Calabi-Yau Metrics and the Spectrum of the Laplacian

Volker Braun

University of Pennsylvania, Math/Physics Research Group

November 7, 2007

Overview

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study

Metric

- ❖ Parametrizing Metrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Calabi-Yau Metrics

Kähler Metrics on the Quintic

CY Metrics

❖ Kähler Metrics on the Quintic

- ❖ Fubini-Study Metric
- ParametrizingMetrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Let's consider our favourite CY threefold:

$$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$

Kähler Metrics on the Quintic

CY Metrics

❖ Kähler Metrics on the Quintic

- ❖ Fubini-Study Metric
- ParametrizingMetrics
- Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Let's consider our favourite CY threefold:

$$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$

The metric is completely determined by the Kähler potential $K(z, \bar{z})$:

$$g_{i\bar{j}}(z,\bar{z}) = \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z})$$
$$\omega = g_{i\bar{j}}(z,\bar{z}) dz^i d\bar{z}^{\bar{j}} = \partial \bar{\partial} K(z,\bar{z}).$$

Kähler Metrics on the Quintic

CY Metrics

❖ Kähler Metrics on the Quintic

- ❖ Fubini-Study Metric
- ParametrizingMetrics
- Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Let's consider our favourite CY threefold:

$$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$

The metric is completely determined by the Kähler potential $K(z, \bar{z})$:

$$g_{i\bar{j}}(z,\bar{z}) = \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z})$$
$$\omega = g_{i\bar{j}}(z,\bar{z}) dz^i d\bar{z}^{\bar{j}} = \partial \bar{\partial} K(z,\bar{z}).$$

Locally, K is a real function. ω is a (1,1)-form.

Fubini-Study Metric

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

- ❖ Parametrizing Metrics
- **❖** Technicalities
- **❖** More Technical
- Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

SU(5) acts on the 5 homogeneous coordinates.

Fubini-Study Metric

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

- ParametrizingMetrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

SU(5) acts on the 5 homogeneous coordinates. Unique SU(5) invariant Kähler metric comes from

$$K_{\rm FS} = \ln \sum_{i=0}^{4} z_i \bar{z}_{\bar{i}}$$

Fubini-Study Metric

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

- ParametrizingMetrics
- Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

SU(5) acts on the 5 homogeneous coordinates. Unique SU(5) invariant Kähler metric comes from

$$K_{\rm FS} = \ln \sum_{i=0}^{4} z_i \bar{z}_{\bar{i}}$$

Generalize to

$$K_{\rm FS} = \ln \sum_{\alpha, \bar{\beta}=0}^4 h^{\alpha \bar{\beta}} z_{\alpha} \bar{z}_{\bar{\beta}}$$

with h a hermitian 5×5 matrix.

Parametrizing Metrics

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ParametrizingMetrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

 K_{FS} lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$.

Parametrizing Metrics

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ❖ Parametrizing Metrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

 $K_{\rm FS}$ lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$. The resulting Kähler metric on the quintic is far from Ricci flat, though.

Parametrizing Metrics

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ParametrizingMetrics
- Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

 $K_{\rm FS}$ lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$. The resulting Kähler metric on the quintic is far from Ricci flat, though. Let's try [Donaldson]

$$K(z,\bar{z}) = \ln \sum_{\substack{\sum i_{\ell}=k \\ \sum \bar{j}_{\ell}=k}} h^{(i_{1},\ldots,i_{k}),(\bar{j}_{1},\ldots,\bar{j}_{k})} \underbrace{z_{1}^{i_{1}}\cdots z_{k}^{i_{k}}}_{\text{degree }k} \underbrace{\bar{z}_{1}^{\bar{j}_{1}}\cdots z_{k}^{\bar{j}_{k}}}_{\text{degree }k}$$

for some hermitian $N \times N$ matrix h $N = {5+k-1 \choose k} = \{ \# \deg k \text{ monomials} \}$

Technicalities

CY Metrics

❖ Kähler Metrics on the Quintic

- ❖ Fubini-Study Metric
- ParametrizingMetrics

❖ Technicalities

- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees k > 5.

Technicalities

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

ParametrizingMetrics

❖ Technicalities

- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees k > 5.

Let s_{α} be a basis for

$$\mathbb{C}[z_0, \dots, z_4] / \langle z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \rangle \Big|_{\text{degree } k}$$

Technicalities

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

Parametrizing Metrics

❖ Technicalities

- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees $k \geq 5$.

Let s_{α} be a basis for

$$\mathbb{C}[z_0, \dots, z_4] / \langle z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \rangle \Big|_{\text{degree } k}$$

and try this Ansatz for the metric on the quintic:

$$K(z,\bar{z}) = \ln \sum_{\alpha,\bar{\beta}} h^{\alpha\bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$

More Technical

CY Metrics

❖ Kähler Metrics on the Ouintic

- ❖ Fubini-Study Metric
- ParametrizingMetrics
- **❖** Technicalities

❖ More Technical

- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

 s_{α} : Sections of $\mathcal{O}_{Q}(k)$

$$0 {\longrightarrow} H^0\left(\,\mathbb{P}^4, \mathcal{O}(k-5)\right) {\longrightarrow} H^0\left(\,\mathbb{P}^4, \mathcal{O}(k)\right) {\longrightarrow} H^0\left(Q, \mathcal{O}_Q(k)\right) {\longrightarrow} 0$$

 $h^{\alpha \bar{\beta}}$: Metric on the line bundle $\mathcal{O}_Q(k)$

$$(\sigma, \tau) \mapsto \frac{\sigma(z)\bar{\tau}(\bar{z})}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})}$$

Even More Technical

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ParametrizingMetrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- **❖** T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Metric on the line bundle

$$(\sigma,\tau) \in C^{\infty}(Q,\mathbb{C})$$

gives a value at each point.

Even More Technical

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

ParametrizingMetrics

Technicalities

❖ More Technical

❖ Even More Technical

❖ Balanced Metrics

❖ T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Metric on the line bundle

$$(\sigma,\tau)\in C^{\infty}(Q,\mathbb{C})$$

gives a value at each point.

This defines a metric on the space of sections $H^0(Q, \mathcal{O}_Q(k))$:

$$\langle \sigma, \tau \rangle = \int_{Q} (\sigma, \tau)(z, \bar{z}) \, dVol$$

(does not depend on points of Q)

Balanced Metrics

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

ParametrizingMetrics

❖ Technicalities

❖ More Technical

❖ Even More Technical

❖ Balanced Metrics

❖ T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

h is "balanced" if the matrices representing the metrics coincide, that is:

$$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N} = h^{-1}$$

Balanced Metrics

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ParametrizingMetrics
- Technicalities
- **❖** More Technical
- ❖ Even More Technical

❖ Balanced Metrics

❖ T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

h is "balanced" if the matrices representing the metrics coincide, that is:

$$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N} = h^{-1}$$

Theorem 1. Let h be the balanced metric for each k. Then the sequence of metrics

$$\omega_k = \partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$

converges to the Calabi-Yau metric as $k \to \infty$.

Balanced Metrics

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

ParametrizingMetrics

Technicalities

❖ More Technical

❖ Even More Technical

❖ Balanced Metrics

❖ T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

h is "balanced" if the matrices representing the metrics coincide, that is:

$$\underbrace{\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N}} = h^{-1}$$

Depends nonlinearly on h

Theorem 1. Let h be the balanced metric for each k. Then the sequence of metrics

$$\omega_k = \partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$

converges to the Calabi-Yau metric as $k \to \infty$.

T-Operator

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ❖ Parametrizing Metrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics
- T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

How to solve

$$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$

T-Operator

CY Metrics

- ❖ Kähler Metrics on the Quintic
- ❖ Fubini-Study Metric
- ParametrizingMetrics
- **❖** Technicalities
- **❖** More Technical
- ❖ Even More Technical
- **❖** Balanced Metrics

T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

How to solve

$$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$

Donaldson's T-operator:

$$T(h)_{\alpha\bar{\beta}} = \langle s_{\alpha}, s_{\beta} \rangle$$

$$= \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})} dVol$$

T-Operator

CY Metrics

❖ Kähler Metrics on the Quintic

❖ Fubini-Study Metric

ParametrizingMetrics

Technicalities

❖ More Technical

❖ Even More Technical

Balanced Metrics

T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

How to solve

$$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$

Donaldson's T-operator:

$$T(h)_{\alpha\bar{\beta}} = \langle s_{\alpha}, s_{\beta} \rangle$$

$$= \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})} dVol$$

One can show that iterating $T(h_n)^{-1} = h_{n+1}$ converges! Fixed point is balanced metric.

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Implementation

CY Metrics

Implementation

❖ Algorithm

- ♦ What is the Volume Form?
- How to Integrate
- ❖ Zeros of Random Polynomials
- **❖** Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

• Pick a basis of sections s_{α}

CY Metrics

Implementation

❖ Algorithm

- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

- Pick a basis of sections s_{α}
- Iterate $h = T(h)^{-1}$ where

$$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$

CY Metrics

Implementation

❖ Algorithm

- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

- Pick a basis of sections s_{α}
- Iterate $h = T(h)^{-1}$ where

$$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$

The approximate Calabi-Yau metric is

$$g_{i\bar{j}} = \partial_i \bar{\partial}_{\bar{j}} \ln \sum s_\alpha h^{\alpha\bar{\beta}} \bar{s}_{\bar{\beta}}$$

CY Metrics

Implementation

❖ Algorithm

- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

- Pick a basis of sections s_{α}
- Iterate $h = T(h)^{-1}$ where

$$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$

The approximate Calabi-Yau metric is

$$g_{i\bar{j}} = \partial_i \bar{\partial}_{\bar{j}} \ln \sum s_\alpha h^{\alpha\bar{\beta}} \bar{s}_{\bar{\beta}}$$

Runs easily on "our" 10 dual-core AMD Opteron cluster (Evelyn Thomson, ATLAS).

What is the Volume Form?

CY Metrics

Implementation

- **❖** Algorithm
- ❖ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

The T-operator contains dVol:

$$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$

We could use the volume form computed from $h^{\alpha\bar{\beta}}$.

What is the Volume Form?

CY Metrics

Implementation

- **❖** Algorithm
- ❖ What is the Volume Form?
- How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

The T-operator contains dVol:

$$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \,\mathrm{dVol}$$

We could use the volume form computed from $h^{\alpha\bar{\beta}}$. But we actually know the *exact* Calabi-Yau volume form

$$dVol = \Omega \wedge \bar{\Omega}, \qquad \Omega = \oint \frac{d^4 x}{Q(x)}$$

How to Integrate

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?

♦ How to Integrate

- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Defining coordinate patches would painful!

How to Integrate

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?

♦ How to Integrate

- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Defining coordinate patches would painful! [Douglas, Karp, Lukic, Reinbacher]: Use random points $\{p_1, \ldots, p_N\}$ such that

$$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, dVol$$

How to Integrate

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?

♦ How to Integrate

- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- ❖ Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Defining coordinate patches would painful! [Douglas, Karp, Lukic, Reinbacher]: Use random points $\{p_1, \ldots, p_N\}$ such that

$$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, dVol$$

Pick "random" lines

$$\ell \simeq \mathbb{P}^1 \subset \mathbb{P}^4 \quad \Rightarrow \quad \ell \cap Q = \{5 \text{ pt}\}.$$

The "random" distribution of ℓ 's determines the distribution of points!

Zeros of Random Polynomials

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- **❖** Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Its easy to make everything SU(5)-uniformly distributed. Then

$$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, \omega_{FS}^3$$

by symmetry! But we want the Calabi-Yau volume form...

Zeros of Random Polynomials

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- ❖ Testing the Result
- ❖ Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

Its easy to make everything SU(5)-uniformly distributed. Then

$$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_{\mathcal{O}} f(x) \, \omega_{FS}^3$$

by symmetry! But we want the Calabi-Yau volume form... So we have to weight the points by

$$\sum f(p_i) \underbrace{\left(\frac{\Omega \wedge \bar{\Omega}(p_i)}{\omega_{FS}^3(p_i)}\right)}_{\in \mathbb{R}} \frac{1}{N} \xrightarrow{N \to \infty} \int_Q f(x) \, dVol_{CY}$$

Testing the Result

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials
- **❖** Testing the Result
- **❖** Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that

$$\Omega \wedge \bar{\Omega} \sim \omega^3$$

Testing the Result

CY Metrics

Implementation

- **❖** Algorithm
- ♦ What is the Volume Form?
- ♦ How to Integrate
- ❖ Zeros of Random Polynomials

❖ Testing the Result

❖ Resulting Plot

Symmetry

Scalar Laplacian

Conclusions

How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that

$$\Omega \wedge \bar{\Omega} \sim \omega^3$$

So normalize both volume forms and define

$$\sigma_k = \int_Q \left| 1 - \frac{\Omega(z) \wedge \bar{\Omega}(\bar{z})}{\omega^3(z, \bar{z})} \right| dVol$$

On a Calabi-Yau manifold $\sigma_k = O(k^2)$

Resulting Plot

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group
- **❖** Invariants
- **♦** More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

The $\mathbb{Z}_5 \times \mathbb{Z}_5$ Quotient

Symmetric Quintics

CY Metrics

Implementation

Symmetry

❖ Symmetric Quintics

- Symmetry Group
- **❖** Invariants
- ❖ More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action.

Symmetric Quintics

CY Metrics

Implementation

Symmetry

❖ Symmetric Quintics

- Symmetry Group
- ❖ Invariants
- More on Invariants
- Invariant vs.Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action.

It is numerically much easier to work on the four-generation quotient $Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$.

Symmetric Quintics

CY Metrics

Implementation

Symmetry

❖ Symmetric Quintics

- Symmetry Group
- ❖ Invariants
- ❖ More on Invariants
- Invariant vs.Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action.

It is numerically much easier to work on the four-generation quotient $Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$.

To do this, we only have to replace the sections s_{α} of $\mathcal{O}_{Q}(k)$ by invariant sections!

Symmetry Group

CY Metrics

Implementation

Symmetry

SymmetricQuintics

❖ Symmetry Group

- **❖** Invariants
- ❖ More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

$$g_{1}\begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$

$$g_{2}\begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{5}} & 0 & 0 & 0 \\ 0 & 0 & e^{2\frac{2\pi i}{5}} & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{32\pi i}{5}} & 0 \\ 0 & 0 & 0 & e^{4\frac{2\pi i}{5}} \end{pmatrix} \begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$

Note that $g_1g_2g_1^{-1}g_2^{-1}=e^{\frac{2\pi i}{5}}$, so they generate the Heisenberg group

$$0 \to \mathbb{Z}_5 \to G \to \mathbb{Z}_5 \times \mathbb{Z}_5 \to 0$$

Invariants

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group

❖ Invariants

- **♦** More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

The invariant sections are

$$\mathbb{C}[z_0, z_1, z_2, z_3, z_4]^G$$

Invariants

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group

❖ Invariants

- ❖ More on Invariants
- Invariant vs.Equivariant
- Result

Scalar Laplacian

Conclusions

The invariant sections are

$$\mathbb{C}[z_0, z_1, z_2, z_3, z_4]^G = \bigoplus_{i=0}^{100} \eta_i \mathbb{C}[\theta_1, \theta_2, \theta_3, \theta_4, \theta_5]$$

("Hironaka decomposition") where

$$\begin{array}{lll} \theta_1 \stackrel{\text{def}}{=} & z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 \\ \theta_2 \stackrel{\text{def}}{=} & z_0 z_1 z_2 z_3 z_4 \\ \theta_3 \stackrel{\text{def}}{=} & z_0^3 z_1 z_4 + z_0 z_1^3 z_2 + z_0 z_3 z_4^3 + z_1 z_2^3 z_3 + z_2 z_3^3 z_4 \\ \theta_4 \stackrel{\text{def}}{=} & z_0^{10} + z_1^{10} + z_2^{10} + z_3^{10} + z_4^{10} \\ \theta_5 \stackrel{\text{def}}{=} & z_0^8 z_2 z_3 + z_0 z_1 z_3^8 + z_0 z_2^8 z_4 + z_1^8 z_3 z_4 + z_1 z_2 z_4^8 \end{array}$$

More on Invariants

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- Symmetry Group
- ❖ Invariants

❖ More on Invariants

- Invariant vs.Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

... and the "secondary invariants" η_i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30:

$$\eta_1 \stackrel{\text{def}}{=} 1$$

$$\eta_2 \stackrel{\text{def}}{=} z_0^2 z_1 z_2^2 + z_1^2 z_2 z_3^2 + z_2^2 z_3 z_4^2 + z_3^2 z_4 z_0^2 + z_4^2 z_0 z_1^2$$

$$\vdots$$

$$\eta_{100} \stackrel{\text{def}}{=} z_0^{30} + z_1^{30} + z_2^{30} + z_3^{30} + z_4^{30}$$

All invariants are in degrees divisible by 5!

More on Invariants

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- Symmetry Group
- Invariants

❖ More on Invariants

- Invariant vs.Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

... and the "secondary invariants" η_i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30:

$$\eta_1 \stackrel{\text{def}}{=} 1$$

$$\eta_2 \stackrel{\text{def}}{=} z_0^2 z_1 z_2^2 + z_1^2 z_2 z_3^2 + z_2^2 z_3 z_4^2 + z_3^2 z_4 z_0^2 + z_4^2 z_0 z_1^2$$

$$\vdots$$

$$\eta_{100} \stackrel{\text{def}}{=} z_0^{30} + z_1^{30} + z_2^{30} + z_3^{30} + z_4^{30}$$

All invariants are in degrees divisible by 5! No invariant sections in $\mathcal{O}_Q(k)$ unless 5|k?

Invariant vs. Equivariant

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group
- **❖** Invariants
- **♦** More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

 $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k.

Invariant vs. Equivariant

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group
- **❖** Invariants
- ❖ More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

 $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k.

Under the quotient map $q: Q \to Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$,

$$q^* \left(\mathcal{O}_{Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)}(1) \right) = \mathcal{O}_Q(5)$$

Invariant vs. Equivariant

CY Metrics

Implementation

Symmetry

- ❖ Symmetric Quintics
- **❖** Symmetry Group
- ❖ Invariants
- ❖ More on Invariants
- ❖ Invariant vs. Equivariant
- **❖** Result

Scalar Laplacian

Conclusions

 $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k.

Under the quotient map $q: Q \to Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$,

$$q^* \left(\mathcal{O}_{Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)}(1) \right) = \mathcal{O}_Q(5)$$

The first Chern classes of bundles coming from the quotient are divisible by 5, that is,

$$q^*: \underbrace{H^2(Q/(\mathbb{Z}_5 \times \mathbb{Z}_5), \mathbb{Z})}_{\mathbb{Z} \oplus \mathbb{Z}_5^2} \xrightarrow{\times 5} \underbrace{H^2(Q, \mathbb{Z})}_{\mathbb{Z}}$$

Result

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined
- Observation
- ❖ Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

The Laplace-Beltrami Operator

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- Alternative
- Calculation ❖ Donaldson's

Formula

- **❖** Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- **❖** Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!

Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- ❖ Alternative Calculation
- ❖ Donaldson's Formula
- ❖ Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!

Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.

 \Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!

Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.

 \Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators.

For now, only the scalar Laplace operator

$$\Delta |\phi_i\rangle = \lambda_i |\phi_i\rangle$$

Matrix Elements

CY Metrics

Implementation

Symmetry

Scalar Laplacian

❖ The Music of Strings

❖ Matrix Elements

- Spherical Harmonics
- **❖** Example
- Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

In terms of some (non-orthogonal) basis of functions $\{f_s\}$, we can write

$$|\phi_i\rangle = \sum_t |f_t\rangle\langle f_t|\tilde{\phi}_i\rangle$$

and

Spherical Harmonics

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Using an approximate finite basis $\{f_s\}$, we only have to solve the generalized Eigenvalue problem

$$\langle f_s | \Delta | f_t \rangle \vec{v} = \lambda_i \langle f_s | f_t \rangle \vec{v}$$

Spherical Harmonics

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Using an approximate finite basis $\{f_s\}$, we only have to solve the generalized Eigenvalue problem

$$\langle f_s | \Delta | f_t \rangle \vec{v} = \lambda_i \langle f_s | f_t \rangle \vec{v}$$

Nice basis: Recall that $\mathbb{P}^4 = S^7 / U(1)$ So take the U(1)-invariant spherical harmonics on S^7 .

Example

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics

❖ Example

- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- ❖ Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- Spectral Gap

Conclusions

In homogeneous coordinates, the spherical harmonics are

$$\frac{\left(\text{degree } k \text{ monomial}\right) \overline{\left(\text{degree } k \text{ monomial}\right)}}{\left(|z_{0}|^{2} + |z_{1}|^{2} + |z_{2}|^{2} + |z_{3}|^{2} + |z_{4}|^{2}\right)^{k}}$$

So, for example k = 1 on \mathbb{P}^1 :

Homog.
$$\frac{z_0\bar{z}_0}{|z_0|^2+|z_1|^2} \frac{z_1\bar{z}_0}{|z_0|^2+|z_1|^2} \frac{z_0\bar{z}_1}{|z_0|^2+|z_1|^2} \frac{z_1\bar{z}_1}{|z_0|^2+|z_1|^2}$$
Inhomog. $\frac{1}{1+|x|^2} \frac{x}{1+|x|^2} \frac{\bar{x}_1\bar{z}_1}{1+|x|^2} \frac{\bar{x}_1\bar{z}_1}{1+|x|^2}$

Result from Matrix Elements

Alternative Calculation

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements

❖ Alternative Calculation

- ❖ Donaldson's Formula
- Results Combined
- Observation
- **❖** Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Donaldson originally already proposed a different way to compute the Eigenmodes of the scalar Laplacian.

It does not generalize to the Laplacian on differential forms.

Nevertheless interesting to compare to!

Donaldson's Formula

Results Combined

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined

❖ Observation

- **❖** Varying Moduli
- ❖ Moduli Space
- Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- ❖ Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined

❖ Observation

- ❖ Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.

This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- **❖** Results Combined

❖ Observation

- ❖ Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.

This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000.

The first massive Eigenmode should transform in one of the 106 irreps:

Dimension d	1	4	5	6	20	30	40	120
Irreps in dim d	10	10	10	5	20	40	10	1

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- Results Combined

❖ Observation

- ❖ Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.

This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000.

The first massive Eigenmode should transform in one of the 106 irreps:

Dimension d								
Irreps in dim d	10	10	10	5	20	40	10	1

There are irreps only in eight different dimensions, and 20 is one of these possibilities.

Varying Moduli

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- ❖ Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- ❖ Alternative Calculation
- ❖ Donaldson's Formula
- Results Combined
- Observation

❖ Varying Moduli

- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

Consider the one-parameter family of $\mathbb{Z}_5 \times \mathbb{Z}_5$ -symmetric quintics:

$$Q_{\psi} = \sum_{i=0}^{4} z_i^5 - 5\psi \prod_{i=0}^{4} z_i$$

For any given ψ , we can compute the spectrum of the Laplace operator.

Work on the quotient $Q_{\psi}/(\mathbb{Z}_5 \times \mathbb{Z}_5)$.

Moduli Space

$$Q_{\psi} = \sum z_i^5 - 5\psi \prod z_i$$

Spectral Gap

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- **❖** Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- * Results Combined
- Observation
- ❖ Varying Moduli
- ❖ Moduli Space
- ❖ Spectral Gap

Conclusions

The first massive Eigenvalue of the *scalar* Laplacian on a Calabi-Yau manifold is

$$\frac{\pi^2}{D^2} \le \lambda_1 \le \frac{2d(d+4)}{D^2}$$

where d is the dimension and D the diameter.

Spectral Gap

CY Metrics

Implementation

Symmetry

Scalar Laplacian

- ❖ The Music of Strings
- Matrix Elements
- Spherical Harmonics
- **❖** Example
- ❖ Result from Matrix Elements
- **♦** Alternative Calculation
- ❖ Donaldson's Formula
- * Results Combined
- Observation
- ❖ Varying Moduli
- ❖ Moduli Space

❖ Spectral Gap

Conclusions

The first massive Eigenvalue of the *scalar* Laplacian on a Calabi-Yau manifold is

$$\frac{\pi^2}{D^2} \le \lambda_1 \le \frac{2d(d+4)}{D^2}$$

where d is the dimension and D the diameter. More precisely:

$$\frac{1}{4}h^2 \le \lambda_1 \le (\text{const.})(\rho h + h^2)$$

where h is Cheeger's isoperimetric constant and ρ is the minimal Ricci curvature.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

❖ Conclusions & Outlook

 We can now compute the Calabi-Yau metric numerically (including CICY).

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.
- Next: Laplacian on differential forms (soon!).

CY Metrics

Implementation

Symmetry

Scalar Laplacian

Conclusions

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.
- Next: Laplacian on differential forms (soon!).
- Vector bundles, fluxes, sLag's, ...