Calabi-Yau Metrics and the Spectrum of the Laplacian Volker Braun University of Pennsylvania, Math/Physics Research Group November 7, 2007 ### **Overview** **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions **CY Metrics** **Implementation** **Symmetry** Scalar Laplacian **Conclusions** #### CY Metrics - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ❖ Parametrizing Metrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions ### Calabi-Yau Metrics # Kähler Metrics on the Quintic **CY Metrics** ### ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions Let's consider our favourite CY threefold: $$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$ # Kähler Metrics on the Quintic **CY Metrics** ### ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions Let's consider our favourite CY threefold: $$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$ The metric is completely determined by the Kähler potential $K(z, \bar{z})$: $$g_{i\bar{j}}(z,\bar{z}) = \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z})$$ $$\omega = g_{i\bar{j}}(z,\bar{z}) dz^i d\bar{z}^{\bar{j}} = \partial \bar{\partial} K(z,\bar{z}).$$ # Kähler Metrics on the Quintic **CY Metrics** ### ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions Let's consider our favourite CY threefold: $$Q = \left\{ z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \right\} \subset \mathbb{P}^4$$ The metric is completely determined by the Kähler potential $K(z, \bar{z})$: $$g_{i\bar{j}}(z,\bar{z}) = \partial_i \bar{\partial}_{\bar{j}} K(z,\bar{z})$$ $$\omega = g_{i\bar{j}}(z,\bar{z}) dz^i d\bar{z}^{\bar{j}} = \partial \bar{\partial} K(z,\bar{z}).$$ Locally, K is a real function. ω is a (1,1)-form. # Fubini-Study Metric **CY Metrics** ❖ Kähler Metrics on the Quintic ### ❖ Fubini-Study Metric - ❖ Parametrizing Metrics - **❖** Technicalities - **❖** More Technical - Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions SU(5) acts on the 5 homogeneous coordinates. # Fubini-Study Metric **CY Metrics** ❖ Kähler Metrics on the Quintic ### ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions SU(5) acts on the 5 homogeneous coordinates. Unique SU(5) invariant Kähler metric comes from $$K_{\rm FS} = \ln \sum_{i=0}^{4} z_i \bar{z}_{\bar{i}}$$ # Fubini-Study Metric **CY Metrics** ❖ Kähler Metrics on the Quintic ### ❖ Fubini-Study Metric - ParametrizingMetrics - Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions SU(5) acts on the 5 homogeneous coordinates. Unique SU(5) invariant Kähler metric comes from $$K_{\rm FS} = \ln \sum_{i=0}^{4} z_i \bar{z}_{\bar{i}}$$ Generalize to $$K_{\rm FS} = \ln \sum_{\alpha, \bar{\beta}=0}^4 h^{\alpha \bar{\beta}} z_{\alpha} \bar{z}_{\bar{\beta}}$$ with h a hermitian 5×5 matrix. # Parametrizing Metrics **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions K_{FS} lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$. # Parametrizing Metrics #### **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ❖ Parametrizing Metrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions $K_{\rm FS}$ lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$. The resulting Kähler metric on the quintic is far from Ricci flat, though. # Parametrizing Metrics **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions $K_{\rm FS}$ lives on \mathbb{P}^4 , but we can restrict to $Q \subset \mathbb{P}^4$. The resulting Kähler metric on the quintic is far from Ricci flat, though. Let's try [Donaldson] $$K(z,\bar{z}) = \ln \sum_{\substack{\sum i_{\ell}=k \\ \sum \bar{j}_{\ell}=k}} h^{(i_{1},\ldots,i_{k}),(\bar{j}_{1},\ldots,\bar{j}_{k})} \underbrace{z_{1}^{i_{1}}\cdots z_{k}^{i_{k}}}_{\text{degree }k} \underbrace{\bar{z}_{1}^{\bar{j}_{1}}\cdots z_{k}^{\bar{j}_{k}}}_{\text{degree }k}$$ for some hermitian $N \times N$ matrix h $N = {5+k-1 \choose k} = \{ \# \deg k \text{ monomials} \}$ ### **Technicalities** **CY Metrics** ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics #### **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees k > 5. ### **Technicalities** **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric ParametrizingMetrics #### **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees k > 5. Let s_{α} be a basis for $$\mathbb{C}[z_0, \dots, z_4] / \langle z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \rangle \Big|_{\text{degree } k}$$ ### **Technicalities** **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric Parametrizing Metrics #### **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions On the quintic $z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0$. So not all monomials are independent in degrees $k \geq 5$. Let s_{α} be a basis for $$\mathbb{C}[z_0, \dots, z_4] / \langle z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 = 0 \rangle \Big|_{\text{degree } k}$$ and try this Ansatz for the metric on the quintic: $$K(z,\bar{z}) = \ln \sum_{\alpha,\bar{\beta}} h^{\alpha\bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$ ### More Technical **CY Metrics** ❖ Kähler Metrics on the Ouintic - ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities #### ❖ More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions s_{α} : Sections of $\mathcal{O}_{Q}(k)$ $$0 {\longrightarrow} H^0\left(\,\mathbb{P}^4, \mathcal{O}(k-5)\right) {\longrightarrow} H^0\left(\,\mathbb{P}^4, \mathcal{O}(k)\right) {\longrightarrow} H^0\left(Q, \mathcal{O}_Q(k)\right) {\longrightarrow} 0$$ $h^{\alpha \bar{\beta}}$: Metric on the line bundle $\mathcal{O}_Q(k)$ $$(\sigma, \tau) \mapsto \frac{\sigma(z)\bar{\tau}(\bar{z})}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})}$$ ### Even More Technical **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions Metric on the line bundle $$(\sigma,\tau) \in C^{\infty}(Q,\mathbb{C})$$ gives a value at each point. ### Even More Technical **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric ParametrizingMetrics Technicalities **❖** More Technical ❖ Even More Technical **❖** Balanced Metrics **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions Metric on the line bundle $$(\sigma,\tau)\in C^{\infty}(Q,\mathbb{C})$$ gives a value at each point. This defines a metric on the space of sections $H^0(Q, \mathcal{O}_Q(k))$: $$\langle \sigma, \tau \rangle = \int_{Q} (\sigma, \tau)(z, \bar{z}) \, dVol$$ (does not depend on points of Q) ### **Balanced Metrics** **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric ParametrizingMetrics **❖** Technicalities **❖** More Technical ❖ Even More Technical #### ❖ Balanced Metrics **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions h is "balanced" if the matrices representing the metrics coincide, that is: $$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N} = h^{-1}$$ ### **Balanced Metrics** **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - Technicalities - **❖** More Technical - ❖ Even More Technical #### **❖** Balanced Metrics **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions h is "balanced" if the matrices representing the metrics coincide, that is: $$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N} = h^{-1}$$ **Theorem 1.** Let h be the balanced metric for each k. Then the sequence of metrics $$\omega_k = \partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$ converges to the Calabi-Yau metric as $k \to \infty$. ### **Balanced Metrics** **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric ParametrizingMetrics Technicalities **❖** More Technical ❖ Even More Technical #### **❖** Balanced Metrics **❖** T-Operator Implementation Symmetry Scalar Laplacian Conclusions h is "balanced" if the matrices representing the metrics coincide, that is: $$\underbrace{\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N}} = h^{-1}$$ Depends nonlinearly on h **Theorem 1.** Let h be the balanced metric for each k. Then the sequence of metrics $$\omega_k = \partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}$$ converges to the Calabi-Yau metric as $k \to \infty$. # **T-Operator** #### **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ❖ Parametrizing Metrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics - T-Operator Implementation Symmetry Scalar Laplacian Conclusions How to solve $$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$ # **T-Operator** #### **CY Metrics** - ❖ Kähler Metrics on the Quintic - ❖ Fubini-Study Metric - ParametrizingMetrics - **❖** Technicalities - **❖** More Technical - ❖ Even More Technical - **❖** Balanced Metrics ### T-Operator Implementation Symmetry Scalar Laplacian Conclusions How to solve $$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$ Donaldson's T-operator: $$T(h)_{\alpha\bar{\beta}} = \langle s_{\alpha}, s_{\beta} \rangle$$ $$= \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})} dVol$$ # **T-Operator** **CY Metrics** ❖ Kähler Metrics on the Quintic ❖ Fubini-Study Metric ParametrizingMetrics Technicalities **❖** More Technical ❖ Even More Technical Balanced Metrics T-Operator Implementation Symmetry Scalar Laplacian Conclusions How to solve $$\left(\left\langle s_{\alpha}, s_{\beta} \right\rangle\right)^{-1} = h?$$ Donaldson's T-operator: $$T(h)_{\alpha\bar{\beta}} = \langle s_{\alpha}, s_{\beta} \rangle$$ $$= \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{\sum h^{\alpha\bar{\beta}}s_{\alpha}(z)\bar{s}_{\bar{\beta}}(\bar{z})} dVol$$ One can show that iterating $T(h_n)^{-1} = h_{n+1}$ converges! Fixed point is balanced metric. #### **CY Metrics** ### Implementation - **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions # **Implementation** **CY Metrics** Implementation ### **❖** Algorithm - ♦ What is the Volume Form? - How to Integrate - ❖ Zeros of Random Polynomials - **❖** Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions • Pick a basis of sections s_{α} **CY Metrics** Implementation ### **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions - Pick a basis of sections s_{α} - Iterate $h = T(h)^{-1}$ where $$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$ **CY Metrics** Implementation ### **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions - Pick a basis of sections s_{α} - Iterate $h = T(h)^{-1}$ where $$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$ The approximate Calabi-Yau metric is $$g_{i\bar{j}} = \partial_i \bar{\partial}_{\bar{j}} \ln \sum s_\alpha h^{\alpha\bar{\beta}} \bar{s}_{\bar{\beta}}$$ **CY Metrics** Implementation ### **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions - Pick a basis of sections s_{α} - Iterate $h = T(h)^{-1}$ where $$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$ The approximate Calabi-Yau metric is $$g_{i\bar{j}} = \partial_i \bar{\partial}_{\bar{j}} \ln \sum s_\alpha h^{\alpha\bar{\beta}} \bar{s}_{\bar{\beta}}$$ Runs easily on "our" 10 dual-core AMD Opteron cluster (Evelyn Thomson, ATLAS). ### What is the Volume Form? **CY Metrics** Implementation - **❖** Algorithm - ❖ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions The T-operator contains dVol: $$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \, dVol$$ We could use the volume form computed from $h^{\alpha\bar{\beta}}$. ### What is the Volume Form? **CY Metrics** Implementation - **❖** Algorithm - ❖ What is the Volume Form? - How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions The T-operator contains dVol: $$T(h)_{\alpha\bar{\beta}} = \int_{Q} \frac{s_{\alpha}\bar{s}_{\bar{\beta}}}{s_{\alpha}h^{\alpha\bar{\beta}}\bar{s}_{\bar{\beta}}} \,\mathrm{dVol}$$ We could use the volume form computed from $h^{\alpha\bar{\beta}}$. But we actually know the *exact* Calabi-Yau volume form $$dVol = \Omega \wedge \bar{\Omega}, \qquad \Omega = \oint \frac{d^4 x}{Q(x)}$$ # How to Integrate **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? #### **♦** How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions Defining coordinate patches would painful! # How to Integrate **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? #### **♦** How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions Defining coordinate patches would painful! [Douglas, Karp, Lukic, Reinbacher]: Use random points $\{p_1, \ldots, p_N\}$ such that $$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, dVol$$ # How to Integrate **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? #### **♦** How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - ❖ Resulting Plot Symmetry Scalar Laplacian Conclusions Defining coordinate patches would painful! [Douglas, Karp, Lukic, Reinbacher]: Use random points $\{p_1, \ldots, p_N\}$ such that $$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, dVol$$ Pick "random" lines $$\ell \simeq \mathbb{P}^1 \subset \mathbb{P}^4 \quad \Rightarrow \quad \ell \cap Q = \{5 \text{ pt}\}.$$ The "random" distribution of ℓ 's determines the distribution of points! # Zeros of Random Polynomials **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - **❖** Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions Its easy to make everything SU(5)-uniformly distributed. Then $$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_Q f(x) \, \omega_{FS}^3$$ by symmetry! But we want the Calabi-Yau volume form... ## Zeros of Random Polynomials **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - ❖ Testing the Result - ❖ Resulting Plot Symmetry Scalar Laplacian Conclusions Its easy to make everything SU(5)-uniformly distributed. Then $$\sum f(p_i) \frac{1}{N} \stackrel{N \to \infty}{\longrightarrow} \int_{\mathcal{O}} f(x) \, \omega_{FS}^3$$ by symmetry! But we want the Calabi-Yau volume form... So we have to weight the points by $$\sum f(p_i) \underbrace{\left(\frac{\Omega \wedge \bar{\Omega}(p_i)}{\omega_{FS}^3(p_i)}\right)}_{\in \mathbb{R}} \frac{1}{N} \xrightarrow{N \to \infty} \int_Q f(x) \, dVol_{CY}$$ # Testing the Result **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials - **❖** Testing the Result - **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that $$\Omega \wedge \bar{\Omega} \sim \omega^3$$ # Testing the Result **CY Metrics** Implementation - **❖** Algorithm - ♦ What is the Volume Form? - ♦ How to Integrate - ❖ Zeros of Random Polynomials #### **❖** Testing the Result **❖** Resulting Plot Symmetry Scalar Laplacian Conclusions How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that $$\Omega \wedge \bar{\Omega} \sim \omega^3$$ So normalize both volume forms and define $$\sigma_k = \int_Q \left| 1 - \frac{\Omega(z) \wedge \bar{\Omega}(\bar{z})}{\omega^3(z, \bar{z})} \right| dVol$$ On a Calabi-Yau manifold $\sigma_k = O(k^2)$ ## Resulting Plot **CY Metrics** Implementation #### Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group - **❖** Invariants - **♦** More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions The $\mathbb{Z}_5 \times \mathbb{Z}_5$ Quotient ## Symmetric Quintics **CY Metrics** Implementation Symmetry ### ❖ Symmetric Quintics - Symmetry Group - **❖** Invariants - ❖ More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action. ## Symmetric Quintics **CY Metrics** Implementation Symmetry ### ❖ Symmetric Quintics - Symmetry Group - ❖ Invariants - More on Invariants - Invariant vs.Equivariant - **❖** Result Scalar Laplacian Conclusions The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action. It is numerically much easier to work on the four-generation quotient $Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$. ## Symmetric Quintics **CY Metrics** Implementation Symmetry ### ❖ Symmetric Quintics - Symmetry Group - ❖ Invariants - ❖ More on Invariants - Invariant vs.Equivariant - **❖** Result Scalar Laplacian Conclusions The Fermat quintic is part of a 5-dimensional family of quintics with a free $\mathbb{Z}_5 \times \mathbb{Z}_5$ group action. It is numerically much easier to work on the four-generation quotient $Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$. To do this, we only have to replace the sections s_{α} of $\mathcal{O}_{Q}(k)$ by invariant sections! ## Symmetry Group **CY Metrics** Implementation Symmetry SymmetricQuintics #### ❖ Symmetry Group - **❖** Invariants - ❖ More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions $$g_{1}\begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$ $$g_{2}\begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & e^{\frac{2\pi i}{5}} & 0 & 0 & 0 \\ 0 & 0 & e^{2\frac{2\pi i}{5}} & 0 & 0 \\ 0 & 0 & 0 & e^{\frac{32\pi i}{5}} & 0 \\ 0 & 0 & 0 & e^{4\frac{2\pi i}{5}} \end{pmatrix} \begin{pmatrix} z_{0} \\ z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{pmatrix}$$ Note that $g_1g_2g_1^{-1}g_2^{-1}=e^{\frac{2\pi i}{5}}$, so they generate the Heisenberg group $$0 \to \mathbb{Z}_5 \to G \to \mathbb{Z}_5 \times \mathbb{Z}_5 \to 0$$ ## **Invariants** **CY Metrics** Implementation Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group #### **❖** Invariants - **♦** More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions The invariant sections are $$\mathbb{C}[z_0, z_1, z_2, z_3, z_4]^G$$ ### **Invariants** **CY Metrics** **Implementation** Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group #### **❖** Invariants - ❖ More on Invariants - Invariant vs.Equivariant - Result Scalar Laplacian Conclusions The invariant sections are $$\mathbb{C}[z_0, z_1, z_2, z_3, z_4]^G = \bigoplus_{i=0}^{100} \eta_i \mathbb{C}[\theta_1, \theta_2, \theta_3, \theta_4, \theta_5]$$ ("Hironaka decomposition") where $$\begin{array}{lll} \theta_1 \stackrel{\text{def}}{=} & z_0^5 + z_1^5 + z_2^5 + z_3^5 + z_4^5 \\ \theta_2 \stackrel{\text{def}}{=} & z_0 z_1 z_2 z_3 z_4 \\ \theta_3 \stackrel{\text{def}}{=} & z_0^3 z_1 z_4 + z_0 z_1^3 z_2 + z_0 z_3 z_4^3 + z_1 z_2^3 z_3 + z_2 z_3^3 z_4 \\ \theta_4 \stackrel{\text{def}}{=} & z_0^{10} + z_1^{10} + z_2^{10} + z_3^{10} + z_4^{10} \\ \theta_5 \stackrel{\text{def}}{=} & z_0^8 z_2 z_3 + z_0 z_1 z_3^8 + z_0 z_2^8 z_4 + z_1^8 z_3 z_4 + z_1 z_2 z_4^8 \end{array}$$ ## More on Invariants **CY Metrics** Implementation #### Symmetry - ❖ Symmetric Quintics - Symmetry Group - ❖ Invariants #### ❖ More on Invariants - Invariant vs.Equivariant - **❖** Result Scalar Laplacian Conclusions ... and the "secondary invariants" η_i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30: $$\eta_1 \stackrel{\text{def}}{=} 1$$ $$\eta_2 \stackrel{\text{def}}{=} z_0^2 z_1 z_2^2 + z_1^2 z_2 z_3^2 + z_2^2 z_3 z_4^2 + z_3^2 z_4 z_0^2 + z_4^2 z_0 z_1^2$$ $$\vdots$$ $$\eta_{100} \stackrel{\text{def}}{=} z_0^{30} + z_1^{30} + z_2^{30} + z_3^{30} + z_4^{30}$$ All invariants are in degrees divisible by 5! ### More on Invariants **CY Metrics** Implementation #### Symmetry - ❖ Symmetric Quintics - Symmetry Group - Invariants #### ❖ More on Invariants - Invariant vs.Equivariant - **❖** Result Scalar Laplacian Conclusions ... and the "secondary invariants" η_i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30: $$\eta_1 \stackrel{\text{def}}{=} 1$$ $$\eta_2 \stackrel{\text{def}}{=} z_0^2 z_1 z_2^2 + z_1^2 z_2 z_3^2 + z_2^2 z_3 z_4^2 + z_3^2 z_4 z_0^2 + z_4^2 z_0 z_1^2$$ $$\vdots$$ $$\eta_{100} \stackrel{\text{def}}{=} z_0^{30} + z_1^{30} + z_2^{30} + z_3^{30} + z_4^{30}$$ All invariants are in degrees divisible by 5! No invariant sections in $\mathcal{O}_Q(k)$ unless 5|k? ## Invariant vs. Equivariant **CY Metrics** Implementation #### Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group - **❖** Invariants - **♦** More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k. ## Invariant vs. Equivariant **CY Metrics** Implementation Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group - **❖** Invariants - ❖ More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k. Under the quotient map $q: Q \to Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$, $$q^* \left(\mathcal{O}_{Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)}(1) \right) = \mathcal{O}_Q(5)$$ ## Invariant vs. Equivariant **CY Metrics** Implementation Symmetry - ❖ Symmetric Quintics - **❖** Symmetry Group - ❖ Invariants - ❖ More on Invariants - ❖ Invariant vs. Equivariant - **❖** Result Scalar Laplacian Conclusions $\mathcal{O}_Q(k)$ is not $\mathbb{Z}_5 \times \mathbb{Z}_5$ -equivariant unless 5|k. Under the quotient map $q: Q \to Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)$, $$q^* \left(\mathcal{O}_{Q/(\mathbb{Z}_5 \times \mathbb{Z}_5)}(1) \right) = \mathcal{O}_Q(5)$$ The first Chern classes of bundles coming from the quotient are divisible by 5, that is, $$q^*: \underbrace{H^2(Q/(\mathbb{Z}_5 \times \mathbb{Z}_5), \mathbb{Z})}_{\mathbb{Z} \oplus \mathbb{Z}_5^2} \xrightarrow{\times 5} \underbrace{H^2(Q, \mathbb{Z})}_{\mathbb{Z}}$$ ## Result **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined - Observation - ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions ## The Laplace-Beltrami Operator **CY Metrics** **Implementation** Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - Alternative - Calculation ❖ Donaldson's Formula - **❖** Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Just knowing the Calabi-Yau metric is useless! **CY Metrics** **Implementation** Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - **❖** Spectral Gap Conclusions Just knowing the Calabi-Yau metric is useless! Would like to know the Eigenvalues and Eigenmodes of the Laplace operator. **CY Metrics** **Implementation** Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - ❖ Alternative Calculation - ❖ Donaldson's Formula - ❖ Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Just knowing the Calabi-Yau metric is useless! Would like to know the Eigenvalues and Eigenmodes of the Laplace operator. \Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators. **CY Metrics** Implementation Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Just knowing the Calabi-Yau metric is useless! Would like to know the Eigenvalues and Eigenmodes of the Laplace operator. \Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators. For now, only the scalar Laplace operator $$\Delta |\phi_i\rangle = \lambda_i |\phi_i\rangle$$ ## Matrix Elements **CY Metrics** Implementation Symmetry Scalar Laplacian ❖ The Music of Strings #### ❖ Matrix Elements - Spherical Harmonics - **❖** Example - Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions In terms of some (non-orthogonal) basis of functions $\{f_s\}$, we can write $$|\phi_i\rangle = \sum_t |f_t\rangle\langle f_t|\tilde{\phi}_i\rangle$$ and ## Spherical Harmonics **CY Metrics** Implementation Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Using an approximate finite basis $\{f_s\}$, we only have to solve the generalized Eigenvalue problem $$\langle f_s | \Delta | f_t \rangle \vec{v} = \lambda_i \langle f_s | f_t \rangle \vec{v}$$ # Spherical Harmonics **CY Metrics** Implementation Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Using an approximate finite basis $\{f_s\}$, we only have to solve the generalized Eigenvalue problem $$\langle f_s | \Delta | f_t \rangle \vec{v} = \lambda_i \langle f_s | f_t \rangle \vec{v}$$ Nice basis: Recall that $\mathbb{P}^4 = S^7 / U(1)$ So take the U(1)-invariant spherical harmonics on S^7 . # Example **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics #### **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - ❖ Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - Spectral Gap Conclusions In homogeneous coordinates, the spherical harmonics are $$\frac{\left(\text{degree } k \text{ monomial}\right) \overline{\left(\text{degree } k \text{ monomial}\right)}}{\left(|z_{0}|^{2} + |z_{1}|^{2} + |z_{2}|^{2} + |z_{3}|^{2} + |z_{4}|^{2}\right)^{k}}$$ So, for example k = 1 on \mathbb{P}^1 : Homog. $$\frac{z_0\bar{z}_0}{|z_0|^2+|z_1|^2} \frac{z_1\bar{z}_0}{|z_0|^2+|z_1|^2} \frac{z_0\bar{z}_1}{|z_0|^2+|z_1|^2} \frac{z_1\bar{z}_1}{|z_0|^2+|z_1|^2}$$ Inhomog. $\frac{1}{1+|x|^2} \frac{x}{1+|x|^2} \frac{\bar{x}_1\bar{z}_1}{1+|x|^2} \frac{\bar{x}_1\bar{z}_1}{1+|x|^2}$ ## Result from Matrix Elements ### Alternative Calculation **CY Metrics** Implementation Symmetry Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements ### ❖ Alternative Calculation - ❖ Donaldson's Formula - Results Combined - Observation - **❖** Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Donaldson originally already proposed a different way to compute the Eigenmodes of the scalar Laplacian. It does not generalize to the Laplacian on differential forms. Nevertheless interesting to compare to! ## Donaldson's Formula ## Results Combined **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined #### **❖** Observation - **❖** Varying Moduli - ❖ Moduli Space - Spectral Gap Conclusions The first massive Eigenmode seems to have degeneracy 20. **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - ❖ Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined #### **❖** Observation - ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions The first massive Eigenmode seems to have degeneracy 20. This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000. **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - **❖** Results Combined #### **❖** Observation - ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions The first massive Eigenmode seems to have degeneracy 20. This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000. The first massive Eigenmode should transform in one of the 106 irreps: | Dimension d | 1 | 4 | 5 | 6 | 20 | 30 | 40 | 120 | |-----------------|----|----|----|---|----|----|----|-----| | Irreps in dim d | 10 | 10 | 10 | 5 | 20 | 40 | 10 | 1 | **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - Results Combined #### **❖** Observation - ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions The first massive Eigenmode seems to have degeneracy 20. This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_F = S_5 \ltimes \mathbb{Z}_4$ of order 75000. The first massive Eigenmode should transform in one of the 106 irreps: | Dimension d | | | | | | | | | |-------------------|----|----|----|---|----|----|----|---| | Irreps in dim d | 10 | 10 | 10 | 5 | 20 | 40 | 10 | 1 | There are irreps only in eight different dimensions, and 20 is one of these possibilities. # Varying Moduli **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - ❖ Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - ❖ Alternative Calculation - ❖ Donaldson's Formula - Results Combined - Observation #### ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions Consider the one-parameter family of $\mathbb{Z}_5 \times \mathbb{Z}_5$ -symmetric quintics: $$Q_{\psi} = \sum_{i=0}^{4} z_i^5 - 5\psi \prod_{i=0}^{4} z_i$$ For any given ψ , we can compute the spectrum of the Laplace operator. Work on the quotient $Q_{\psi}/(\mathbb{Z}_5 \times \mathbb{Z}_5)$. ## Moduli Space $$Q_{\psi} = \sum z_i^5 - 5\psi \prod z_i$$ ## Spectral Gap **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - **❖** Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - * Results Combined - Observation - ❖ Varying Moduli - ❖ Moduli Space - ❖ Spectral Gap Conclusions The first massive Eigenvalue of the *scalar* Laplacian on a Calabi-Yau manifold is $$\frac{\pi^2}{D^2} \le \lambda_1 \le \frac{2d(d+4)}{D^2}$$ where d is the dimension and D the diameter. # Spectral Gap **CY Metrics** Implementation Symmetry #### Scalar Laplacian - ❖ The Music of Strings - Matrix Elements - Spherical Harmonics - **❖** Example - ❖ Result from Matrix Elements - **♦** Alternative Calculation - ❖ Donaldson's Formula - * Results Combined - Observation - ❖ Varying Moduli - ❖ Moduli Space ❖ Spectral Gap Conclusions The first massive Eigenvalue of the *scalar* Laplacian on a Calabi-Yau manifold is $$\frac{\pi^2}{D^2} \le \lambda_1 \le \frac{2d(d+4)}{D^2}$$ where d is the dimension and D the diameter. More precisely: $$\frac{1}{4}h^2 \le \lambda_1 \le (\text{const.})(\rho h + h^2)$$ where h is Cheeger's isoperimetric constant and ρ is the minimal Ricci curvature. **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions **❖** Conclusions & Outlook We can now compute the Calabi-Yau metric numerically (including CICY). **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. - We computed the spectrum of the scalar Laplacian. **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. - We computed the spectrum of the scalar Laplacian. - Multiplicities of (massive) Eigenmodes. **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. - We computed the spectrum of the scalar Laplacian. - Multiplicities of (massive) Eigenmodes. - Spectral gap almost constant. **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. - We computed the spectrum of the scalar Laplacian. - Multiplicities of (massive) Eigenmodes. - Spectral gap almost constant. - Next: Laplacian on differential forms (soon!). **CY Metrics** Implementation Symmetry Scalar Laplacian Conclusions - We can now compute the Calabi-Yau metric numerically (including CICY). - Systematically use existing symmetries to accelerate computations. - We computed the spectrum of the scalar Laplacian. - Multiplicities of (massive) Eigenmodes. - Spectral gap almost constant. - Next: Laplacian on differential forms (soon!). - Vector bundles, fluxes, sLag's, ...