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the Fermat quintic has the discrete symmetry
group Gr = S5 X Z4 of order 75000.

The first massive Eigenmode should transform
in one of the 106 irreps:

Dimensiond\ 1 4 5 6 20 30 40 120

Irreps indimd [ 10 10 10 5 20 40 10 1

There are irreps only in eight different
dimensions, and 20 is one of these possibilities.
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The first massive Eigenvalue of the scalar
Laplacian on a Calabi-Yau manifold is

e 2d(d +4)
D <A\ < [pE

where d is the dimension and D the diameter.

More precisely:
ihQ < A\; < (const.) (ph + h*)

where h is Cheeger’s isoperimetric constant
and p is the minimal Ricci curvature.
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. o Systematically use existing symmetries to
accelerate computations.

o« We computed the spectrum of the scalar
Laplacian.

e Multiplicities of (massive) Eigenmodes.
o Spectral gap almost constant.

o Next: Laplacian on differential forms
(soon!).

e Vector bundles, fluxes, sLag’s, ...
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