for k0 = 0
and m = 1 will appear in [16]. In this paper we focus our attention on the
case of m = 0, and obtain the explicit solution with k0 = 1, i.e. a single
instanton on the Taub-NUT space.

2 Ingredients

There are two basic ingredients in our construction:

J

I

VW

(a) Linear maps (arrows and limbs). (b) Nahm Data (string).

Figure 1: Components of bow and quiver diagrams. {ingredients}

Figure 1a represents a pair of complex vector spaces V = Cv and W = Cw

with maps J : V → W and I : W → V. The linear space of the pair of
maps (I, J) has a natural hyperkähler structure, which is respected by the
action of U(v) and U(w). The hyperkähler moment map of the U(v) action
gv : (I, J) $→ (g−1

v I, Jgv) is

µC
V = µ1

V + iµ2
V = IJ, µR

V = µ3
V =

1

2
(J†J − II†), (5)

while for the U(w) action gw : (I, J) $→ (Igw, g−1
w J) the moment map is
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W = µ1

W + iµ2
W = −JI, µR

W = µ3
W =

1

2
(I†I − JJ†). (6)

It is convenient to assemble the pair (I, J) into

QV =
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I

)
and

Q

W =

(
−I†

J

)
, (7)

then the moment maps are

\µV = µi
V σi = Vec(QV Q†

V ) and \µW = µi
W σi = Vec(

Q
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Figure 1a represents a pair of complex vector spaces V = Cv and W = Cw

with maps J : V → W and I : W → V. The linear space of the pair of
maps (I, J) has a natural hyperkähler structure, which is respected by the
action of U(v) and U(w). The hyperkähler moment map of the U(v) action
gv : (I, J) $→ (g−1

v I, Jgv) is

µC
V = µ1

V + iµ2
V = IJ, µR

V = µ3
V =

1

2
(J†J − II†), (5)

while for the U(w) action gw : (I, J) $→ (Igw, g−1
w J) the moment map is

µC
W = µ1

W + iµ2
W = −JI, µR

W = µ3
W =

1

2
(I†I − JJ†). (6)

It is convenient to assemble the pair (I, J) into

QV =

(
J†

I

)
and

Q

W =

(
−I†

J

)
, (7)

then the moment maps are

\µV = µi
V σi = Vec(QV Q†

V ) and \µW = µi
W σi = Vec(

Q

W

Q†
W ). (8)
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Higgs Branch

Coulomb Branch

Mixed Branch

< H2 >!= 0, < Y 2 >= 0

< H2 >= 0, < Y 2 >!= 0

Hα ∼ I, YJ ∼ I
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30

Summary:

1. Problem: Instantons & Monopoles

2. Explicit Monopole Solution

3. Ingredients:  Arrows & Strings

4. Answer:  Bow Diagrams

5. String Dualities 

6. Gauge theory with Impurity walls

7. Explicit Instanton Solution

8. Moduli spaces of instantons on ALF

9. EM duality of Bows
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U(n)

U(n+m1)

U(n+m2)

Ck
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Compare to ADHM condition:

(
B†

10 − b†01 B†
01 − b†10

−B01 + b10 B10 − b01

) (
v1

v2

)
+

(
j†1 j†2
i1 i2

) (
∆1

∆2

)
= 0
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