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Physics of Strong Interactions

• QCD perturbation theory, in the UV

• Non-perturbative phenomena in the IR
Lattice QCD

• Dynamical phenomena, finite Temperature,
real-time correlation functions,
Applications to RHIC physics:
Holographic approaches
String theory may have real impact!

QCD in this talk:

- Pure Yang-Mills at Nc � 1

- QCD in the quenced limit: Nf/Nc � 1
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Holographic Approaches to QCD

“TOP - BOTTOM APPROACH”

• 10D critical string theory

• D-brane configurations

• Decoupling limit of open and closed string sectors

• Treatable in the supergravity limit, `s → 0

EXAMPLES

• Klebanov-Strassler, Polchinski-Strassler,
Maldacena-Nunez, orbifold constructions, etc. for N = 1, 2

gauge theories

• Witten’s model for pure Yang-Mills
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Witten’s Model ’98

D4’s

N

IIA 
in 

c

R

• Y M5 on D4 Branes

• Antiperiodic boundary
conditions on for the fermions
on S1 mψ ∼ 1

R , mφ ∼ λ4

R

• UV cut-off in the 4D theory at
E = 1/R

• Pure Y M4 in the IR
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Witten’s model

λ4

UV

cut−off

λ0
λ5= 
R

E1/R

UV physics

IR physics

• Pure Y M4

• λ0 � 1

• Weak curvature

• Confinement, mass gap

• Mixing with KK

• λ0 � 1

• High curvature corrections

• No asymptotic freedom
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Confining Gauge Theories in the SG Regime

• UV and the IR physics disconnected

- Effects of the logarithmic running not captured

• Mixing of pure gauge sector with the KK sector

- To disentangle need λ0 � 1

- Then `s corrections !

• Problems with the glueball spectra (Witten ’98, Ooguri et al. ’98; )
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The glueball spectra

Normalizable modes of φ(r, ~x) = f(r)ei
~k·~x

⇔ spectrum of O(~x)|vac〉

f(r)

rR

Boundary Conditions 
at the UV cut−off

KK like spectra m2
n ∝ n2 for n � 1 !
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Solution to problems

• Full σ-model SWS [λ0] on Wittens’s background M10

• Compute corrections as M10[λ0]

⇒ Compute e.g. the glueball spectra perturbatively in λ−1
0

• Generally need to sum over all series

• 2D lattice for SWS [λ0] ?

VERY HARD OPEN PROBLEM
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General Lessons: confining gauge theories

• Effects of either KK modes or `s corrections

• UV completion non-unique

• Only low lying excitations in QCD, up to spin 2

• Still certain quantities receive very little corrections
e.g. glueball mass ratios, m0++/m0−−, etc. Ooguri et al. ’98

IS IT POSSIBLE TO CONSTRUCT AN EFFECTIVE THEORY
FOR THE IR PHYSICS OF LOW LYING EXCITATIONS BY
PARAMETERIZING THE UV REGION ?

• tunable parameters

• Fixed by input from gauge theory + experiment (or lattice)
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The Bottom Up approach

Build an effective theory for the lowest lying excitations by
introducing MINIMUM ingredients

Guideline

• insights from AdS/CFT:

- Space-time symmetries Tµν ⇔ gµν

- Energy ⇔ radial direction r

- ΛQCD ⇔ broken translation invariance in r

5D space-time ds2 = e2A(r)
(

dx2 + dr2
)

• insights from SVZ sum rules

- Non-perturbative effects through glueball condensates

e.g. 〈TrF 2〉, 〈TrF ∧ F 〉, etc.

• insights from 5D non-critical string theory
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Simplest model: AdS/QCD

Polchinski-Strassler ’02; Erlich et al. ’05; Da Rold, Pomarol ’05

AdS5 with an IR cut-off

r 0

M4

AdS 5 
r 

• color confininement

• mass gap

• ΛQCD ∼ 1
r0

• Mesons by adding D4 − D4 branes in probe approximation

• Fluctuations of the fields on D4: meson spectrum
e.g. AL

µ + AR
µ ⇔ vector meson spectrum

• surprisingly successful: certain qualitative features,
meson spectra %13 of the lattice
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Problems

• No running gauge coupling, no asymptotic freedom

• Ambiguity with the IR boundary conditions at r0

• No linear confiniment, m2
n ∼ n2, n � 1

• No magnetic screening
Soft wall models Karch et al. ’06

AdS5 with dilaton φ(r) ⇔ linear confinement

• No gravitational origin, not solution to diffeo-invariant theory

• No obvious connection with string theory
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Our Purpose

• Use insight from non-critical string theory

• Construct a 5D gravitational set-up

• To parametrize the `s corrections in the UV,
use to gauge theory input β-function

• Classify and investigate the solutions

• Improvement on AdS/QCD

• Gain insights for possible mechanisms in QCD

• General, model independent results:

- Color confiniment ⇔ mass gap

- A proposal for the strong CP problem ??

- Finite Temperature physics
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Outline

• Two derivative effective action in 5D, S[g, φ, a]

• Constrain small φ asymptotics, asymptotic freedom

• UV physics parametrized by the perturbative β-function

- β-function ⇔ superpotential

- `s-corrections ⇔ scheme-dependent β-coefficients

• Constrain large φ asymptotics, color confinement

• Fluctuations in g, φ, a, the glueball spectrum

• Mesons

• Axion sector

• Discussion, Finite Temperature results, Outlook
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Construction of the effective action

• Ingredients in Seff

Pure Y M4











SU(Nc) ⇔ F5 ∝ Nc

gYM ⇔ eφ

θYM ⇔ a

• Two-derivative action Klebanov-Maldacena ’04

SS = M3

∫

d5x
√

gS

{

e−2φ[R + (∂φ)2 − δc

`2
s

] − F 2
5 − F 2

1

}

Define λ ≡ Nce
φ ≡ eΦ,

go to the Einstein frame gs = λ
4

3 gE

dualize F5
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Einstein frame Action

The action in the Einstein frame,

SE = M3N2
c

∫

d5x
√

gE
{

R + (∂Φ)2 − V (Φ) − N−2
c F 2

1

}

• Nc appears as an overall factor. String-loop corrections are
small in the large Nc limit.

• Axion suppressed by N−2
c . Do not back-react on the geometry.

The naive dilaton potential

V (λ) =
λ

4

3

`2
s

(

1 − λ2
)

• The potential is of order `s ⇔ string σ-model corrections are
substantial.
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The naive potential

V( λ)

λ0 λ

END OF AN RG FLOW ? 

• Fluctuation analysis near λ0 ⇒ no dimension 4 operator, TrF 2

It can not be UV end of an RG-flow

• Asymptotic freedom ⇔ Asymptotic AdS in the UV

V (λ) → V0 + V1λ + · · · as λ → 0

• The naive theory is not rich enough to describe QCD RG-flow
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String corrections to the naive potential

• Higher derivative corrections to the F5 kinetic term
(after going to the Einstein frame and dualizing)

F 2
5 ⇒

∑

n

F 2n
5 λ2(n−1)an as λ → 0

with unknown coefficients an.

• The naive potential is corrected as,

V (λ) =
λ

4

3

`2
s

∞
∑

n=0

anλ
2n

Still no constant term V0

• V0 can be generated through higher derivative corrections to R

e.g. in an f(R) type gravity U.G, E. Kiritsis ’07
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General action

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near λ � 1 is to
generate V0 and modify the coefficients an.

Give up a “derivation” from NCST and simply conjecture:

SE = M3N2
c

∫

d5x
√

g

{

R + (∂Φ)2 − V (λ) − Za(λ)

N2
c

(∂a)2
}

with a conjectured dilaton potential:

V (λ) =
∞
∑

n=0

Vnλ
n

• Vn include corrections to F5. We will relate Vn to β-coefficients
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Properties of general solutions will be:

• AdS in the UV, λ → 0

• Curvature singularity in the IR, λ → ∞

Construct the theory and justify a posteriori:

•

`AdS
`s

� 1 ?

• Is the singularity of repulsive type? Does the strings or particles
probe in the singular region?
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Solutions to the Einstein-dilaton system

Look for solutions domain-wall type of solutions

ds2 = e2A(u)dx2 + du2, Φ = Φ(u)

• A(u) → −u
` as u → −∞, Φ(u) → −∞ as u → −∞

The superpotential

• V = W 2 −
(

∂W
∂Φ

)2
, A′ = −W, Φ′ = ∂W

∂Φ

Three integration constants:

- Asymptotic freedom, V → V0, get rids of one

- Reparametrization invariance u → u + δu get rids of another

A single integration constant in the system:

A0 ⇔ ΛQCD in the gauge theory
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Holographic dictionary I

ENERGY ⇔ SCALE FACTOR

ds2 = e2A(r)
(

dx2 + dr2
)

• Measures the energy of gravitational excitations observed at the
boundary r = 0

• Monotonically decreasing function

• Agrees with the AdS/CFT relation E = 1/r near boundary

We propose E = exp A

• String corrections:
If replace R → f

(

`2
sR
)

=
∑

n fnR
n, with unknown fn,

d log E

dA
= 1 + f1λ

2 + f2λ
4 + · · ·
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Holographic dictionary II

’t HOOFT COUPLING ⇔ DILATON
Insert a probe D3 brane in the geometry. The DBI action:

SD3 ∝
∫

e−ΦF 2 ⇒ λ = eΦ = g2
YMNc = λt

String corrections:
Higher order couplings of F5 to D3 probe brane

SD3 =
T3

`4
s

∫ √
ge−φZ(e2φF 2

5 )F 2

with Z(x) = 1 +
∑∞

n=1 cnx
n

The identification receives corrections as,

λt = λ(1 + c1λ
2 + c2λ

4 + · · ·)
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Holographic dictionary III

β-FUNCTION ⇔ SUPERPOTENTIAL

• If one ignores the string corrections:

β(λ) =
dλ

d ln E
= −b0λ

2 + b1λ
3 + · · · = −9

4
λ2 d ln W (λ)

dλ

• One can solve for the dilaton potential

V (λ) = V0

(

1 −
(

β

3λ

)2
)

e
R λ

0

dλβ

3λ

• One-to-one correspondence between the coefficients Vn and bn.
We parameterize our ignorance about the UV part of the dual

geometry by the bn.
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Holographic dictionary IV

The string corrections:

βt → βst = −b0λ
2 + b1λ

3

+ (b2 − 4c1b0 + f1b0) λ4

+ (b3 + 4c1b0 − f1b1) λ5 + · · ·

cn from corrections to the probe brane, and the F5 kinetic term

fn from curvature corrections

`s corrections appear with the scheme dependent β-coefficients!
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Geometry near the boundary

For β = −b0λ
2 + b1λ

3 + · · ·,

• The dilaton

b0λ = − 1

log rΛ
+

b1

b2
0

log(− log rΛ)

log2(rΛ)
+ · · ·

• The scale factor ds2 = e2A(dx2 + dr2)

e2A =
`2

r2

(

1 +
8

9

1

log(rΛ)
− 8

9

b1

b2
0

log(− log rΛ)

log2(rΛ)
+ · · ·

)

• AdS with logarithmic corrections. Subleading term is model
independent.

Holographic renormalization Bianchi, Freedman, Skenderis ’01

AdS with log-corrections, ongoing with E. Kiritsis, Y. Papadimitriou
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Geometry in the interior

For A(r) → `
r as r → 0,

Einstein’s equations lead to the following IR behaviours:

• AdS, A(r) → `′

r with l′ ≤ l

• Singularity (in the Einstein frame) at a finite point r = r0

• Singularity at infinity r = ∞

Phenomenologically preferred asymptotics

• color confininement

• magnetic screening

• linear spectra m2
n ∼ n for large n
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Constraints on the IR geometry

Color confinement
J Maldacena ’98; S. Rey, J. Yee ’98
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Solve for the string embedding and compute its action:

EqqT = SWS
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Color Confiniment - Magnetic Screening

String action: SWS = `−2
s

∫ √
detgab +

∫ √
detgabR

(2)Φ(X)

in the string frame, gab = gSµν∂aX
µ∂bX

ν .

• Coupling to dilaton bounded as L → ∞, linear potential,
if at least one minimum of AS = AE + 2

3Φ

The quark-anti-quark potential is given by,

Eqq = TsL =
eAS(rmin)

`2
s

L

• String probes the geometry up to rmin, parametrically seperated
from the far interior r = r0, where the dilaton blows up

• Similar consideration for the magnetic charges, using probe D1
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Confining backgrounds

• Space ending at finite r0

• Space ending at r = ∞ with metric vanishing as e−Cr or faster

In terms of the superpotential, a diffeo-invariant characterization:

W (λ) → (log λ)P/2λQ, λ → ∞

Confinement ⇔ Q > 2/3 or Q = 2/3, P > 0

The phenomenologically preferred backgrounds for infinite r:

A ∼ −Crα ⇔ Q = 2/3, P =
α − 1

α

Linear confiniment in the glueball spectrum for α = 2

• Borderline case α = 1 is linear dilaton background!
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Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable flucutations
of the bulk fields.
Spin 2: hTTµν ; Spin 0: mixture of hµµ and δΦ; Pseudo-scalar: δa.

Quadratic action for fluctuations:

S ∼ 1

2

∫

d4xdre2B(r)
[

ζ̇2 + (∂µζ)2
]

ζ̈ + 3Ḃζ̇ + m2ζ = 0, ∂µ∂µζ = −m2ζ

• Scalar : B(r) = 3/2A(r) + log(Φ̇/Ȧ)

• Tensor : B(r) = 3/2A(r)

• Pseudo-scalar: B(r) = 3/2A(r) + 1/2 log ZA
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Reduction to a Schrödinger problem

Define:ζ(r) = e−B(r)Ψ(r) Schrödinger equation:

HΨ ≡ −Ψ̈ + V (r)Ψ = m2Ψ Vs(r) = Ḃ2 + B̈

• The normalizability condition:
∫

dr |Ψ|2 < ∞
• Normalizability in the UV, picks normalizable UV asymptotics

for ζ

• Normalizability in the IR, restricts discrete m2, for confining Vs.
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Mass gap

H = (∂r + ∂rB)(−∂r + ∂rB) = P†P ≥ 0 :

• Spectrum is non-negative

• Can prove that no normalizable zero-modes

• If V (r) → ∞ as r → +∞: Mass Gap

• This precisely coincides with the condition from color
confinement

• e.g. for the infinite geometries A(r) → −Crα:
color confiniment AND mass gap for α ≥ 1.
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Numerics

Choose a specific model. Take a superpotential such that

W ∼











W0

(

1 + 4
9b0λ + . . .

)

λ → 0

W0λ
2/3(log λ)1/4 λ → ∞ (α = 2)

For example:

W =

(

1 +
2

3
b0λ

)2/3 [

1 +
4(2b2

0 + 3b1)

9
log(1 + λ2)

]1/4

Then, compute numerically metric, dilaton, mass spectrum.

• Parameters of the model: b0 and A0. We fix b1/b2
0 = 51/121,

pure YM value.
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Comparison with one lattice study Meyer, ’02

JPC Lattice (MeV) Our model (MeV) Mismatch

0++ 1475 (4%) 1475 0

2++ 2150 (5%) 2055 4%

0++∗ 2755 (4%) 2753 0

2++∗ 2880 (5%) 2991 4%

0++∗∗ 3370 (4%) 3561 5%

0++∗∗∗ 3990 (5%) 4253 6%

0++ : TrF 2; 2++ : TrFµρF
ρ
ν .
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Summary of general results

• Mass gap ⇔ Color confiniment

• Universal asymptotic mass ratios: m0++/m2++ → 1 as n >> 1

In accord with old string models of QCD

• Fit the lattice data with single parameter b0 ≈ 4.2

• Strong dependence on α, linear spectrum for α = 2 only

• Spectrum changes drastically if replace logarithmic running in
the UV with e.g. a fixed point.
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Meson sector

• Real challenge for phenomenology

• Add fundamental matter in the quenched limit Nf/Nc � 1 by
Nf D4 − D4 branes.

• Casero, Paredes, Kiritsis ’07 T ⇔ qPLq

Open-string Tachyon condensation ⇒ chiral symmetry
breaking

D 4 D 4

T=0

r

T=0

• Choose a Tachyon potential
VT ∼ e−T

2

• DBI action ⇒ solve the eq. for T

• No backreaction on the
geometry

• Compute from δAµ on D4 ⇒
vector meson spectrum
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Meson sector cont.

Fluctuations on D4 ⇔ Vector mesons from Schrödinger eq. with

V = (B′)2 + B′′, B =
A − Φ

2
+

1

2
log VT (T (r))

• Always linear confinement regardless the background, due to
VT

• Typical mass scales for the mesons and the glueballs different
in general:

Λglue = Λ, Λmeson = Λ(`Λ)α−2

A single scale in the spectrum for α = 2

• Highly non-linear T equation, proved very hard to solve
numerically (issue of the initial conditions.) Ongoing work with
F. Nitti, A. Paredes, E. Kiritsis
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Λglue = Λ, Λmeson = Λ(`Λ)α−2

A single scale in the spectrum for α = 2

• Highly non-linear T equation, proved very hard to solve
numerically (issue of the initial conditions.) Ongoing work with
F. Nitti, A. Paredes, E. Kiritsis
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The axion sector

• Axion action SA = M3

2

∫ √
gZA(λ)(∂a)2

with

ZA(λ) →
{

Za, λ → 0 for non − trivial〈TrF ∧ F 〉
λ4 λ → ∞ for m0+−/m0++ → 1

• No backreaction on the geometry as SA/S ∝ N−2
c

• General solution:

a(r) = θ0 + Ca

∫ r

0

dr

`

e−3A

ZA(λ)

→ θ0 +
Ca

4Za`4
r4 + · · · as r → 0

the axionic glueball condensate
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The axion sector cont.

• Vacuum energy from E = SA[a] ∝ a(r)

∣

∣

∣

∣

r0

0

• Require no contribution from the IR end r = r0

• The IR boundary condition: a(r0) = 0

• The glueball condensate 1
32π2 〈TrF ∧ F 〉 = − θ0

Za`4f1(r0)

• The vacuum energy E(θ0) = −M3

2`
θ2
0

f1(r0)

• Effects of CP violation e.g. electric dipole moment of neutron,
0+− decay into 0++ etc. ⇔ the axion a

• Renormalized effects of the θ-parameter vanishes in the IR!

• Pseudo-scalar glueball screens the θ0 in the IR, a hint at
resolution of the strong CP problem?
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Summary and discussion

• A holographic model for QCD

- Effectively describe the uncontrolled physics in the UV by a
general dilaton potential, with parameters β-function
coefficients

- Focused on a model with two parameters b0 and A0.
Improvement on AdS/QCD: linear confinement, magnetic
screening, agreement with lattice, mesons can be treated

• Asymptotic AdS in the UV with log-corrections, `Ads

`s
≈ 7

• Singularity in the IR. But RS → 0: A log-corrected linear
dilaton background in the IR.

• Dilaton diverges in the IR, that region is not probed neither by
probe strings nor by bulk excitations

• Some qualitative results: confinement ⇔ mass gap, universal
mass ratios for n � 1, a suggestion for the resolution of CP
problem
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Outlook

• Precise computations in the axionic sector, predictions for
experiments

• Meson spectra

• Holographic renormalization program for log-corrected AdS
geometries

• Finite temperature physics:
At finite T, thermal gas (zero T geometry with Euclidean time
compactified) and two Black-hole geometries (big and small)

ds2 = e2A(r)

(

−f(r)dt2 + d~x2 +
dr2

f(r)2

)

• General results: Hawking-Page transition at Tc. For T > Tc big
black-hole dominates

• Color confiniment ⇔ confiniment-deconfiniment transition at
Tc 6= 0.
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Outlook cont.

• Finite baryon chemical potential, phase diagram of large N
Yang-Mills in T, µ

• Most importantly: Precise string configurations (e.g. in 6D
NCST) ?

THANK YOU !
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