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The metric is completely determined by the
Kähler potential K(z, z̄):

gij̄(z, z̄) = ∂i∂̄j̄K(z, z̄)

ω = gij̄(z, z̄) dzi dz̄ j̄ = ∂∂̄K(z, z̄).
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Let’s consider our favourite CY threefold:

Q =
{

z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0

}

⊂ P
4

The metric is completely determined by the
Kähler potential K(z, z̄):

gij̄(z, z̄) = ∂i∂̄j̄K(z, z̄)

ω = gij̄(z, z̄) dzi dz̄ j̄ = ∂∂̄K(z, z̄).

Locally, K is a real function.
ω is a (1, 1)-form.



Fubini-Study Metric

CY Metrics

❖ Kähler Metrics on
the Quintic

❖ Fubini-Study
Metric

❖ Parametrizing
Metrics

❖ Technicalities

❖ More Technical

❖ Even More
Technical

❖ Balanced Metrics

❖ T-Operator

Implementation

Symmetry

Scalar Laplacian

Conclusions

Calabi-Yau metrics and the spectrum of the Laplacian / Caltech 5 / 39

SU(5) acts on the 5 homogeneous coordinates.
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SU(5) acts on the 5 homogeneous coordinates.
Unique SU(5) invariant Kähler metric comes
from

KFS = ln
4∑

i=0

ziz̄ī

Generalize to

KFS = ln
4∑

α,β̄=0

hαβ̄zαz̄β̄

with h a hermitian 5 × 5 matrix.
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KFS lives on P
4, but we can restrict to Q ⊂ P
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The resulting Kähler metric on the quintic is far
from Ricci flat, though.
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KFS lives on P
4, but we can restrict to Q ⊂ P

4.
The resulting Kähler metric on the quintic is far
from Ricci flat, though.
Let’s try [Donaldson]

K(z, z̄) =

ln
∑

∑
iℓ=k

∑
j̄ℓ=k

h(i1,...,ik),(j̄1,...,j̄k) zi11 · · · zikk︸ ︷︷ ︸

degree k

z̄ j̄11 · · · z j̄kk︸ ︷︷ ︸

degree k

for some hermitian N ×N matrix h
N =

(
5+k−1
k

)
=
{
# deg k monomials

}
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On the quintic z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0. So not

all monomials are independent in degrees
k ≥ 5.
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On the quintic z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0. So not

all monomials are independent in degrees
k ≥ 5.

Let sα be a basis for

C[z0, . . . , z4]
/〈

z5
0 +z5

1 +z5
2 +z5

3 +z5
4 = 0

〉
∣
∣
∣
degree k
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On the quintic z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0. So not

all monomials are independent in degrees
k ≥ 5.

Let sα be a basis for

C[z0, . . . , z4]
/〈

z5
0 +z5

1 +z5
2 +z5

3 +z5
4 = 0

〉
∣
∣
∣
degree k

and try this Ansatz for the metric on the
quintic:

K(z, z̄) = ln
∑

α,β̄

hαβ̄sαs̄β̄
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sα: Sections of OQ(k)

0→H0

(
P

4,O(k−5)
)
→H0

(
P

4,O(k)
)
→H0

(
Q,OQ(k)

)
→0

hαβ̄: Metric on the line bundle OQ(k)

(σ, τ) 7→
σ(z)τ̄(z̄)

∑
hαβ̄sα(z)s̄β̄(z̄)
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Metric on the line bundle

(σ, τ) ∈ C∞(Q,C)

gives a value at each point.
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Metric on the line bundle

(σ, τ) ∈ C∞(Q,C)

gives a value at each point.

This defines a metric on the space of sections
H0
(
Q,OQ(k)

)
:

〈
σ, τ
〉

=

∫

Q

(
σ, τ
)
(z, z̄) dVol

(does not depend on points of Q)
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h is “balanced” if the matrices representing the
metrics coincide, that is:

(〈
sα, sβ

〉)

1≤α,β̄≤N
= h−1
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h is “balanced” if the matrices representing the
metrics coincide, that is:

(〈
sα, sβ

〉)

1≤α,β̄≤N
= h−1

Theorem 1. Let h be the balanced metric for
each k. Then the sequence of metrics

ωk = ∂∂̄ ln
∑

hαβ̄sαs̄β̄

converges to the Calabi-Yau metric as k → ∞.
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h is “balanced” if the matrices representing the
metrics coincide, that is:

(〈
sα, sβ

〉)

1≤α,β̄≤N
︸ ︷︷ ︸

Depends nonlinearly on h

= h−1

Theorem 1. Let h be the balanced metric for
each k. Then the sequence of metrics

ωk = ∂∂̄ ln
∑

hαβ̄sαs̄β̄

converges to the Calabi-Yau metric as k → ∞.
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How to solve

(〈
sα, sβ

〉)−1

= h?
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How to solve

(〈
sα, sβ

〉)−1

= h?

Donaldson’s T-operator:

T (h)αβ̄ =
〈
sα, sβ

〉

=

∫

Q

sαs̄β̄
∑
hαβ̄sα(z)s̄β̄(z̄)

dVol
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How to solve

(〈
sα, sβ

〉)−1

= h?

Donaldson’s T-operator:

T (h)αβ̄ =
〈
sα, sβ

〉

=

∫

Q

sαs̄β̄
∑
hαβ̄sα(z)s̄β̄(z̄)

dVol

One can show that iterating T (hn)
−1 = hn+1

converges! Fixed point is balanced metric.
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● Pick a basis of sections sα
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● Pick a basis of sections sα

● Iterate h = T (h)−1 where

T (h)αβ̄ =

∫

Q

sαs̄β̄

sαhαβ̄s̄β̄
dVol
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● Pick a basis of sections sα

● Iterate h = T (h)−1 where

T (h)αβ̄ =

∫

Q

sαs̄β̄
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dVol

● The approximate Calabi-Yau metric is

gij̄ = ∂i∂̄j̄ ln
∑

sαh
αβ̄ s̄β̄
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● Pick a basis of sections sα

● Iterate h = T (h)−1 where

T (h)αβ̄ =

∫

Q

sαs̄β̄

sαhαβ̄s̄β̄
dVol

● The approximate Calabi-Yau metric is

gij̄ = ∂i∂̄j̄ ln
∑

sαh
αβ̄ s̄β̄

Runs easily on “our” 10 dual-core AMD
Opteron cluster (Evelyn Thomson, ATLAS).
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The T-operator contains dVol:

T (h)αβ̄ =

∫

Q

sαs̄β̄

sαhαβ̄ s̄β̄
dVol

We could use the volume form computed from
hαβ̄.
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The T-operator contains dVol:

T (h)αβ̄ =

∫

Q

sαs̄β̄

sαhαβ̄ s̄β̄
dVol

We could use the volume form computed from
hαβ̄. But we actually know the exact Calabi-Yau
volume form

dVol = Ω ∧ Ω̄, Ω =

∮
d4 x

Q(x)
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Defining coordinate patches would painful!
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Defining coordinate patches would painful!
[Douglas,Karp,Lukic,Reinbacher]: Use random
points {p1, . . . , pN} such that

∑

f(pi)
1

N

N→∞
−→

∫

Q

f(x) dVol
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Defining coordinate patches would painful!
[Douglas,Karp,Lukic,Reinbacher]: Use random
points {p1, . . . , pN} such that

∑

f(pi)
1

N

N→∞
−→

∫

Q

f(x) dVol

Pick “random” lines

ℓ ≃ P
1 ⊂ P

4 ⇒ ℓ ∩Q = {5 pt}.

The “random” distribution of ℓ’s determines the
distribution of points!
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Its easy to make everything SU(5)-uniformly
distributed. Then

∑

f(pi)
1

N

N→∞
−→

∫

Q

f(x) ω3
FS

by symmetry! But we want the Calabi-Yau
volume form...
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Its easy to make everything SU(5)-uniformly
distributed. Then

∑

f(pi)
1

N

N→∞
−→

∫

Q

f(x) ω3
FS

by symmetry! But we want the Calabi-Yau
volume form... So we have to weight the points
by

∑

f(pi)

(
Ω ∧ Ω̄(pi)

ω3
FS(pi)

)

︸ ︷︷ ︸

∈R

1

N

N→∞
−→

∫

Q

f(x) dVolCY
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How do we test whether the metric is the
Calabi-Yau metric? We could compute the Ricci
tensor, but its easier to test that

Ω ∧ Ω̄ ∼ ω3
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How do we test whether the metric is the
Calabi-Yau metric? We could compute the Ricci
tensor, but its easier to test that

Ω ∧ Ω̄ ∼ ω3

So normalize both volume forms and define

σk =

∫

Q

∣
∣
∣
∣
1 −

Ω(z) ∧ Ω̄(z̄)

ω3(z, z̄)

∣
∣
∣
∣
dVol

On a Calabi-Yau manifold σk = O(k2)
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0

0.1

0.2

0.3

0.4

0.5

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

σ

σk
Fit for k ≥ 3: σk = 3.23/k2 − 4.55/k3
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The Fermat quintic is part of a 5-dimensional
family of quintics with a free Z5 × Z5 group
action.
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The Fermat quintic is part of a 5-dimensional
family of quintics with a free Z5 × Z5 group
action.

It is numerically much easier to work on the

four-generation quotient Q
/(

Z5 × Z5

)
.

To do this, we only have to replace the sections
sα of OQ(k) by invariant sections!
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g1

( z0
z1
z2
z3
z4

)

=

(
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

)( z0
z1
z2
z3
z4

)

g2

( z0
z1
z2
z3
z4

)

=






1 0 0 0 0

0 e
2πi
5 0 0 0

0 0 e2
2πi
5 0 0

0 0 0 e3
2πi
5 0

0 0 0 0 e4
2πi
5






( z0
z1
z2
z3
z4

)

Note that g1g2g
−1
1 g−1

2 = e
2πi
5 , so they generate

the Heisenberg group

0 → Z5 → G→ Z5 × Z5 → 0
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The invariant sections are

C[z0, z1, z2, z3, z4]
G
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The invariant sections are

C[z0, z1, z2, z3, z4]
G =

100⊕

i=0

ηiC[θ1, θ2, θ3, θ4, θ5]

(“Hironaka decomposition”) where

θ1
def= z5

0 + z5
1 + z5

2 + z5
3 + z5

4

θ2
def= z0z1z2z3z4

θ3
def= z3

0z1z4 + z0z
3
1z2 + z0z3z

3
4 + z1z

3
2z3 + z2z

3
3z4

θ4
def= z10

0 + z10
1 + z10

2 + z10
3 + z10

4

θ5
def= z8

0z2z3 + z0z1z
8
3 + z0z

8
2z4 + z8

1z3z4 + z1z2z
8
4
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... and the “secondary invariants” ηi are
polynomials in degrees 0, 5, 10, 15, 20, 25, 30:

η1
def= 1

η2
def= z2

0z1z
2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1

...

η100
def= z30

0 + z30
1 + z30

2 + z30
3 + z30

4

All invariants are in degrees divisible by 5!
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... and the “secondary invariants” ηi are
polynomials in degrees 0, 5, 10, 15, 20, 25, 30:

η1
def= 1

η2
def= z2

0z1z
2
2 + z2

1z2z
2
3 + z2

2z3z
2
4 + z2

3z4z
2
0 + z2

4z0z
2
1

...

η100
def= z30

0 + z30
1 + z30

2 + z30
3 + z30

4

All invariants are in degrees divisible by 5!

No invariant sections in OQ(k) unless 5|k?
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OQ(k) is not Z5 × Z5-equivariant unless 5|k.
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Under the quotient map q : Q→ Q/(Z5 × Z5),
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= OQ(5)
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OQ(k) is not Z5 × Z5-equivariant unless 5|k.

Under the quotient map q : Q→ Q/(Z5 × Z5),

q∗
(

OQ/(Z5×Z5)(1)
)

= OQ(5)

The first Chern classes of bundles coming from
the quotient are divisible by 5, that is,

q∗ : H2
(
Q/(Z5 × Z5),Z

)

︸ ︷︷ ︸

Z⊕Z2

5

×5
−→ H2(Q,Z)

︸ ︷︷ ︸

Z
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⇒ Complete KK reduction 10d → 4d, including
normalization of fields, numeric values of the
Yukawa couplings, threshold corrections, and
proton decay operators.
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Just knowing the Calabi-Yau metric is useless!

Would like to know the Eigenvalues and
Eigenmodes of the Laplace operator.

⇒ Complete KK reduction 10d → 4d, including
normalization of fields, numeric values of the
Yukawa couplings, threshold corrections, and
proton decay operators.

For now, only the scalar Laplace operator

∆
∣
∣φi
〉

= λi
∣
∣φi
〉
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In terms of some (non-orthogonal) basis of
functions {fs}, we can write

∣
∣φi
〉

=
∑

t

∣
∣ft
〉〈
ft
∣
∣φ̃i
〉

and

∆
∣
∣φi
〉

= λi
∣
∣φi
〉

⇒
〈
fs
∣
∣∆
∣
∣ft
〉 〈

ft
∣
∣φ̃i
〉

︸ ︷︷ ︸

~v

= λi
〈
fs
∣
∣ft
〉 〈
ft
∣
∣φ̃i
〉

︸ ︷︷ ︸

~v
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Using an approximate finite basis {fs}, we only
have to solve the generalized Eigenvalue
problem

〈
fs
∣
∣∆
∣
∣ft
〉
~v = λi

〈
fs
∣
∣ft
〉
~v
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Using an approximate finite basis {fs}, we only
have to solve the generalized Eigenvalue
problem

〈
fs
∣
∣∆
∣
∣ft
〉
~v = λi

〈
fs
∣
∣ft
〉
~v

Nice basis: Recall that P
4 = S7

/
U(1)

So take the U(1)-invariant spherical harmonics
on S7.



Example

CY Metrics

Implementation

Symmetry

Scalar Laplacian

❖ The Music of
Strings

❖ Matrix Elements

❖ Spherical
Harmonics

❖ Example

❖ Result from Matrix
Elements

❖ Alternative
Calculation

❖ Donaldson’s
Formula

❖ Results Combined

❖ Observation

❖ Varying Moduli

❖ Moduli Space

❖ Spectral Gap

Conclusions

Calabi-Yau metrics and the spectrum of the Laplacian / Caltech 30 / 39

In homogeneous coordinates, the spherical
harmonics are

(

degree k monomial
)(

degree k monomial
)

(

|z0|2 + |z1|2 + |z2|2 + |z3|2 + |z4|2
)k

So, for example k = 1 on P
1:

Homog. z0z̄0
|z0|2+|z1|2

z1z̄0
|z0|2+|z1|2

z0z̄1
|z0|2+|z1|2

z1z̄1
|z0|2+|z1|2

Inhomog. 1
1+|x|2

x
1+|x|2

x̄
1+|x|2

xx̄
1+|x|2
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Donaldson originally already proposed a
different way to compute the Eigenmodes of
the scalar Laplacian.

It does not generalize to the Laplacian on
differential forms.

Nevertheless interesting to compare to!
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The first massive Eigenmode seems to have
degeneracy 20.
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degeneracy 20.

This can be explained partially by symmetry,
the Fermat quintic has the discrete symmetry
group GF = S5 ⋉ Z4 of order 75000.
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The first massive Eigenmode seems to have
degeneracy 20.

This can be explained partially by symmetry,
the Fermat quintic has the discrete symmetry
group GF = S5 ⋉ Z4 of order 75000.

The first massive Eigenmode should transform
in one of the 106 irreps:

Dimension d 1 4 5 6 20 30 40 120
Irreps in dim d 10 10 10 5 20 40 10 1

There are irreps only in eight different
dimensions, and 20 is one of these possibilities.
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Consider the one-parameter family of
Z5 × Z5-symmetric quintics:

Qψ =
4∑

i=0

z5
i − 5ψ

4∏

i=0

zi

For any given ψ, we can compute the spectrum
of the Laplace operator.

Work on the quotient Qψ

/
(Z5 × Z5).
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The first massive Eigenvalue of the scalar
Laplacian on a Calabi-Yau manifold is

π2

D2
≤ λ1 ≤

2d(d+ 4)

D2

where d is the dimension and D the diameter.
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The first massive Eigenvalue of the scalar
Laplacian on a Calabi-Yau manifold is

π2

D2
≤ λ1 ≤

2d(d+ 4)

D2

where d is the dimension and D the diameter.

More precisely:

1

4
h2 ≤ λ1 ≤

(
const.

)(
ρh+ h2

)

where h is Cheeger’s isoperimetric constant
and ρ is the minimal Ricci curvature.
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● We can now compute the Calabi-Yau metric
numerically (including CICY).
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● Next: Laplacian on differential forms
(soon!).
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● We can now compute the Calabi-Yau metric
numerically (including CICY).

● Systematically use existing symmetries to
accelerate computations.

● We computed the spectrum of the scalar
Laplacian.

● Multiplicities of (massive) Eigenmodes.

● Spectral gap almost constant.

● Next: Laplacian on differential forms
(soon!).

● Vector bundles, fluxes, sLag’s, ...
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