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Introduction

Topological strings

Consider the A-model on a Calabi-Yau X

F(Q , gs) =
∑
d,g

Nd,gQdg2g−2
s , Q = e−t

• count worldsheet instantons

• perturbative in Q , gs

↓ mirror symmetry ↓

B-model on Xmirror → compute Fg(Q) exactly in Q
...but can we go beyond perturbation theory in gs?
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Non-perturbative and Large Order

Why going non-perturbative?
• A better understanding of (topological) strings
• instanton effects→ dynamics?
• new topological invariants?

• Compute perturbative amplitudes using non-perturbative
methods?
• WKB-like tools?

Large Order behavior & Nonperturbative effects

• QM, QFT: Standard relation between instanton effects and
large-order behavior of the perturbation series

• Asymptotics of 1
N -expansion of gauge theories controlled by

nonperturbative corrections ∼ e−N

l

• D-brane instanton effects in string dual

[Alexandrov Kazakov Kutasov]
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Applications to Topological String Theory

If the gauge theory has a string dual:
instanton effect in gauge theory↔ asymptotics of string amplitudes

• Natural non-perturbative completion
Z can be tested with asymptotics of string amplitudes!

• Information about analytic structure of topological string free
energy

• Nontrivial check of conjectural dualities

b New conjectures about asymptotics of enumerative invariants

We consider

• matrix models in double-scaling limit↔ noncritical string theory

• matrix models off criticality↔ topological strings
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Matrix Models and Topological Strings
B-model on some local CYs

large N dual
←→ Matrix model

[Dijkgraaf Vafa]

This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]

® new formalism to compute open & closed B-model amplitudes:

Topological string amplitudes
Fg behave like matrix model
correlators

+

Recursive, geometric reformu-
lation of matrix model 1/N-
expansion:all information en-
coded in spectral curve

[Eynard Orantin]

• Spectral curve for TS on mirror of toric CY: mirror curve
Σt(u, v) = w+w−

• recursive matrix model formalism→ generate TS amplitudes

• no holomorphic ambiguity
• at large radius: mirror to topological vertex, but valid anywhere

in moduli space
6 / 28
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Instanton effects and Large Order behavior
A Quantum mechanics example
Consider the anharmonic oscillator with Hamiltonian

H =
p2

2
+

x2

2
+
λx4

4
.

Take the perturbative expansion of the ground-state energy,

SE(λ) =
∑

k

Ekλ
k .

• SE is in principle expected to have zero radius of convergence,
R = 0! [Dyson]

• Indeed here: R > 0 would imply that the perturbative series
describes the physics also for λ < 0, where the state is

unstable and the particle escapes→ EE

E(λ)

7 / 28
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Re(E(λ))
lifetime↔
Im(E(λ))
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The anharmonic oscillator
[Bender Wu]

Let SE(λ) =
∑

k≥0 Ekλ
k be the formal, divergent expansion of the

ground state energy E(λ).
• E(λ) is an analytic function of the coupling λ in the cut complex

plane
[Loeffel Martin]

• SE(λ) is asymptotic to E(λ)
[Loeffel Martin Simon Wightman]

E(λ) =
1

2πi

∮
dλ′

E(λ′)

λ′ − λ

λ

→We can deform the Cauchy
representation to the dispersion relation

Ek = 1
2πi

∫ 0

−∞
dλ′Disc(E(λ′))

λ′k+1

8 / 28
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Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact

• The perturbation coefficients are related to the lifetime of the
state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact

• The perturbation coefficients are related to the lifetime of the
state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Analogously, Disc(E(λ)) = Z1−inst

Z0−inst

= iµ1λ
−b−1e

−Ainst
λ

(
1 + λµ2 + O(λ2)

)
,

↑ 1-loop

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Analogously, Disc(E(λ)) = Z1−inst

Z0−inst

= iµ1λ
−b−1e

−Ainst
λ

(
1 + λµ2 + O(λ2)

)
,

↑
saddle-point expansion

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Analogously, Disc(E(λ)) = Z1−inst

Z0−inst

= iµ1λ
−b−1e

−Ainst
λ

(
1 + λµ2 + O(λ2)

)
,

Ainst = 2
∫ x0

0

√
2V(x)dx = − 1

3 → action of tunneling-instanton

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion

Examples

Conclusion and
Outlook

Ek = 1
2πi

∫ 0

−∞
dλDisc(E(λ))

λk+1

• This result is rigorous and exact
• The perturbation coefficients are related to the lifetime of the

state in the unstable potential with negative coupling↔
instanton effect at λ < 0

Disc(E(λ)) =?

Consider I(λ) =
∫ ∞
−∞

e−(x
2+λx4)dx:Analytic continuation to λ < 0→

Re(x)

Im(x)

C−C+

S1 S2

Analogously, Disc(E(λ)) = Z1−inst

Z0−inst

= iµ1λ
−b−1e

−Ainst
λ

(
1 + λµ2 + O(λ2)

)
,

Ek ∼
µ1
2πA

−k−b
inst Γ(k + b)(1 + Ainst

(b+k−1)µ2 + O( 1
k 2 )) →

anharmonic oscillator: Ek ∼ (−1)k+1
√

6

π
3
2

3k Γ(k + 1
2 ) [Bender Wu]

9 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion
Review

Instanton analysis

Examples

Conclusion and
Outlook

Matrix models in 1/N expansion
• Partition function

Z =
1

vol(U(N))

∫
dMe−

1
gs

TrV(M) =
1
N!

∫ N∏
i=1

dzi

2π
eN2Veff (zi)

• effective potential Veff (zi) = V(zi) − 2 t
N

∑
i,j log |zi − zj | →

Coulomb repulsion→ eigenvalues spread out over interval C
• The object we are interested in is the free energy;

F(t) =
∑
g≥0

Fg(t)g
2g−2
s

where t = gsN is the ’t Hooft parameter
• t fixed: expansion in gs ↔ expansion in 1

N

1−cut 2−cut
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∑
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Here: Consider
1-cut case only
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The planar solution
• When N → ∞, the distribution of eigenvalues becomes

continuous and one can write

Veff (z) = V(z) −
1
2π

∫
(y(z + i0) − y(z − i0)) log |z − z′|dz,

where y(z) is the spectral curve of the matrix model

[Brézin Itzykson Parisi Zuber]

• The effective potential is constant along the cut and has a
saddle point at x0:

a

y(x0) = 0

• Instanton configuration: an eigenvalue from the endpoint of the
cut moves to the saddle of the effective potential barrier
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• The instanton action is

Ainst = N
∫ x0

a
y(z)dz

[David; Shenker]

Geometrically:Ainst is a contour
integral from endpoint of the cut
to singularity of spectral curve b y(x0) = 0a

[Seiberg Shih]
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Instanton analysis
We expect a relation instantons↔ large-order analogous to the
anharmonic oscillator:

Fg = 1
2π

∫ ∞
0 ds Disc(F(

√
s))

sg+1 = µ1
A
−b−2g
inst
π

Γ(2g + b)
(
1 + Ainst

2g+b−1µ2 + O( 1
g2 )
)

• The large-order behavior is controlled by Disc(F(gs))

• The discontinuity of F(gs) is again given by

Disc(F(gs)) =
Z (1−inst)

N (gs)

Z (0−inst)
N (gs)

• Z (1−inst)
N corresponds to one eigenvalue passing through the

nontrivial saddle x0 of the spectral curve→
Z (1−inst)

N factorizes as

Z (1)
N = Z (0)

N−1

∫
Cx0

dz〈det(z −M)2〉
(0)
N−1 exp(−

V(z)

gs
)
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1-loop, leading 2-loop, subleading

• The large-order behavior is controlled by Disc(F(gs))

• The discontinuity of F(gs) is again given by

Disc(F(gs)) =
Z (1−inst)

N (gs)

Z (0−inst)
N (gs)

• Z (1−inst)
N corresponds to one eigenvalue passing through the

nontrivial saddle x0 of the spectral curve→
Z (1−inst)

N factorizes as

Z (1)
N = Z (0)

N−1

∫
Cx0

dz〈det(z −M)2〉
(0)
N−1 exp(−

V(z)

gs
)

13 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion
Review

Instanton analysis

Examples

Conclusion and
Outlook

Instanton analysis
We expect a relation instantons↔ large-order analogous to the
anharmonic oscillator:

Fg = 1
2π

∫ ∞
0 ds Disc(F(

√
s))

sg+1 = µ1
A
−b−2g
inst
π

Γ(2g + b)
(
1 + Ainst

2g+b−1µ2 + O( 1
g2 )
)

• The large-order behavior is controlled by Disc(F(gs))

• The discontinuity of F(gs) is again given by

Disc(F(gs)) =
Z (1−inst)

N (gs)

Z (0−inst)
N (gs)

• Z (1−inst)
N corresponds to one eigenvalue passing through the

nontrivial saddle x0 of the spectral curve→
Z (1−inst)

N factorizes as

Z (1)
N = Z (0)

N−1

∫
Cx0

dz〈det(z −M)2〉
(0)
N−1 exp(−

V(z)

gs
)

13 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion
Review

Instanton analysis

Examples

Conclusion and
Outlook

Instanton analysis
We expect a relation instantons↔ large-order analogous to the
anharmonic oscillator:

Fg = 1
2π

∫ ∞
0 ds Disc(F(

√
s))

sg+1 = µ1
A
−b−2g
inst
π

Γ(2g + b)
(
1 + Ainst

2g+b−1µ2 + O( 1
g2 )
)

• The large-order behavior is controlled by Disc(F(gs))

• The discontinuity of F(gs) is again given by

Disc(F(gs)) =
Z (1−inst)

N (gs)

Z (0−inst)
N (gs)

• Z (1−inst)
N corresponds to one eigenvalue passing through the

nontrivial saddle x0 of the spectral curve→
Z (1−inst)

N factorizes as

Z (1)
N = Z (0)

N−1

∫
Cx0

dz〈det(z −M)2〉
(0)
N−1 exp(−

V(z)

gs
)

13 / 28



Nonperturbative
effects in Matrix

Models and
Topological Strings

Marlene Weiss

Introduction and
Motivation

Instantons & Large
Order: The
Anharmonic
Oscillator

Matrix Models in 1
N

Expansion
Review

Instanton analysis

Examples

Conclusion and
Outlook

• 〈det(z −M)2〉 can be expanded in terms of connected matrix
correlation functions Wg,h defined as

〈Tr
1

p1 −M
· · ·Tr

1
ph −M

〉 =
∞∑

g=0

g2g−2+h
s Wg,h(p1, · · · ph)

• Wg,h determined recursively from spectral curve by matrix
model loop equations

[Ambjørn Chekhov Kristjansen Makeenko; Eynard Orantin]

• The remaining ingredient is

Z (0)
N−1

Z (0)
N

= exp

 ∞∑
g=0

g2g−2
s (Fg(gs(N − 1)) − Fg(gsN))

 ,
and we find in saddle-point analysis

Disc(F) = µ1g1/2
s exp

(
−
Ainst

gs

)
(1 + gsµ2 + · · · )
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Disc(F) = µ1g1/2
s exp

(
−
Ainst

gs

)
(1 + gsµ2 + · · · )

Explicitly:

µ1 =
(a − b)

4

√
1

2πy′(x0)((x0 − a)(x0 − b))
3
2

e−
1

gs
Ainst

• Disc(F) depends only on the spectral curve of the matrix
model, not on the potential

↓ B-model formalism

unambiguously defined for topological strings on mirrors of
toric geometries

• a, b , x0 depend on ’t Hooft parameter t

• Disc(F) ∼ e−NAinst /t→ non-perturbative

• µ1 has been computed before, but the result is not valid off
criticality

[Hanada Hayakawa Ishibashi Kawai Kuroki Matsuo Tada]

• We have computed Disc(F) to two loops→ µ1, µ2
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String interpretation of the instanton effects
Instanton action in the
double-scaling limit of
matrix model

↔ disk amplitude for D-instanton in
noncritical string theory → ZZ-
brane

[Alexandrov Kazakov Kutasov]

↓
difference between disk
amplitudes of FZZT branes
WFZZT (a) −WFZZT (x0)

Is there a similar story for topological string theory?
Ainst =

∫ x0

a y(z)
↔

two branes located at a, x0 with
difference between superpoten-
tials W(x0) −W(a)

= W(x0) −W(a)

→ define domain wall in under-
lying type II theory, with tension
given by Ainst

T Unlike the B-branes, this domain wall can couple to the complex
structure!
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Examples

We now test our prediction for the asymptotics in the following
examples:

2d Gravity

Hurwitz Theory

double−scaling limit

double−scaling limit

Quartic Matrix Model

Local Curve Xp

p → ∞
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Numerical analysis:Richardson transformation
Fg are only available to limited genus, how to extract the
asymptotics as g → ∞? → Richardson transformation.
Given a sequence {Sg},

Sg = s0 +
s1

g
+

s2

g2
+ · · · ,

the subleading corrections up to order 1
gn can be removed defining

A(g, n) =
N∑

k=0

Sg+k (g + k)n(−1)g+n

k !(n − k)!

If Sg truncates at 1/gn, this gives exactly s0: for n=1;

Sg = s0 +
s1

g
→ A(g, 1) = −(s0 +

s1

g
) + (s0 +

s1

g + 1
)(g + 1) = s0

• A(g, n) = s0 + O( 1
gn+1 )→ accelerates convergence

18 / 28
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The quartic matrix model
Consider the matrix model with quartic potential

V(M) =
1
2

M2 + λM4

• spectral curve:

y(z) = (1 + 8λa2 + 4λz2)
√

z2 − 4a2,

±2a = endpoints of the cut,

a(λ) =
1

24λ

(
−1 +

√
1 + 48λ

)
[Brézin Itzykson Parisi Zuber]

• Critical point at λ = − 1
48

• The free energy in 1
N -expansion can be computed by standard

methods
[Bessis Itzykson Zuber]

We have computed Fg(λ) up to genus 10:

19 / 28
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The numerical asymptotics for the
instanton action, along with the
matrix prediction, at λ = −0.1

The leading asymptotics for
Fquart

g (λ), divided by the one-loop
matrix prediction

The subleading asymptotics,
divided by the two-loop prediction
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2d gravity

• Taking N → ∞ in a standard matrix model retains only planar
surfaces unless one simultaneously takes λ→ λc where
higher-genus contributions are enhanced as
Fg ∝ (λ − λc)

(2−γ)(1−g): double-scaling limit→ 2d gravity
[Gross Migdal; Douglas Shenker]

• limit discretized surface→ continuum

• The perturbative amplitudes are governed by the Painlevé I
equation fulfilled by the specific heat u(z) = F ′′(z),

u2 −
u′′

6
= z

• can compute Fg to arbitrary genus

• The instanton action and 1-loop factor are

Ainst =
8
√

3
5
, µ1 =

1
8 33/4

√
π

[David]
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The local curve

Consider A-model topological strings on the local curve

Xp = O(p) ⊕ O(2 − p)→ P1, p ∈ Z.

• This is a toric Calabi-Yau threefold with one Kähler modulus

• The potential is unstable for all p > 2

• The free energy can be computed using the topological vertex
or local Gromov-Witten theory

[Aganagic Klemm Mariño Vafa; Bryan Pandharipande]

• double-scaling limit→ 2d gravity
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The spectral curve corresponding to the matrix description of the
mirror B-model is

y(z) =
2
z

tanh−1(

√
(z − a)(z − b)

z − a+b
2

)

 − p tanh−1

 √(z − a)(z − b)

z +
√

ab

 ,
[Mariño]

• The endpoints of the cut a, b depend on the exponential of the
Kähler parameter Q via the mirror map:

a =
(1 +

√
ζ)2

(1 − ζ)p ; b =
(1 −

√
ζ)2

(1 − ζ)p Q = (1 − ζ)p(p−2)ζ

• The B-model matrix formalism provides a nonperturbative
completion that is testable with the large-order behaviour of the
perturbative amplitudes Fg(Q)

• Using the topological vertex, we computed Fg up to genus 9
(genus 7) for p=3 (p=4)
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The numerical asymptotics
for the instanton action,
along with the matrix
prediction, at
ζ = .15, p = 3

The leading asymptotics
for Fp=3

g , divided by the
one-loop prediction

The subleading
asymptotics, divided by the
two-loop prediction
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Hurwitz Theory

• Hurwitz theory counts branched covers of Riemann surfaces

• obtained as a special limit of the local curve Xp :

p → ∞, gs → 0, Q → 0; gH = Npgs , QH =
(−1)p

(gsN)2
Q

•

FH =
∑
g≥0

N2−2g
∑
d≥0

Qd
HHP

1

g,d(1
d)•

g2g−2+2d
H

(2g − 2 + 2d)!

• The mirror map and endpoints of the cut are given by

χe−χ = QH , aH(χ) = (1 +
√
χ)2, bH(χ) = (1 −

√
χ)2

• In the double-scaling limit (at χ = 1), one recovers 2d gravity

• We have computed Fg up to genus 16, finding again
spectacular agreement:
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Conclusion and Outlook

• We have computed nonperturbative effects for a generic matrix
model

• The B-model formalism defines a nonperturbative completion
for topological strings on local geometries

• All can be tested with the large-order behavior of the string
perturbation series: agreement to very high precision

• Challenges ahead
• multi-cut case
• Extend B-model formalism?
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