Calabi-Yau Metrics and the Spectrum of the Laplacian

Volker Braun

University of Pennsylvania, Math/Physics Research Group

November 7, 2007

Overview

CY Metrics
Implementation
Symmetry
Scalar Laplacian
Conclusions
CY Metrics
Implementation
Symmetry
Scalar Laplacian
Conclusions

CY Metrics

* Kähler Metrics on
the Quintic
* Fubini-Study
Metric
* Parametrizing
Metrics
* Technicalities
* More Technical
* Even More
Technical
* Balanced Metrics
* T-Operator
Implementation
Symmetry
Scalar Laplacian
Conclusions

Calabi-Yau Metrics

Kähler Metrics on the Quintic

CY Metrics

* Kähler Metrics on

the Quintic

* Fubini-Study

Metric

* Parametrizing

Metrics

* Technicalities
* More Technical
* Even More

Technical

* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

Let's consider our favourite CY threefold:

$$
Q=\left\{z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\} \subset \mathbb{P}^{4}
$$

Kähler Metrics on the Quintic

CY Metrics

* Kähler Metrics on

the Quintic

* Fubini-Study

Metric

* Parametrizing

Metrics

* Technicalities
* More Technical
* Even More

Technical

* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

Let's consider our favourite CY threefold:

$$
Q=\left\{z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\} \subset \mathbb{P}^{4}
$$

The metric is completely determined by the Kähler potential $K(z, \bar{z})$:

$$
\begin{gathered}
g_{i \bar{j}}(z, \bar{z})=\partial_{i} \bar{\partial}_{\bar{j}} K(z, \bar{z}) \\
\omega=g_{i \bar{j}}(z, \bar{z}) \mathrm{d} z^{i} \mathrm{~d} \bar{z}^{\bar{j}}=\partial \bar{\partial} K(z, \bar{z}) .
\end{gathered}
$$

Kähler Metrics on the Quintic

CY Metrics

* Kähler Metrics on

 the Quintic* Fubini-Study

Metric

* Parametrizing

Metrics

* Technicalities
* More Technical
* Even More

Technical

* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

Let's consider our favourite CY threefold:

$$
Q=\left\{z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\} \subset \mathbb{P}^{4}
$$

The metric is completely determined by the Kähler potential $K(z, \bar{z})$:

$$
\begin{gathered}
g_{i \bar{j}}(z, \bar{z})=\partial_{i} \bar{\partial}_{\bar{j}} K(z, \bar{z}) \\
\omega=g_{i \bar{j}}(z, \bar{z}) \mathrm{d} z^{i} \mathrm{~d} \bar{z}^{\bar{j}}=\partial \bar{\partial} K(z, \bar{z}) .
\end{gathered}
$$

Locally, K is a real function. ω is a $(1,1)$-form.

Fubini-Study Metric

```
CY Metrics
* Kähler Metrics on
```


$S U(5)$ acts on the 5 homogeneous coordinates.

```
Fubini-Study
```

Fubini-Study
Metric

* Parametrizing
Metrics
* Technicalities
* More Technical
* Even More
Technical
* Balanced Metrics
* T-Operator
Implementation
Symmetry
Scalar Laplacian
Conclusions

```

\section*{Fubini-Study Metric}
 the Quintic
```

* Fubini-Study

```
Metric

Parametrizing
Metrics
* Technicalities
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions
\(S U(5)\) acts on the 5 homogeneous coordinates. Unique \(S U(5)\) invariant Kähler metric comes from
\[
K_{\mathrm{FS}}=\ln \sum_{i=0}^{4} z_{i} \bar{z}_{\bar{i}}
\]

\section*{Fubini-Study Metric}
* Kähler Metrics on the Quintic

\author{
* Fubini-Study
}

Metric
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation

\section*{Symmetry}

Scalar Laplacian
Conclusions
\(S U(5)\) acts on the 5 homogeneous coordinates. Unique \(S U(5)\) invariant Kähler metric comes from
\[
K_{\mathrm{FS}}=\ln \sum_{i=0}^{4} z_{i} \bar{z}_{\bar{i}}
\]

Generalize to
\[
K_{\mathrm{FS}}=\ln \sum_{\alpha, \bar{\beta}=0}^{4} h^{\alpha \bar{\beta}} z_{\alpha} \bar{z}_{\bar{\beta}}
\]
with \(h\) a hermitian \(5 \times 5\) matrix.

\section*{Parametrizing Metrics}

```

* Fubini-Study
Metric
* Parametrizing
Metrics
* Technicalities
* More Technical
* Even More
Technical
* Balanced Metrics
* T-Operator
Implementation
Symmetry
Scalar Laplacian
Conclusions

```

\section*{Parametrizing Metrics}

\author{
\(\frac{\text { CY Metrics }}{\text { Kähler Metrics on }}\) \\ the Quintic \\ * Fubini-Study \\ Metric \\ \section*{\(\stackrel{\text { Param }}{ }\)} \\ * Technicalities \\ * More Technical \\ * Even More \\ Technical \\ * Balanced Metrics \\ * T-Operator \\ Implementation \\ \section*{Symmetry} \\ Scalar Laplacian \\ Conclusions
}
\(K_{\mathrm{FS}}\) lives on \(\mathbb{P}^{4}\), but we can restrict to \(Q \subset \mathbb{P}^{4}\). The resulting Kähler metric on the quintic is far from Ricci flat, though.

\section*{Parametrizing Metrics}
* Kähler Metrics on the Quintic
* Fubini-Study

Metric
\& Parametrizing
Metrics
* Technicalities
More Technical
* Even More
Technical
* Balanced Metrics
*-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions
\(K_{\mathrm{FS}}\) lives on \(\mathbb{P}^{4}\), but we can restrict to \(Q \subset \mathbb{P}^{4}\). The resulting Kähler metric on the quintic is far from Ricci flat, though.
Let's try [Donaldson]
\[
\begin{aligned}
& K(z, \bar{z})= \\
& \ln \sum_{\substack{\sum_{i}=k \\
\sum \bar{j}_{\ell}=k}} h^{\left(i_{1}, \ldots, i_{k}\right),\left(\bar{j}_{1}, \ldots, \bar{j}_{k}\right)} \underbrace{z_{1}^{i_{1}} \cdots z_{k}^{i_{k}}}_{\text {degree } k} \underbrace{\bar{z}_{1}^{j_{1}} \cdots z_{k}^{\bar{j}_{k}}}_{\text {degree } k}
\end{aligned}
\]
for some hermitian \(N \times N\) matrix \(h\) \(N=\binom{5+k-1}{k}=\{\# \operatorname{deg} k\) monomials \(\}\)

\section*{Technicalities}
* Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics

On the quintic \(z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\). So not all monomials are independent in degrees \(k \geq 5\).

\section*{* Technicalities}
```

* More Technical
* Even More
Technical
* Balanced Metrics
* T-Operator
Implementation
Symmetry

```

Scalar Laplacian
Conclusions

\section*{Technicalities}
\(\frac{\text { CY Metrics }}{\text { Kähler Metrics on }}\)
the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics

\section*{* Technicalities}
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
On the quintic \(z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\). So not all monomials are independent in degrees \(k \geq 5\).

Let \(s_{\alpha}\) be a basis for
\[
\mathbb{C}\left[z_{0}, \ldots, z_{4}\right] /\left.\left\langle z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\rangle\right|_{\text {degree } k}
\]

Symmetry
Scalar Laplacian
Conclusions

\section*{Technicalities}
* Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics

\section*{* Technicalities}
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

On the quintic \(z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\). So not all monomials are independent in degrees
\(k \geq 5\).
Let \(s_{\alpha}\) be a basis for
\[
\mathbb{C}\left[z_{0}, \ldots, z_{4}\right] /\left.\left\langle z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}=0\right\rangle\right|_{\text {degree } k}
\]
and try this Ansatz for the metric on the quintic:
\[
K(z, \bar{z})=\ln \sum_{\alpha, \bar{\beta}} h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}
\]

\section*{More Technical}

Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics
* Technicalities

\section*{* More Technical}
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
\(s_{\alpha}\) : Sections of \(\mathcal{O}_{Q}(k)\)
\[
0 \rightarrow H^{0}\left(\mathbb{P}^{4}, \mathcal{O}(k-5)\right) \rightarrow H^{0}\left(\mathbb{P}^{4}, \mathcal{O}(k)\right) \rightarrow H^{0}\left(Q, \mathcal{O}_{Q}(k)\right) \rightarrow 0
\]

\section*{Symmetry}

Scalar Laplacian
Conclusions
\[
(\sigma, \tau) \mapsto \frac{\sigma(z) \bar{\tau}(\bar{z})}{\sum h^{\alpha \bar{\beta}} s_{\alpha}(z) \bar{s}_{\bar{\beta}}(\bar{z})}
\]

\section*{Even More Technical}

\author{
CY Metrics \\ * Kähler Metrics on the Quintic \\ * Fubini-Study \\ Metric \\ * Parametrizing \\ Metrics \\ * Technicalities \\ * More Technical \\ * Even More \\ Metric on the line bundle \\ Technical \\ * Balanced Metrics \\ *-Operator \\ Implementation \\ Symmetry \\ Scalar Laplacian \\ Conclusions
}

\section*{Even More Technical}

\section*{CY Metrics}

Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

Metric on the line bundle
\[
(\sigma, \tau) \in C^{\infty}(Q, \mathbb{C})
\]
gives a value at each point.
This defines a metric on the space of sections \(H^{0}\left(Q, \mathcal{O}_{Q}(k)\right):\)
\[
\langle\sigma, \tau\rangle=\int_{Q}(\sigma, \tau)(z, \bar{z}) \mathrm{dVol}
\]
(does not depend on points of \(Q\) )

\section*{Balanced Metrics}

\section*{CY Metrics \\ * Kähler Metrics on the Quintic \\ * Fubini-Study \\ Metric \\ \(h\) is "balanced" if the matrices representing the metrics coincide, that is:}
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More
\[
\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N}=h^{-1}
\]
* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

\section*{Balanced Metrics}
* Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More

Technical

\section*{* Balanced Metrics}
* T-Operator

Implementation

\section*{Symmetry}

Scalar Laplacian
Conclusions
\(h\) is "balanced" if the matrices representing the metrics coincide, that is:
\[
\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N}=h^{-1}
\]

Theorem 1. Let \(h\) be the balanced metric for each \(k\). Then the sequence of metrics
\[
\omega_{k}=\partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}
\]
converges to the Calabi-Yau metric as \(k \rightarrow \infty\).

\section*{Balanced Metrics}
* Kähler Metrics on the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More

Technical
\(\star\) Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions
\(h\) is "balanced" if the matrices representing the metrics coincide, that is:
\[
\underbrace{\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)_{1 \leq \alpha, \bar{\beta} \leq N}}_{\text {Depends nonlinearly on } h}=h^{-1}
\]

Theorem 1. Let \(h\) be the balanced metric for each \(k\). Then the sequence of metrics
\[
\omega_{k}=\partial \bar{\partial} \ln \sum h^{\alpha \bar{\beta}} s_{\alpha} \bar{s}_{\bar{\beta}}
\]
converges to the Calabi-Yau metric as \(k \rightarrow \infty\).

\section*{T-Operator}

the Quintic
* Fubini-Study

Metric
* Parametrizing

Metrics
* Technicalities
* More Technical
* Even More

Technical
* Balanced Metrics
* T-Operator

Implementation
Symmetry
Scalar Laplacian
Conclusions

\section*{How to solve}
\[
\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)^{-1}=h ?
\]

\section*{T-Operator}


How to solve
\[
\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)^{-1}=h ?
\]

\section*{Donaldson's T-operator:}
\[
\begin{aligned}
T(h)_{\alpha \bar{\beta}} & =\left\langle s_{\alpha}, s_{\beta}\right\rangle \\
& =\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{\sum h^{\alpha \bar{\beta}} s_{\alpha}(z) \bar{s}_{\bar{\beta}}(\bar{z})} \mathrm{dVol}
\end{aligned}
\]

\section*{T-Operator}
\begin{tabular}{l} 
CY Metrics \\
\hline Kähler Metrics on \\
the Quintic \\
\&ubini-Study \\
Metric \\
Parametrizing \\
Metrics \\
\& Technicalities \\
More Technical \\
Even More \\
Technical \\
Balanced Metrics \\
\& T-Operator \\
Implementation \\
\hline Symmetry \\
\hline Scalar Laplacian \\
\hline Conclusions \\
\hline
\end{tabular}

How to solve
\[
\left(\left\langle s_{\alpha}, s_{\beta}\right\rangle\right)^{-1}=h ?
\]

Donaldson's T-operator:
\[
\begin{aligned}
T(h)_{\alpha \bar{\beta}} & =\left\langle s_{\alpha}, s_{\beta}\right\rangle \\
& =\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{\sum h^{\alpha \bar{\beta}} s_{\alpha}(z) \bar{s}_{\bar{\beta}}(\bar{z})} \mathrm{dVol}
\end{aligned}
\]

> One can show that iterating \(T\left(h_{n}\right)^{-1}=h_{n+1}\) converges! Fixed point is balanced metric.

\section*{Implementation}
* Algorithm
* What is the
Volume Form?
* How to Integrate
* Zeros of Random
Polynomials
* Testing the Result
* Resulting Plot
Symmetry
Scalar Laplacian
Conclusions

\section*{Implementation}

\section*{Algorithm}

\author{
- Pick a basis of sections \(s_{\alpha}\) \\ Implementation \\ \section*{* Algorithm} \\ *What is the \\ Volume Form? \\ * How to Integrate \\ * Zeros of Random \\ Polynomials \\ * Testing the Result \\ * Resulting Plot \\ Symmetry \\ Scalar Laplacian \\ Conclusions
}

\section*{Algorithm}

> - Pick a basis of sections \(s_{\alpha}\)
> Implementation
> * Algorithm
> *What is the
> Volume Form?
> * How to Integrate
> * Zeros of Random Polynomials
> * Testing the Result
> * Resulting Plot

\section*{Algorithm}
Implementation

\section*{* Algorithm}
* What is the

Volume Form?
* How to Integrate
* Zeros of Random

Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions
- Pick a basis of sections \(s_{\alpha}\)
- Iterate \(h=T(h)^{-1}\) where
\[
T(h)_{\alpha \bar{\beta}}=\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{s_{\alpha} h^{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}} \mathrm{dVol}
\]
- The approximate Calabi-Yau metric is
\[
g_{i \bar{j}}=\partial_{i} \bar{\partial}_{\bar{j}} \ln \sum s_{\alpha} h^{\alpha \bar{\beta}_{\bar{s}}^{\bar{\beta}}}
\]

\section*{Algorithm}

\section*{* Algorithm}
* What is the

Volume Form?
* How to Integrate
* Zeros of Random

Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions
- Pick a basis of sections \(s_{\alpha}\)
- Iterate \(h=T(h)^{-1}\) where
\[
T(h)_{\alpha \bar{\beta}}=\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{s_{\alpha} h^{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}} \mathrm{dVol}
\]
- The approximate Calabi-Yau metric is
\[
g_{i \bar{j}}=\partial_{i} \bar{\partial}_{\bar{j}} \ln \sum s_{\alpha} h^{\alpha \bar{\beta}_{\bar{\beta}}^{\bar{\beta}}}
\]

Runs easily on "our" 10 dual-core AMD
Opteron cluster (Evelyn Thomson, ATLAS).

\section*{What is the Volume Form?}

Implementation
* Algorithm
\(\diamond\) What is the
Volume Form?
* How to Integrate
* Zeros of Random Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

The T-operator contains dVol:
\[
T(h)_{\alpha \bar{\beta}}=\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{s_{\alpha} h^{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}} \mathrm{dVol}
\]

We could use the volume form computed from \(h^{\alpha \bar{\beta}}\).

\section*{What is the Volume Form?}

\author{
Implementation
}
* Algorithm
\(\diamond\) What is the
Volume Form?
* How to Integrate
* Zeros of Random Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

The T-operator contains dVol:
\[
T(h)_{\alpha \bar{\beta}}=\int_{Q} \frac{s_{\alpha} \bar{s}_{\bar{\beta}}}{s_{\alpha} h^{\alpha \bar{\beta}} \bar{s}_{\bar{\beta}}} \mathrm{dVol}
\]

We could use the volume form computed from \(h^{\alpha \bar{\beta}}\). But we actually know the exact Calabi-Yau volume form
\[
\mathrm{dVol}=\Omega \wedge \bar{\Omega}, \quad \Omega=\oint \frac{\mathrm{d}^{4} x}{Q(x)}
\]

\section*{How to Integrate}

\author{
CY Metrics \\ Implementation \\ * Algorithm \\ * What is the \\ Volume Form? \\ * How to Integrate \\ * Zeros of Random \\ Polynomials \\ * Testing the Result \\ * Resulting Plot \\ Symmetry \\ Scalar Laplacian \\ Conclusions
}

\section*{Defining coordinate patches would painful!}

\section*{How to Integrate}

Implementation
* Algorithm
* What is the

Volume Form?
\(\star\) How to Integrate
* Zeros of Random Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

Defining coordinate patches would painful! [Douglas,Karp,Lukic,Reinbacher]: Use random points \(\left\{p_{1}, \ldots, p_{N}\right\}\) such that
\[
\sum f\left(p_{i}\right) \frac{1}{N} \xrightarrow{N \rightarrow \infty} \int_{Q} f(x) \mathrm{dVol}
\]

\section*{How to Integrate}

Implementation
* Algorithm
* What is the

Volume Form?
* How to Integrate
* Zeros of Random

Polynomials
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

Defining coordinate patches would painful! [Douglas,Karp,Lukic,Reinbacher]: Use random points \(\left\{p_{1}, \ldots, p_{N}\right\}\) such that
\[
\sum f\left(p_{i}\right) \frac{1}{N} \xrightarrow{N \rightarrow \infty} \int_{Q} f(x) \mathrm{dVol}
\]

Pick "random" lines
\[
\ell \simeq \mathbb{P}^{1} \subset \mathbb{P}^{4} \Rightarrow \ell \cap Q=\{5 \mathrm{pt}\} .
\]

The "random" distribution of \(\ell\) 's determines the distribution of points!

\section*{Zeros of Random Polynomials}

Implementation
* Algorithm
* What is the

Volume Form?
* How to Integrate
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

Its easy to make everything \(S U(5)\)-uniformly distributed. Then
\[
\sum f\left(p_{i}\right) \frac{1}{N} \xrightarrow{N \rightarrow \infty} \int_{Q} f(x) \omega_{\mathrm{FS}}^{3}
\]
by symmetry! But we want the Calabi-Yau volume form...

\section*{Zeros of Random Polynomials}

Implementation
* Algorithm
* What is the

Volume Form?
* How to Integrate
* Testing the Result
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

Its easy to make everything \(S U(5)\)-uniformly distributed. Then
\[
\sum f\left(p_{i}\right) \frac{1}{N} \xrightarrow{N \rightarrow \infty} \int_{Q} f(x) \omega_{\mathrm{FS}}^{3}
\]
by symmetry! But we want the Calabi-Yau volume form... So we have to weight the points by
\[
\sum f\left(p_{i}\right) \underbrace{\left(\frac{\Omega \wedge \bar{\Omega}\left(p_{i}\right)}{\omega_{\mathrm{FS}}^{3}\left(p_{i}\right)}\right)}_{\in \mathbb{R}} \frac{1}{N} \stackrel{N \rightarrow \infty}{\longrightarrow} \int_{Q} f(x){\mathrm{d} \operatorname{Vol}_{\mathrm{CY}}}
\]

\section*{Testing the Result}

\author{
CY Metrics \\ Implementation \\ * Algorithm \\ * What is the \\ Volume Form? \\ * How to Integrate \\ * Zeros of Random \\ Polynomials \\ * Testing the Result
}

How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that
\[
\Omega \wedge \bar{\Omega} \sim \omega^{3}
\]

\section*{Testing the Result}

Implementation
* Algorithm
* What is the

Volume Form?
* How to Integrate
* Zeros of Random

Polynomials

\section*{* Testing the Result}
* Resulting Plot

Symmetry
Scalar Laplacian
Conclusions

How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that
\[
\Omega \wedge \bar{\Omega} \sim \omega^{3}
\]

So normalize both volume forms and define
\[
\sigma_{k}=\int_{Q}\left|1-\frac{\Omega(z) \wedge \bar{\Omega}(\bar{z})}{\omega^{3}(z, \bar{z})}\right| \mathrm{dVol}
\]

On a Calabi-Yau manifold \(\sigma_{k}=O\left(k^{2}\right)\)

\section*{Resulting Plot}


\section*{CY Metrics}

Implementation

\section*{Symmetry}
* Symmetric

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions

\title{
The \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\) Quotient
}

\section*{Symmetric Quintics}

Implementation
Symmetry

\section*{\& Symmetric}

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian

The Fermat quintic is part of a 5 -dimensional family of quintics with a free \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\) group action.

\section*{Symmetric Quintics}

\section*{CY Metrics}

Implementation

\section*{Symmetry}

\section*{\& Symmetric}

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions

The Fermat quintic is part of a 5 -dimensional family of quintics with a free \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\) group action.

It is numerically much easier to work on the four-generation quotient \(Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)\).

\section*{Symmetric Quintics}

\section*{Symmetry}

\section*{\& Symmetric}

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs. Equivariant
* Result

Scalar Laplacian
Conclusions

The Fermat quintic is part of a 5 -dimensional family of quintics with a free \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\) group action.

It is numerically much easier to work on the four-generation quotient \(Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)\).
To do this, we only have to replace the sections \(s_{\alpha}\) of \(\mathcal{O}_{Q}(k)\) by invariant sections!

\section*{Symmetry Group}

Implementation

\section*{Symmetry}
* Symmetric

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions
\[
\begin{aligned}
& g_{1}\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)
\end{aligned}
\]

Note that \(g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=e^{\frac{2 \pi i}{5}}\), so they generate the Heisenberg group
\[
0 \rightarrow \mathbb{Z}_{5} \rightarrow G \rightarrow \mathbb{Z}_{5} \times \mathbb{Z}_{5} \rightarrow 0
\]

\section*{Invariants}
```

CY Metrics
Implementation
Symmetry
Symmetric
Quintics

* Symmetry Group

$$
\mathbb{C}\left[z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}
$$

* Invariant vs.
Equivariant
* Result
Scalar Laplacian
Conclusions

```

\section*{The invariant sections are}

\section*{Implementation}
```

Symmetry

* Symmetric
Quintics
* Symmetry Group
* Invariant vs.
Equivariant
* Result
Scalar Laplacian
Conclusions

```

\section*{Invariants}

Symmetry
* Symmetric

Quintics
Symmetry Group

\section*{* Invariants}
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions

\section*{The invariant sections are}
\[
\mathbb{C}\left[z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right]^{G}=\bigoplus_{i=0}^{100} \eta_{i} \mathbb{C}\left[\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}\right]
\]

\section*{("Hironaka decomposition") where}
\(\theta_{1} \xlongequal{\text { def }}\)
\[
z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}
\]
\[
z_{0} z_{1} z_{2} z_{3} z_{4}
\]
\[
\theta_{3} \xlongequal{\text { def }} z_{0}^{3} z_{1} z_{4}+z_{0} z_{1}^{3} z_{2}+z_{0} z_{3} z_{4}^{3}+z_{1} z_{2}^{3} z_{3}+z_{2} z_{3}^{3} z_{4}
\]
\[
\theta_{4} \xlongequal{\text { def }} \quad z_{0}^{10}+z_{1}^{10}+z_{2}^{10}+z_{3}^{10}+z_{4}^{10}
\]
\[
\theta_{5} \xlongequal{\text { def }} z_{0}^{8} z_{2} z_{3}+z_{0} z_{1} z_{3}^{8}+z_{0} z_{2}^{8} z_{4}+z_{1}^{8} z_{3} z_{4}+z_{1} z_{2} z_{4}^{8}
\]

\section*{More on Invariants}

\section*{CY Metrics}

Implementation
Symmetry
- Symmetric

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions
... and the "secondary invariants" \(\eta_{i}\) are polynomials in degrees \(0,5,10,15,20,25,30\) :
\[
\eta_{1} \stackrel{\text { def }}{=} 1
\]
\[
\eta_{2} \stackrel{\text { def }}{=} z_{0}^{2} z_{1} z_{2}^{2}+z_{1}^{2} z_{2} z_{3}^{2}+z_{2}^{2} z_{3} z_{4}^{2}+z_{3}^{2} z_{4} z_{0}^{2}+z_{4}^{2} z_{0} z_{1}^{2}
\]
\[
\vdots
\]
\(\eta_{100} \xlongequal{\text { def }} z_{0}^{30}+z_{1}^{30}+z_{2}^{30}+z_{3}^{30}+z_{4}^{30}\)
All invariants are in degrees divisible by 5 !

\section*{More on Invariants}

\section*{CY Metrics}

Implementation
Symmetry
* Symmetric

Quintics
* Symmetry Group
* Invariants
\& More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions
... and the "secondary invariants" \(\eta_{i}\) are polynomials in degrees \(0,5,10,15,20,25,30\) :
\[
\eta_{1} \stackrel{\text { def }}{=} 1
\]
\(\eta_{2} \xlongequal{\text { def }} z_{0}^{2} z_{1} z_{2}^{2}+z_{1}^{2} z_{2} z_{3}^{2}+z_{2}^{2} z_{3} z_{4}^{2}+z_{3}^{2} z_{4} z_{0}^{2}+z_{4}^{2} z_{0} z_{1}^{2}\)
!
\(\eta_{100} \xlongequal{\text { def }} z_{0}^{30}+z_{1}^{30}+z_{2}^{30}+z_{3}^{30}+z_{4}^{30}\)
All invariants are in degrees divisible by 5 ! No invariant sections in \(\mathcal{O}_{Q}(k)\) unless \(5 \mid k\) ?

\section*{Invariant vs. Equivariant}
CY Metrics
Implementation
Symmetry
- Symmetric
Quintics* Symmetry Group
* Invariants
* More on Invariants
\& Invariant vs.
Equivariant
* Result
Scalar Laplacian
Conclusions
\(\mathcal{O}_{Q}(k)\) is not \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\)-equivariant unless \(5 \mid k\).

\section*{Invariant vs. Equivariant}

\author{
Implementation
}

Symmetry
* Symmetric

Quintics
* Symmetry Group
* Invariants
* More on Invariants
* Invariant vs.

Equivariant
* Result

Scalar Laplacian
Conclusions
\(\mathcal{O}_{Q}(k)\) is not \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\)-equivariant unless \(5 \mid k\).
Under the quotient map \(q: Q \rightarrow Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)\),
\[
q^{*}\left(\mathcal{O}_{Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)}(1)\right)=\mathcal{O}_{Q}(5)
\]

\section*{Invariant vs. Equivariant}

\section*{Symmetry}
* Symmetric

Quintics
* Symmetry Group
* Invariants
* More on Invariants

\author{
* Invariant vs.
}

Equivariant
* Result

Scalar Laplacian
Conclusions
\(\mathcal{O}_{Q}(k)\) is not \(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\)-equivariant unless \(5 \mid k\).
Under the quotient map \(q: Q \rightarrow Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)\),
\[
q^{*}\left(\mathcal{O}_{Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)}(1)\right)=\mathcal{O}_{Q}(5)
\]

The first Chern classes of bundles coming from the quotient are divisible by 5 , that is,
\[
q^{*}: \underbrace{H^{2}\left(Q /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right), \mathbb{Z}\right)}_{\mathbb{Z} \oplus \mathbb{Z}_{5}^{2}} \stackrel{\times 5}{\longrightarrow} \underbrace{H^{2}(Q, \mathbb{Z})}_{\mathbb{Z}}
\]

\section*{Result}

\begin{tabular}{l} 
CY Metrics \\
\hline Implementation \\
\hline Symmetry \\
\hline Scalar Laplacian \\
The Music of \\
Strings \\
\& Matrix Elements \\
Spherical \\
Harmonics \\
Example \\
Result from Matrix \\
Elements \\
Calternative \\
\&onaldson's \\
Formula \\
\&esults Combined \\
Observation \\
\& Varying Moduli \\
\& Moduli Space \\
Spectral Gap \\
Conclusions \\
\hline
\end{tabular}

\section*{The Laplace-Beltrami Operator}

\section*{The Music of Strings}

Implementation
Symmetry

\section*{Scalar Laplacian}
```

* The Music of

```
* The Music of
Strings
* Matrix Elements
* Spherical
Harmonics
* Example
* Result from Matrix
Elements
* Alternative
Calculation
* Donaldson's
Formula
* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap
Conclusions
Harmonics
```


Just knowing the Calabi-Yau metric is useless!

The Music of Strings

Implementation

Symmetry
Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!
Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.

The Music of Strings

Implementation

Symmetry

Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!
Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.
\Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators.

The Music of Strings

Symmetry

Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Just knowing the Calabi-Yau metric is useless!
Would like to know the Eigenvalues and Eigenmodes of the Laplace operator.
\Rightarrow Complete KK reduction 10d \rightarrow 4d, including normalization of fields, numeric values of the Yukawa couplings, threshold corrections, and proton decay operators.
For now, only the scalar Laplace operator

$$
\Delta\left|\phi_{i}\right\rangle=\lambda_{i}\left|\phi_{i}\right\rangle
$$

Matrix Elements

Implementation
Symmetry
Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

In terms of some (non-orthogonal) basis of functions $\left\{f_{s}\right\}$, we can write

$$
\left|\phi_{i}\right\rangle=\sum_{t}\left|f_{t}\right\rangle\left\langle f_{t} \mid \tilde{\phi}_{i}\right\rangle
$$

and

$$
\begin{aligned}
\Delta\left|\phi_{i}\right\rangle & =\lambda_{i}\left|\phi_{i}\right\rangle \\
\Rightarrow \quad\left\langle f_{s}\right| \Delta\left|f_{t}\right\rangle \underbrace{\left\langle f_{t} \mid \tilde{\phi}_{i}\right\rangle}_{\vec{v}} & =\lambda_{i}\left\langle f_{s} \mid f_{t}\right\rangle \underbrace{\left\langle f_{t} \mid \tilde{\phi}_{i}\right\rangle}_{\vec{v}}
\end{aligned}
$$

Spherical Harmonics

CY Metrics

Implementation
Symmetry
Scalar Laplacian

* The Music of

Strings

* Matrix Elements

* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Using an approximate finite basis $\left\{f_{s}\right\}$, we only have to solve the generalized Eigenvalue problem

$$
\left\langle f_{s}\right| \Delta\left|f_{t}\right\rangle \vec{v}=\lambda_{i}\left\langle f_{s} \mid f_{t}\right\rangle \vec{v}
$$

Spherical Harmonics

Implementation

Symmetry

Scalar Laplacian

* The Music of Strings
* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Using an approximate finite basis $\left\{f_{s}\right\}$, we only have to solve the generalized Eigenvalue problem

$$
\left\langle f_{s}\right| \Delta\left|f_{t}\right\rangle \vec{v}=\lambda_{i}\left\langle f_{s} \mid f_{t}\right\rangle \vec{v}
$$

Nice basis: Recall that $\mathbb{P}^{4}=S^{7} / U(1)$
So take the $U(1)$-invariant spherical harmonics on S^{7}.

Example

Implementation

Symmetry

Scalar Laplacian

* The Music of Strings
* Matrix Elements
* Spherical

Harmonics

\& Example

* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

In homogeneous coordinates, the spherical harmonics are
$\frac{(\text { degree } k \text { monomial }) \overline{(\text { degree } k \text { monomial })}}{\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right)^{k}}$
So, for example $k=1$ on \mathbb{P}^{1} :

Homog.	$\frac{z_{0} \bar{z}_{0}}{\left\|z_{0}\right\|^{2}+\left\|z_{1}\right\|^{2}}$	$\frac{z_{1} \bar{z}_{0}}{\left\|z_{0}\right\|^{2}+\left\|z_{1}\right\|^{2}}$	$\frac{z_{0} \bar{z}_{1}}{\left\|z_{0}\right\|^{2}+\left\|z_{1}\right\|^{2}}$	$\frac{z_{1} \bar{z}_{1}}{\left\|z_{0}\right\|^{2}+\left\|z_{1}\right\|^{2}}$
Inhomog.	$\frac{1}{1+\|x\|^{2}}$	$\frac{x}{1+\|x\|^{2}}$	$\frac{\bar{x}}{1+\|x\|^{2}}$	$\frac{x \bar{x}}{1+\|x\|^{2}}$

Result from Matrix Elements

Alternative Calculation

Implementation

Symmetry

Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Donaldson originally already proposed a different way to compute the Eigenmodes of the scalar Laplacian.
It does not generalize to the Laplacian on differential forms.

Nevertheless interesting to compare to!

Donaldson's Formula

Results Combined

Observation

CY Metrics
Implementation
Symmetry
Scalar Laplacian
Strings Music of
Matrix Elements
Spherical
Examples
Result from Matrix
Elements
Calternative
Donaldson's
Formula
Results Combined
Observation
Varying Moduli
Moduli Space
Spectral Gap
Conclusions

The first massive Eigenmode seems to have degeneracy 20.

Observation

CY Metrics

Implementation
Symmetry
Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined

* Observation

* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.

This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_{F}=S_{5} \ltimes \mathbb{Z}_{4}$ of order 75000 .

Observation

Implementation

Symmetry

Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined

* Observation

* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.
This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_{F}=S_{5} \ltimes \mathbb{Z}_{4}$ of order 75000 .
The first massive Eigenmode should transform in one of the 106 irreps:

Dimension d	1	4	5	6	20	30	40	120
Irreps in $\operatorname{dim} d$	10	10	10	5	20	40	10	1

Observation

Implementation

Symmetry

Scalar Laplacian

* The Music of Strings
* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined

* Observation

* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

The first massive Eigenmode seems to have degeneracy 20.
This can be explained partially by symmetry, the Fermat quintic has the discrete symmetry group $G_{F}=S_{5} \ltimes \mathbb{Z}_{4}$ of order 75000 .
The first massive Eigenmode should transform in one of the 106 irreps:

Dimension d	1	4	5	6	20	30	40	120
Irreps in $\operatorname{dim} d$	10	10	10	5	20	40	10	1

There are irreps only in eight different dimensions, and 20 is one of these possibilities.

Varying Moduli

Implementation

Symmetry

Scalar Laplacian

* The Music of Strings
* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix Elements
* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

Consider the one-parameter family of

 $\mathbb{Z}_{5} \times \mathbb{Z}_{5}$-symmetric quintics:$$
Q_{\psi}=\sum_{i=0}^{4} z_{i}^{5}-5 \psi \prod_{i=0}^{4} z_{i}
$$

For any given ψ, we can compute the spectrum of the Laplace operator.
Work on the quotient $Q_{\psi} /\left(\mathbb{Z}_{5} \times \mathbb{Z}_{5}\right)$.

Moduli Space

 $Q_{\psi}=\sum z_{i}^{5}-5 \psi \prod z_{i}$

Spectral Gap

Implementation
Symmetry
Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix

Elements

* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
* Spectral Gap

Conclusions

The first massive Eigenvalue of the scalar Laplacian on a Calabi-Yau manifold is

$$
\frac{\pi^{2}}{D^{2}} \leq \lambda_{1} \leq \frac{2 d(d+4)}{D^{2}}
$$

where d is the dimension and D the diameter.

Spectral Gap

Implementation

Symmetry

Scalar Laplacian

* The Music of

Strings

* Matrix Elements
* Spherical

Harmonics

* Example
* Result from Matrix Elements
* Alternative

Calculation

* Donaldson's

Formula

* Results Combined
* Observation
* Varying Moduli
* Moduli Space
\& Spectral Gap
Conclusions

The first massive Eigenvalue of the scalar Laplacian on a Calabi-Yau manifold is

$$
\frac{\pi^{2}}{D^{2}} \leq \lambda_{1} \leq \frac{2 d(d+4)}{D^{2}}
$$

where d is the dimension and D the diameter.
More precisely:

$$
\frac{1}{4} h^{2} \leq \lambda_{1} \leq(\text { const. })\left(\rho h+h^{2}\right)
$$

where h is Cheeger's isoperimetric constant and ρ is the minimal Ricci curvature.

Conclusions \& Outlook

Implementation
Symmetry
Scalar Laplacian
Conclusions

- Conclusions \&

Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).

Conclusions \& Outlook

CY Metrics

Implementation
Symmetry
Scalar Laplacian

Conclusions

\& Conclusions \&
Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.

Conclusions \& Outlook

Implementation

Symmetry

Scalar Laplacian

Conclusions

\& Conclusions \&
Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.

Conclusions \& Outlook

Implementation

Symmetry

Scalar Laplacian

Conclusions

\& Conclusions \&
Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.

Conclusions \& Outlook

Implementation

Symmetry

Scalar Laplacian

Conclusions

\& Conclusions \&
Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.

Conclusions \& Outlook

Implementation

Symmetry

Scalar Laplacian

Conclusions

\& Conclusions \& Outlook

- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.
- Next: Laplacian on differential forms (soon!).

Conclusions \& Outlook

Symmetry

Scalar Laplacian

Conclusions

* Conclusions \& Outlook
- We can now compute the Calabi-Yau metric numerically (including CICY).
- Systematically use existing symmetries to accelerate computations.
- We computed the spectrum of the scalar Laplacian.
- Multiplicities of (massive) Eigenmodes.
- Spectral gap almost constant.
- Next: Laplacian on differential forms (soon!).
- Vector bundles, fluxes, sLag's, ...

