Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

CERN \& ETH Zurich
collaboration with M.Mariño, R. Schiappa to appear
31.10.2007

Outline

Introduction and Motivation
Non-perturbative effects \& large order
The B-model matrix formalism
Instantons \& Large Order: The Anharmonic Oscillator
Matrix Models in $\frac{1}{N}$ Expansion
Review
Instanton analysis
Examples
The quartic matrix model
2d gravity
The local curve
Hurwitz Theory
Conclusion and Outlook

Nonperturbative effects in Matrix Models and Topological Strings

Topological strings

Consider the A-model on a Calabi-Yau X

$$
F\left(Q, g_{s}\right)=\sum_{d, g} N_{d, g} Q^{d} g_{s}^{2 g-2}, \quad Q=\mathrm{e}^{-t}
$$

Topological strings

Consider the A-model on a Calabi-Yau X

$$
F\left(Q, g_{s}\right)=\sum_{d, g} N_{d, g} Q^{d} g_{s}^{2 g-2}, \quad Q=\mathrm{e}^{-t}
$$

- count worldsheet instantons
- perturbative in Q, g_{s}

Topological strings

Consider the A-model on a Calabi-Yau X

$$
F\left(Q, g_{s}\right)=\sum_{d, g} N_{d, g} Q^{d} g_{s}^{2 g-2}, \quad Q=\mathrm{e}^{-t}
$$

- count worldsheet instantons
- perturbative in Q, g_{s}
\downarrow mirror symmetry \downarrow

B-model on $X_{\text {mirror }} \rightarrow$ compute $F_{g}(Q)$ exactly in Q

Topological strings

Consider the A-model on a Calabi-Yau X

$$
F\left(Q, g_{s}\right)=\sum_{d, g} N_{d, g} Q^{d} g_{s}^{2 g-2}, \quad Q=\mathrm{e}^{-t}
$$

- count worldsheet instantons
- perturbative in Q, g_{s}
\downarrow mirror symmetry \downarrow

B-model on $X_{\text {mirror }} \rightarrow$ compute $F_{g}(Q)$ exactly in Q ...but can we go beyond perturbation theory in g_{s} ?

Nonperturbative effects in Matrix Models and Topological Strings

Why going non-perturbative?

Non-perturbative effects \& large order
The B-model matrix formalism

Non-perturbative and Large Order

Nonperturbative

Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
- instanton effects \rightarrow dynamics?
- new topological invariants?

Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
- instanton effects \rightarrow dynamics?
- new topological invariants?
- Compute perturbative amplitudes using non-perturbative methods?
- WKB-like tools?

Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
- instanton effects \rightarrow dynamics?
- new topological invariants?
- Compute perturbative amplitudes using non-perturbative methods?
- WKB-like tools?

Large Order behavior \& Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series

Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
- instanton effects \rightarrow dynamics?
- new topological invariants?
- Compute perturbative amplitudes using non-perturbative methods?
- WKB-like tools?

Large Order behavior \& Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series
- Asymptotics of $\frac{1}{N}$-expansion of gauge theories controlled by nonperturbative corrections $\sim \mathrm{e}^{-N}$
\downarrow
- D-brane instanton effects in string dual

Nonperturbative

ntroduction and

Non-perturbative effects \& large order
The B-model matrix formalism

Applications to Topological String Theory

Nonperturbative

Applications to Topological String Theory

If the gauge theory has a string dual: instanton effect in gauge theory \leftrightarrow asymptotics of string amplitudes

Applications to Topological String Theory

If the gauge theory has a string dual:
instanton effect in gauge theory \leftrightarrow asymptotics of string amplitudes

- Natural non-perturbative completion mean be tested with asymptotics of string amplitudes!
- Information about analytic structure of topological string free energy
- Nontrivial check of conjectural dualities

N New conjectures about asymptotics of enumerative invariants

Applications to Topological String Theory

If the gauge theory has a string dual:
instanton effect in gauge theory \leftrightarrow asymptotics of string amplitudes

- Natural non-perturbative completion rean be tested with asymptotics of string amplitudes!
- Information about analytic structure of topological string free energy
- Nontrivial check of conjectural dualities
\& New conjectures about asymptotics of enumerative invariants

We consider

- matrix models in double-scaling limit \leftrightarrow noncritical string theory
- matrix models off criticality \leftrightarrow topological strings

Nonperturbative

ntroduction and

Non-perturbative effects \& large order
The B-model matrix formalism

Matrix Models and Topological Strings

Nonperturbative effects in Matrix Models and Topological Strings

Matrix Models and Topological Strings
B-model on some local CYs $\stackrel{\text { large } \mathrm{N} \text { dual }}{\longleftrightarrow}$ Matrix model
[Dijkgraaf Vafa]

Non-perturbative effects \& large order
The B-model matrix formalism

Matrix Models and Topological Strings

B-model on some local CYs large N dual Matrix model

This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]
new formalism to compute open \& closed B-model amplitudes:

Matrix Models and Topological Strings

B-model on some local CYs $\stackrel{\text { large } \mathrm{N} \text { dual }}{\longleftrightarrow}$ Matrix model
[Dijkgraaf Vafa]
This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]
new formalism to compute open \& closed B-model amplitudes:
Topological string amplitudes F_{g} behave like matrix model correlators

Matrix Models and Topological Strings

B-model on some local $\mathrm{CYs} \stackrel{\text { large } \mathrm{N} \text { dual }}{\longleftrightarrow}$ Matrix model
[Dijkgraaf Vafa]
This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]
new formalism to compute open \& closed B-model amplitudes:

Topological string amplitudes F_{g} behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1 / \mathrm{N}$ expansion:all information encoded in spectral curve
[Eynard Orantin]

Matrix Models and Topological Strings

B-model on some local CYs $\stackrel{\text { large } N \text { dual }}{\longleftrightarrow}$ Matrix model
[Dijkgraaf Vafa]
This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]
new formalism to compute open \& closed B-model amplitudes:

Topological string amplitudes F_{g} behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1 / \mathrm{N}$ expansion:all information encoded in spectral curve
[Eynard Orantin]

- Spectral curve for TS on mirror of toric CY: mirror curve $\Sigma_{t}(u, v)=w^{+} w^{-}$
- recursive matrix model formalism \rightarrow generate TS amplitudes

Matrix Models and Topological Strings

B-model on some local $\mathrm{CYs} \stackrel{\text { large } \mathrm{N} \text { dual }}{\longleftrightarrow}$ Matrix model
[Dijkgraaf Vafa]
This also works for mirrors of toric geometries!
[Mariño; Bouchard Klemm Mariño Pasquetti]
new formalism to compute open \& closed B-model amplitudes:

Topological string amplitudes F_{g} behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1 / \mathrm{N}$ expansion:all information encoded in spectral curve
[Eynard Orantin]

- Spectral curve for TS on mirror of toric CY: mirror curve $\Sigma_{t}(u, v)=w^{+} w^{-}$
- recursive matrix model formalism \rightarrow generate TS amplitudes
- no holomorphic ambiguity
- at large radius: mirror to topological vertex, but valid anywhere in moduli space

Instanton effects and Large Order behavior

Introduction and

Motivation
Instantons \& Large
Order: The
Anharmonic
Oscillator
$\underset{\text { Matrix Models in } \frac{1}{N}}{\text { Expansion }}$
Expansion
Examples
Conclusion and
Outlook

Instanton effects and Large Order behavior

A Quantum mechanics example
Consider the anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4} .
$$

Take the perturbative expansion of the ground-state energy,

$$
S_{E}(\lambda)=\sum_{k} E_{k} \lambda^{k} .
$$

Instanton effects and Large Order behavior

A Quantum mechanics example
Consider the anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4} .
$$

Take the perturbative expansion of the ground-state energy,

$$
S_{E}(\lambda)=\sum_{k} E_{k} \lambda^{k} .
$$

- S_{E} is in principle expected to have zero radius of convergence, $R=0$!

Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4} .
$$

Take the perturbative expansion of the ground-state energy,

$$
S_{E}(\lambda)=\sum_{k} E_{k} \lambda^{k} .
$$

- S_{E} is in principle expected to have zero radius of convergence, $R=0$!
- Indeed here: $R>0$ would imply that the perturbative series describes the physics also for $\lambda<0$, where the state is unstable and the particle escapes \rightarrow 広

Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2}+\frac{x^{2}}{2}+\frac{\lambda x^{4}}{4} .
$$

Take the perturbative expansion of the ground-state energy,

$$
S_{E}(\lambda)=\sum_{k} E_{k} \lambda^{k} .
$$

- S_{E} is in principle expected to have zero radius of convergence, $R=0$!
- Indeed here: $R>0$ would imply that the perturbative series describes the physics also for $\lambda<0$, where the state is unstable and the particle escapes \rightarrow 㕸

Nonperturbative

The anharmonic oscillator

Let $S_{E}(\lambda)=\sum_{k \geq 0} E_{k} \lambda^{k}$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

The anharmonic oscillator
[Bender Wu]
Let $S_{E}(\lambda)=\sum_{k \geq 0} E_{k} \lambda^{k}$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane
- $S_{E}(\lambda)$ is asymptotic to $E(\lambda)$
[Loeffel Martin Simon Wightman]

The anharmonic oscillator

Let $S_{E}(\lambda)=\sum_{k \geq 0} E_{k} \lambda^{k}$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane
- $S_{E}(\lambda)$ is asymptotic to $E(\lambda)$
[Loeffel Martin Simon Wightman]

$$
E(\lambda)=\frac{1}{2 \pi \mathrm{i}} \oint d \lambda^{\prime} \frac{E\left(\lambda^{\prime}\right)}{\lambda^{\prime}-\lambda}
$$

The anharmonic oscillator

Let $S_{E}(\lambda)=\sum_{k \geq 0} E_{k} \lambda^{k}$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane
- $S_{E}(\lambda)$ is asymptotic to $E(\lambda)$
[Loeffel Martin Simon Wightman]

$$
E(\lambda)=\frac{1}{2 \pi \mathrm{i}} \oint d \lambda^{\prime} \frac{E\left(\lambda^{\prime}\right)}{\lambda^{\prime}-\lambda}
$$

\rightarrow We can deform the Cauchy representation to the dispersion relation

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda^{\prime} \frac{\operatorname{Disc}\left(E\left(\lambda^{\prime}\right)\right)}{\lambda^{\prime k+1}}
$$

Nonperturbative effects in Matrix Models and Topological Strings

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

Nonperturbative

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

Nonperturbative effects in Matrix

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

$$
\begin{aligned}
& \text { Analogously, } \operatorname{Disc}(E(\lambda))=\frac{Z^{1-\text { inst }}}{Z^{0-\text { inst }}} \\
&= \mathrm{i} \mu_{1} \lambda^{-b-1} \mathrm{e}^{\frac{-\mathcal{F}_{\text {inst }}}{\Lambda}}\left(1+\lambda \mu_{2}+O\left(\lambda^{2}\right)\right), \\
& \uparrow 1 \text {-loop }
\end{aligned}
$$

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

$$
\begin{gathered}
\text { Analogously, } \operatorname{Disc}(E(\lambda))=\frac{Z^{1-\text { inst }}}{Z^{0-\text { inst }}} \\
=\mathrm{i} \mu_{1} \lambda^{-b-1} \mathrm{e}^{\frac{-\mathcal{F}_{\text {inst }}}{\Lambda}}\left(1+\lambda \mu_{2}+O\left(\lambda^{2}\right)\right), \\
\uparrow \\
\text { saddle-point expansion }
\end{gathered}
$$

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$:Analytic continuation to $\lambda<0 \rightarrow$

Analogously, $\operatorname{Disc}(E(\lambda))=\frac{Z^{1-i n s t}}{Z^{0-\text { inst }}}$
$=\mathrm{i} \mu_{1} \lambda^{-b-1} \mathrm{e}^{\frac{-\mathcal{F}_{\text {inst }}}{\Lambda}}\left(1+\lambda \mu_{2}+O\left(\lambda^{2}\right)\right)$,
$\mathcal{A}_{\text {inst }}=2 \int_{0}^{x_{0}} \sqrt{2 V(x)} d x=-\frac{1}{3} \rightarrow$ action of tunneling-instanton

$$
E_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{-\infty}^{0} d \lambda \frac{\operatorname{Disc}(E(\lambda))}{\lambda^{k+1}}
$$

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling \leftrightarrow instanton effect at $\lambda<0$
$\operatorname{Disc}(E(\lambda))=$?
Consider $I(\lambda)=\int_{-\infty}^{\infty} \mathrm{e}^{-\left(x^{2}+\lambda x^{4}\right)} d x$: Analytic continuation to $\lambda<0 \rightarrow$

Analogously, $\operatorname{Disc}(E(\lambda))=\frac{Z^{1-\text { inst }}}{Z^{0 \text {-inst }}}$
$=\mathrm{i} \mu_{1} \lambda^{-b-1} \mathrm{e}^{\frac{-\mathcal{F}_{\text {inst }}}{\Lambda}}\left(1+\lambda \mu_{2}+O\left(\lambda^{2}\right)\right)$,

$$
E_{k} \sim \frac{\mu_{1}}{2 \pi} \mathcal{P}_{\text {inst }}^{-k-b} \Gamma(k+b)\left(1+\frac{\mathcal{F}_{\text {inst }}}{(b+k-1)} \mu_{2}+O\left(\frac{1}{k^{2}}\right)\right) \rightarrow
$$

anharmonic oscillator: $E_{k} \sim(-1)^{k+1} \frac{\sqrt{6}}{\pi^{\frac{3}{2}}} 3^{k} \Gamma\left(k+\frac{1}{2}\right) \quad$ [Bender Wu]

Nonperturbative effects in Matrix

Models and Topological Strings

Matrix models in $1 / N$ expansion

Nonperturbative effects in Matrix Models and Topological Strings

Matrix models in $1 / N$ expansion

- Partition function

$$
Z=\frac{1}{\operatorname{vol}(U(N))} \int d M \mathrm{e}^{-\frac{1}{g_{s}} \operatorname{Tr} V(M)}=\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi} \mathrm{e}^{N^{2} V_{\text {eff }}\left(z_{i}\right)}
$$

Matrix models in $1 / N$ expansion

- Partition function

$$
Z=\frac{1}{\operatorname{vol}(U(N))} \int d M \mathrm{e}^{-\frac{1}{g_{s}} \operatorname{Tr} V(M)}=\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi} \mathrm{e}^{N^{2} V_{e f f}\left(z_{i}\right)}
$$

- effective potential $V_{\text {eff }}\left(z_{i}\right)=V\left(z_{i}\right)-2 \frac{t}{N} \sum_{i \neq j} \log \left|z_{i}-z_{j}\right| \rightarrow$ Coulomb repulsion \rightarrow eigenvalues spread out over interval C
- The object we are interested in is the free energy;

$$
F(t)=\sum_{g \geq 0} F_{g}(t) g_{s}^{2 g-2}
$$

where $t=g_{s} N$ is the 't Hooft parameter

- t fixed: expansion in $g_{s} \leftrightarrow$ expansion in $\frac{1}{N}$

Matrix models in $1 / N$ expansion

- Partition function

$$
Z=\frac{1}{\operatorname{vol}(U(N))} \int d M \mathrm{e}^{-\frac{1}{g_{s}} \operatorname{Tr} V(M)}=\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi} \mathrm{e}^{N^{2} V_{\text {eff }}\left(z_{i}\right)}
$$

- effective potential $V_{\text {eff }}\left(z_{i}\right)=V\left(z_{i}\right)-2 \frac{t}{N} \sum_{i \neq j} \log \left|z_{i}-z_{j}\right| \rightarrow$

Coulomb repulsion \rightarrow eigenvalues spread out over interval C

- The object we are interested in is the free energy;

$$
F(t)=\sum_{g \geq 0} F_{g}(t) g_{s}^{2 g-2}
$$

where $t=g_{s} N$ is the 't Hooft parameter

- t fixed: expansion in $g_{s} \leftrightarrow$ expansion in $\frac{1}{N}$

Matrix models in $1 / \mathrm{N}$ expansion

- Partition function

$$
Z=\frac{1}{\operatorname{vol}(U(N))} \int d M \mathrm{e}^{-\frac{1}{g_{s}} \operatorname{Tr} V(M)}=\frac{1}{N!} \int \prod_{i=1}^{N} \frac{d z_{i}}{2 \pi} \mathrm{e}^{N^{2} V_{e f f}\left(z_{i}\right)}
$$

- effective potential $V_{\text {eff }}\left(z_{i}\right)=V\left(z_{i}\right)-2 \frac{t}{N} \sum_{i \neq j} \log \left|z_{i}-z_{j}\right| \rightarrow$

Coulomb repulsion \rightarrow eigenvalues spread out over interval C

- The object we are interested in is the free energy;

$$
F(t)=\sum_{g \geq 0} F_{g}(t) g_{s}^{2 g-2}
$$

where $t=g_{s} N$ is the 't Hooft parameter

- t fixed: expansion in $g_{s} \leftrightarrow$ expansion in $\frac{1}{N}$

Here: Consider 1 -cut case only

The planar solution

- When $N \rightarrow \infty$, the distribution of eigenvalues becomes continuous and one can write

$$
V_{e f f}(z)=V(z)-\frac{1}{2 \pi} \int(y(z+\mathrm{i} 0)-y(z-\mathrm{i} 0)) \log \left|z-z^{\prime}\right| d z
$$

where $y(z)$ is the spectral curve of the matrix model
[Brézin Itzykson Parisi Zuber]

The planar solution

- When $N \rightarrow \infty$, the distribution of eigenvalues becomes continuous and one can write

$$
V_{e f f}(z)=V(z)-\frac{1}{2 \pi} \int(y(z+\mathrm{i} 0)-y(z-\mathrm{i} 0)) \log \left|z-z^{\prime}\right| d z
$$

where $y(z)$ is the spectral curve of the matrix model
[Brézin Itzykson Parisi Zuber]

- The effective potential is constant along the cut and has a saddle point at x_{0} :

- Instanton configuration: an eigenvalue from the endpoint of the cut moves to the saddle of the effective potential barrier

Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss
Introduction and Motivation

Instantons \& Large Order: The
Anharmonic
Oscillator
Matrix Models in $\frac{1}{N}$
Expansion Expansion
Review
Instanton analysis

Examples

The instanton action is

$$
\mathcal{A}_{\text {inst }}=N \int_{a}^{x_{0}} y(z) d z
$$

[David; Shenker]

- The instanton action is

$$
\mathcal{A}_{\text {inst }}=N \int_{a}^{x_{0}} y(z) d z
$$

[David; Shenker]

Geometrically: $\mathcal{A}_{\text {inst }}$ is a contour integral from endpoint of the cut to singularity of spectral curve

[Seiberg Shih]

Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

Introduction and
Motivation
Instantons \& Large Order: The
Anharmonic Oscillator

Matrix Models in $\frac{1}{N}$ Expansion

Review
Instanton analysis

Instanton analysis

Examoles

Nonperturbative

Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$
F_{g}=\frac{1}{2 \pi} \int_{0}^{\infty} d s \frac{\operatorname{Disc}(F(\sqrt{s}))}{s^{g+1}}=\mu_{1} \frac{\mathcal{F}_{i n s t}^{b-2 g}}{\pi} \Gamma(2 g+b)\left(1+\frac{\mathcal{A}_{\text {inst }}}{2 g+b-1} \mu_{2}+O\left(\frac{1}{g^{2}}\right)\right)
$$

Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$
\begin{array}{cc}
F_{g}=\frac{1}{2 \pi} \int_{0}^{\infty} d s \frac{\operatorname{Disc}(F(\sqrt{s}))}{s^{g+1}}=\mu_{1} \frac{\mathcal{F}_{\text {inst }}^{-b-2 g}}{\pi} \Gamma(2 g+b)\left(1+\frac{\mathcal{A}_{\text {inst }}}{2 g+b-1} \mu_{2}+O\left(\frac{1}{g^{2}}\right)\right) \\
\uparrow \\
\text { 1-loop, leading } & \text { 2-loop, subleading }
\end{array}
$$

Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$
F_{g}=\frac{1}{2 \pi} \int_{0}^{\infty} d s \frac{\operatorname{Disc}(F(\sqrt{s}))}{s^{g+1}}=\mu_{1} \frac{\mathcal{F}_{\text {inst }}^{-b-2 g}}{\pi} \Gamma(2 g+b)\left(1+\frac{\mathcal{A}_{\text {inst }}}{2 g+b-1} \mu_{2}+O\left(\frac{1}{g^{2}}\right)\right)
$$

- The large-order behavior is controlled by $\operatorname{Disc}\left(F\left(g_{s}\right)\right)$
- The discontinuity of $F\left(g_{s}\right)$ is again given by

$$
\operatorname{Disc}\left(F\left(g_{s}\right)\right)=\frac{Z_{N}^{(1-i n s t)}\left(g_{s}\right)}{Z_{N}^{(0-i n s t)}\left(g_{s}\right)}
$$

Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$
F_{g}=\frac{1}{2 \pi} \int_{0}^{\infty} d s \frac{\operatorname{Disc}(F(\sqrt{s}))}{s^{g+1}}=\mu_{1} \frac{\mathcal{H}_{\text {inst }}^{-b-2 g}}{\pi} \Gamma(2 g+b)\left(1+\frac{\mathcal{F}_{\text {linst }}}{2 g+b-1} \mu_{2}+O\left(\frac{1}{g^{2}}\right)\right)
$$

- The large-order behavior is controlled by $\operatorname{Disc}\left(F\left(g_{s}\right)\right)$
- The discontinuity of $F\left(g_{s}\right)$ is again given by

$$
\operatorname{Disc}\left(F\left(g_{s}\right)\right)=\frac{Z_{N}^{(1-i n s t)}\left(g_{s}\right)}{Z_{N}^{(0-i n s t)}\left(g_{s}\right)}
$$

- $Z_{N}^{(1-i n s t)}$ corresponds to one eigenvalue passing through the nontrivial saddle x_{0} of the spectral curve \rightarrow
$Z_{N}^{(1-i n s t)}$ factorizes as

$$
Z_{N}^{(1)}=Z_{N-1}^{(0)} \int_{C_{x_{0}}} d z\left\langle\operatorname{det}(z-M)^{2}\right\rangle_{N-1}^{(0)} \exp \left(-\frac{V(z)}{g_{s}}\right)
$$

- $\left\langle\operatorname{det}(z-M)^{2}\right\rangle$ can be expanded in terms of connected matrix correlation functions $W_{g, h}$ defined as

$$
\left\langle\operatorname{Tr} \frac{1}{p_{1}-M} \cdots \operatorname{Tr} \frac{1}{p_{h}-M}\right\rangle=\sum_{g=0}^{\infty} g_{s}^{2 g-2+h} W_{g, h}\left(p_{1}, \cdots p_{h}\right)
$$

- $W_{g, h}$ determined recursively from spectral curve by matrix model loop equations
[Ambjørn Chekhov Kristjansen Makeenko; Eynard Orantin]
- $\left\langle\operatorname{det}(z-M)^{2}\right\rangle$ can be expanded in terms of connected matrix correlation functions $W_{g, h}$ defined as

$$
\left\langle\operatorname{Tr} \frac{1}{p_{1}-M} \cdots \operatorname{Tr} \frac{1}{p_{h}-M}\right\rangle=\sum_{g=0}^{\infty} g_{s}^{2 g-2+h} W_{g, h}\left(p_{1}, \cdots p_{h}\right)
$$

- $W_{g, h}$ determined recursively from spectral curve by matrix model loop equations

[Ambjørn Chekhov Kristjansen Makeenko; Eynard Orantin]

- The remaining ingredient is

$$
\frac{Z_{N-1}^{(0)}}{Z_{N}^{(0)}}=\exp \left(\sum_{g=0}^{\infty} g_{s}^{2 g-2}\left(F_{g}\left(g_{s}(N-1)\right)-F_{g}\left(g_{s} N\right)\right)\right)
$$

and we find in saddle-point analysis

$$
\operatorname{Disc}(F)=\mu_{1} g_{s}^{1 / 2} \exp \left(-\frac{\mathcal{A}_{\text {linst }}}{g_{s}}\right)\left(1+g_{s} \mu_{2}+\cdots\right)
$$

Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss
ntroduction and Motivation

Instantons \& Large Order: The Anharmonic Oscillator Matrix Models in $\frac{1}{N}$ Expansion

Review
Instanton analysis
$\operatorname{Disc}(F)=\mu_{1} g_{s}^{1 / 2} \exp \left(-\frac{\mathcal{A}_{\text {inst }}}{g_{s}}\right)\left(1+g_{s} \mu_{2}+\cdots\right)$
Explicitly:

$$
\mu_{1}=\frac{(a-b)}{4} \sqrt{\frac{1}{2 \pi y^{\prime}\left(x_{0}\right)\left(\left(x_{0}-a\right)\left(x_{0}-b\right)\right)^{\frac{3}{2}}}} \mathrm{e}^{-\frac{1}{g_{s}} \mathcal{F}_{\text {inst }}}
$$

$\operatorname{Disc}(F)=\mu_{1} g_{s}^{1 / 2} \exp \left(-\frac{\mathcal{A}_{\text {inst }}}{g_{s}}\right)\left(1+g_{s} \mu_{2}+\cdots\right)$
Explicitly:

$$
\mu_{1}=\frac{(a-b)}{4} \sqrt{\frac{1}{2 \pi y^{\prime}\left(x_{0}\right)\left(\left(x_{0}-a\right)\left(x_{0}-b\right)\right)^{\frac{3}{2}}}} \mathrm{e}^{-\frac{1}{g_{s}} \mathcal{F}^{\text {finst }}}
$$

- $\operatorname{Disc}(F)$ depends only on the spectral curve of the matrix model, not on the potential
\downarrow B-model formalism
unambiguously defined for topological strings on mirrors of toric geometries
- a, b, x_{0} depend on 't Hooft parameter t
$\operatorname{Disc}(F)=\mu_{1} g_{s}^{1 / 2} \exp \left(-\frac{\mathcal{A}_{\text {inst }}}{g_{s}}\right)\left(1+g_{s} \mu_{2}+\cdots\right)$ Explicitly:

$$
\mu_{1}=\frac{(a-b)}{4} \sqrt{\frac{1}{2 \pi y^{\prime}\left(x_{0}\right)\left(\left(x_{0}-a\right)\left(x_{0}-b\right)\right)^{\frac{3}{2}}}} \mathrm{e}^{-\frac{1}{g_{s}} \mathcal{F l}_{\text {inst }}}
$$

- $\operatorname{Disc}(F)$ depends only on the spectral curve of the matrix model, not on the potential
\downarrow B-model formalism
unambiguously defined for topological strings on mirrors of toric geometries
- a, b, x_{0} depend on 't Hooft parameter t
- $\operatorname{Disc}(F) \sim \mathrm{e}^{-N \mathcal{A} \text { insst }^{\prime} / t} \rightarrow$ non-perturbative
- μ_{1} has been computed before, but the result is not valid off criticality

> [Hanada Hayakawa Ishibashi Kawai Kuroki Matsuo Tada]

- We have computed $\operatorname{Disc}(F)$ to two loops $\rightarrow \mu_{1}, \mu_{2}$

Nonperturbative effects in Matrix Models and Topological Strings

String interpretation of the instanton effects

String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model

disk amplitude for D-instanton in noncritical string theory \rightarrow ZZbrane
[Alexandrov Kazakov Kutasov]
difference between disk amplitudes of FZZT branes

$$
W_{F Z Z T}(a)-W_{F Z Z T}\left(x_{0}\right)
$$

String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model

$\leftrightarrow \quad$ disk amplitude for D-instanton in noncritical string theory \rightarrow ZZbrane
[Alexandrov Kazakov Kutasov]
difference between disk amplitudes of FZZT branes

$$
W_{F Z Z T}(a)-W_{F Z Z T}\left(x_{0}\right)
$$

Is there a similar story for topological string theory?
$\mathcal{A}_{\text {inst }}=\int_{a}^{x_{0}} y(z)$
$=W\left(x_{0}\right)-W(a)$
two branes located at a, x_{0} with difference between superpotentials $W\left(x_{0}\right)-W(a)$
\rightarrow define domain wall in underlying type II theory, with tension given by $\mathcal{A}_{\text {inst }}$

String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model
$\leftrightarrow \quad$ disk amplitude for D-instanton in noncritical string theory \rightarrow ZZbrane
[Alexandrov Kazakov Kutasov]
difference between disk amplitudes of FZZT branes

$$
W_{F Z Z T}(a)-W_{F Z Z T}\left(x_{0}\right)
$$

Is there a similar story for topological string theory?
$\mathcal{A}_{\text {inst }}=\int_{a}^{x_{0}} y(z)$
$=W\left(x_{0}\right)-W(a)$
two branes located at a, x_{0} with difference between superpotentials $W\left(x_{0}\right)-W(a)$
\rightarrow define domain wall in under-
lying type II theory, with tension
given by $\mathcal{A}_{\text {inst }}$
지 Unlike the B-branes, this domain wall can couple to the complex structure!

Nonperturbative

Examples

We now test our prediction for the asymptotics in the following examples:

Nonperturbative effects in Matrix

Examples

We now test our prediction for the asymptotics in the following examples:

Numerical analysis:Richardson transformation

F_{g} are only available to limited genus, how to extract the asymptotics as $g \rightarrow \infty$? \rightarrow Richardson transformation.

Numerical analysis:Richardson transformation

F_{g} are only available to limited genus, how to extract the asymptotics as $g \rightarrow \infty$? \rightarrow Richardson transformation.
Given a sequence $\left\{S_{g}\right\}$,

$$
s_{g}=s_{0}+\frac{s_{1}}{g}+\frac{s_{2}}{g^{2}}+\cdots
$$

the subleading corrections up to order $\frac{1}{g^{n}}$ can be removed defining

$$
A(g, n)=\sum_{k=0}^{N} \frac{S_{g+k}(g+k)^{n}(-1)^{g+n}}{k!(n-k)!}
$$

$$
A(g, n)=\sum_{k=0}^{N} \frac{S_{g+k}(g+k)^{n}(-1)^{g+n}}{k!(n-k)!}
$$

If S_{g} truncates at $1 / g^{n}$, this gives exactly s_{0} : for $n=1$;

$$
S_{g}=s_{0}+\frac{s_{1}}{g} \rightarrow A(g, 1)=-\left(s_{0}+\frac{s_{1}}{g}\right)+\left(s_{0}+\frac{s_{1}}{g+1}\right)(g+1)=s_{0}
$$

- $A(g, n)=s_{0}+O\left(\frac{1}{g^{n+1}}\right) \rightarrow$ accelerates convergence

Nonperturbative effects in Matrix Models and Topological Strings

The quartic matrix model
Consider the matrix model with quartic potential

$$
V(M)=\frac{1}{2} M^{2}+\lambda M^{4}
$$

The quartic matrix model

Consider the matrix model with quartic potential

$$
V(M)=\frac{1}{2} M^{2}+\lambda M^{4}
$$

- spectral curve:

$$
y(z)=\left(1+8 \lambda a^{2}+4 \lambda z^{2}\right) \sqrt{z^{2}-4 a^{2}}
$$

$\pm 2 a=$ endpoints of the cut,

$$
a(\lambda)=\frac{1}{24 \lambda}(-1+\sqrt{1+48 \lambda})
$$

[Brézin Itzykson Parisi Zuber]

The quartic matrix model

Consider the matrix model with quartic potential

$$
V(M)=\frac{1}{2} M^{2}+\lambda M^{4}
$$

- spectral curve:

$$
y(z)=\left(1+8 \lambda a^{2}+4 \lambda z^{2}\right) \sqrt{z^{2}-4 a^{2}},
$$

$\pm 2 a=$ endpoints of the cut,

$$
a(\lambda)=\frac{1}{24 \lambda}(-1+\sqrt{1+48 \lambda})
$$

[Brézin Itzykson Parisi Zuber]

- Critical point at $\lambda=-\frac{1}{48}$
- The free energy in $\frac{1}{N}$-expansion can be computed by standard methods

We have computed $F_{g}(\lambda)$ up to genus 10:

Nonperturbative effects in Matrix Models and Topological Strings

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda=-0.1$

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda=-0.1$

The leading asymptotics for $F_{g}^{\text {quart }}(\lambda)$, divided by the one-loop matrix prediction

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda=-0.1$

The leading asymptotics for $F_{g}^{\text {quart }}(\lambda)$, divided by the one-loop matrix prediction

The subleading asymptotics, divided by the two-loop prediction

2d gravity

- Taking $N \rightarrow \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \rightarrow \lambda_{c}$ where higher-genus contributions are enhanced as $F_{g} \propto\left(\lambda-\lambda_{c}\right)^{(2-\gamma)(1-g)}$: double-scaling limit $\rightarrow 2$ d gravity
[Gross Migdal; Douglas Shenker]
- limit discretized surface \rightarrow continuum

2d gravity

- Taking $N \rightarrow \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \rightarrow \lambda_{c}$ where higher-genus contributions are enhanced as $F_{g} \propto\left(\lambda-\lambda_{c}\right)^{(2-\gamma)(1-g)}$: double-scaling limit \rightarrow 2d gravity
[Gross Migdal; Douglas Shenker]
- limit discretized surface \rightarrow continuum
- The perturbative amplitudes are governed by the Painlevé I equation fulfilled by the specific heat $u(z)=F^{\prime \prime}(z)$,

$$
u^{2}-\frac{u^{\prime \prime}}{6}=z
$$

- can compute F_{g} to arbitrary genus

2d gravity

- Taking $N \rightarrow \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \rightarrow \lambda_{c}$ where higher-genus contributions are enhanced as $F_{g} \propto\left(\lambda-\lambda_{c}\right)^{(2-\gamma)(1-g)}$: double-scaling limit \rightarrow 2d gravity [Gross Migdal; Douglas Shenker]
- limit discretized surface \rightarrow continuum
- The perturbative amplitudes are governed by the Painlevé I equation fulfilled by the specific heat $u(z)=F^{\prime \prime}(z)$,

$$
u^{2}-\frac{u^{\prime \prime}}{6}=z
$$

- can compute F_{g} to arbitrary genus
- The instanton action and 1-loop factor are

$$
\mathcal{A}_{\text {inst }}=\frac{8 \sqrt{3}}{5}, \mu_{1}=\frac{1}{83^{3 / 4} \sqrt{\pi}}
$$

Nonperturbative effects in Matrix Models and Topological Strings

The leading asymptotics, divided

 by the one-loop predictionThe subleading asymptotics, divided by the two-loop prediction

The local curve

Consider A-model topological strings on the local curve

$$
X_{p}=O(p) \oplus O(2-p) \rightarrow \mathbb{P}^{1}, p \in \mathbb{Z}
$$

- This is a toric Calabi-Yau threefold with one Kähler modulus

The local curve

Consider A-model topological strings on the local curve

$$
X_{p}=O(p) \oplus O(2-p) \rightarrow \mathbb{P}^{1}, p \in \mathbb{Z}
$$

- This is a toric Calabi-Yau threefold with one Kähler modulus
- The potential is unstable for all $p>2$
- The free energy can be computed using the topological vertex or local Gromov-Witten theory
[Aganagic Klemm Mariño Vafa; Bryan Pandharipande]
- double-scaling limit $\rightarrow 2 d$ gravity

The spectral curve corresponding to the matrix description of the mirror B -model is

$$
y(z)=\frac{2}{z}\left(\left(\tanh ^{-1}\left(\frac{\sqrt{(z-a)(z-b)}}{z-\frac{a+b}{2}}\right)\right)-p \tanh ^{-1}\left(\frac{\sqrt{(z-a)(z-b)}}{z+\sqrt{a b}}\right)\right),
$$

- The endpoints of the cut a, b depend on the exponential of the Kähler parameter Q via the mirror map:

$$
a=\frac{(1+\sqrt{\zeta})^{2}}{(1-\zeta)^{p}} ; b=\frac{(1-\sqrt{\zeta})^{2}}{(1-\zeta)^{p}} Q=(1-\zeta)^{p(p-2)} \zeta
$$

The spectral curve corresponding to the matrix description of the mirror B -model is

$$
y(z)=\frac{2}{z}\left(\left(\tanh ^{-1}\left(\frac{\sqrt{(z-a)(z-b)}}{z-\frac{a+b}{2}}\right)\right)-p \tanh ^{-1}\left(\frac{\sqrt{(z-a)(z-b)}}{z+\sqrt{a b}}\right)\right),
$$

- The endpoints of the cut a, b depend on the exponential of the Kähler parameter Q via the mirror map:

$$
a=\frac{(1+\sqrt{\zeta})^{2}}{(1-\zeta)^{p}} ; b=\frac{(1-\sqrt{\zeta})^{2}}{(1-\zeta)^{p}} Q=(1-\zeta)^{p(p-2)} \zeta
$$

- The B-model matrix formalism provides a nonperturbative completion that is testable with the large-order behaviour of the perturbative amplitudes $F_{g}(Q)$
- Using the topological vertex, we computed F_{g} up to genus 9 (genus 7) for $\mathrm{p}=3(\mathrm{p}=4)$

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\zeta=.15, p=3$

The leading asymptotics for $F_{g}^{p=3}$, divided by the one-loop prediction

[^0]
Hurwitz Theory

- Hurwitz theory counts branched covers of Riemann surfaces
- obtained as a special limit of the local curve X_{p} :

$$
p \rightarrow \infty, g_{s} \rightarrow 0, Q \rightarrow 0 ; g^{H}=N p g_{s}, Q_{H}=\frac{(-1)^{p}}{\left(g_{s} N\right)^{2}} Q
$$

$$
F^{H}=\sum_{g \geq 0} N^{2-2 g} \sum_{d \geq 0} Q_{H}^{d} H_{g, d}^{P^{1}}\left(1^{d}\right)^{\bullet} \frac{g_{H}^{2 g-2+2 d}}{(2 g-2+2 d)!}
$$

Hurwitz Theory

- Hurwitz theory counts branched covers of Riemann surfaces
- obtained as a special limit of the local curve X_{p} :

$$
\begin{gathered}
p \rightarrow \infty, g_{s} \rightarrow 0, Q \rightarrow 0 ; g^{H}=N p g_{s}, Q_{H}=\frac{(-1)^{p}}{\left(g_{s} N\right)^{2}} Q \\
F^{H}=\sum_{g \geq 0} N^{2-2 g} \sum_{d \geq 0} Q_{H}^{d} H_{g, d}^{\mathbb{P}^{1}}\left(1^{d}\right)^{\bullet} \frac{g_{H}^{2 g-2+2 d}}{(2 g-2+2 d)!}
\end{gathered}
$$

- The mirror map and endpoints of the cut are given by

$$
\chi \mathrm{e}^{-\chi}=Q^{H}, a_{H}(\chi)=(1+\sqrt{\chi})^{2}, b_{H}(\chi)=(1-\sqrt{\chi})^{2}
$$

- In the double-scaling limit (at $\chi=1$), one recovers 2d gravity
- We have computed F_{g} up to genus 16, finding again spectacular agreement:

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\chi=0.5$

The leading asymptotics for $F_{g}^{H}(\chi)$, divided by the one-loop matrix prediction

The subleading asymptotics for $F_{g}^{H}(\chi)$, divided by the two-loop prediction

Nonperturbative effects in Matrix

```
ntroduction and
```

Motivation
Instantons \& Large
Order: The
Anharmonic
Oscillator
Matrix Models in $\frac{1}{N}$
Expansion
Examples
Conclusion and
Outlook

Conclusion and Outlook

Nonperturbative

Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model

Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries

Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision

Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision
- Challenges ahead
- multi-cut case
- Extend B-model formalism?

[^0]: The subleading asymptotics, divided by the two-loop prediction

