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QCD perturbation theory, in the UV

Non-perturbative phenomena in the IR
Lattice QCD

Dynamical phenomena, finite Temperature,
real-time correlation functions,
Applications to RHIC physics:
Holographic approaches

String theory may have real impact!

QCD in this talk:
- Pure Yang-Mills at N. > 1
- QCD in the quenced limit: N¢/N. < 1
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Witten’s Model ’98

Y M5 on D4 Branes

Antiperiodic boundary
conditions on for the fermions
on St

UV cut-off in the 4D theory at
E=1/R

Pure Y M, In the IR
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IR physics

Exploring Holographic Approaches to QCD
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Witten’s model

Pure Y My Mixing with KK
Ao > 1 A <K 1
Weak curvature High curvature corrections

Confinement, mass gap No asymptotic freedom



Confining Gauge Theories in the SG Regime

UV and the IR physics disconnected
- Effects of the logarithmic running not captured

Mixing of pure gauge sector with the KK sector
- To disentangle need \g <« 1
- Then ¢, corrections !

Problems with the glueball spectra (witten 98, Ooguri et al. '98;)



The glueball spectra

Normalizable modes of ¢(r, Z) = f(r)et*®
& spectrum of O(7)|vac)

KK like spectra m? oc n? forn > 1



Solution to problems

Full o-model Sys[\g] on Wittens’s background M

Compute corrections as M o[
= Compute e.g. the glueball spectra perturbatively in A5

Generally need to sum over all series

2D lattice for Sy s[Ao] ?

VERY HARD OPEN PROBLEM
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General Lessons: confining gauge theories

Effects of either KK modes or ¢, corrections
UV completion non-unique
Only low lying excitations in QCD, up to spin 2

e.g. glueball mass ratios, mg. 1 /mg__, etc. Ooguri et al. 98

IS IT POSSIBLE TO CONSTRUCT AN EFFECTIVE THEORY
FOR THE IR PHYSICS OF LOW LYING EXCITATIONS BY
PARAMETERIZING THE UV REGION ?

tunable parameters
Fixed by input from gauge theory + experiment (or lattice)
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Build an effective theory for the lowest lying excitations by
Introducing MINIMUM ingredients

Guideline

Insights from AdS/CFT:
- Space-time symmetries 7, < g,
- Energy < radial direction r
- Agcp < broken translation invariance in r

5D space-time ds? = ¢?A(") (dz? + dr?)
Insights from SVVZ sum rules

- Non-perturbative effects through glueball condensates
e.g. (TrF?), (TrF A F), etc.

Insights from 5D non-critical string theory
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AdSs with an IR cut-off

color confininement
mass gap
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Simplest model: AdS/QCD

Polchinski-Strassler '02; Erlich et a. '05; Da Rold, Pomarol * 05
AdSs with an IR cut-off

color confininement
mass gap

1
Agep ~ 5

Mesons by adding D4 — D4 branes in probe approximation

Fluctuations of the fields on D4: meson spectrum
e.g. Aﬁ + Aﬁ & vector meson spectrum

surprisingly successful: certain qualitative features,
meson spectra %13 of the lattice



Problems

No running gauge coupling, no asymptotic freedom
Ambiguity with the IR boundary conditions at r
No linear confiniment, m2 ~ n?,n>> 1

No magnetic screening
Karchet a. '06

No gravitational origin, not solution to diffeo-invariant theory
NoO obvious connection with string theory



Our Purpose

Use Insight from non-critical string theory
Construct a 5D gravitational set-up

To parametrize the ¢, corrections in the UV,
use to gauge theory input S-function

Classify and investigate the solutions
Improvement on AdS/QC D
Gain insights for possible mechanisms in QCD

General, model independent results:
- Color confiniment < mass gap
- A proposal for the strong CP problem ??
- Finite Temperature physics



Outline

Two derivative effective action in 5D,
Constrain small ¢ asymptotics, asymptotic freedom
UV physics parametrized by the perturbative 5-function

Constrain large ¢ asymptotics, color confinement
Fluctuations in g, ¢, a, the glueball spectrum
Mesons

AXxion sector

Discussion, Finite Temperature results, Outlook



Construction of the effective action

[ SU(N,) &

Pure Y M,
\ 9y M &
g QYM <~




Construction of the effective action

( SU(NC) = Frx o< N,
Pure Y M, 5
\ 9y M < e
8 HYM a— a

Klebanov-Maldacena’ 04

)
Ss =M [ oz {e IR+ 007 - ) - 7 - 7} |



Construction of the effective action

[ SU(N,) &

Pure Y My
\ gy M =
\ Oy v =

Klebanov-Maldacena’ 04

Sg = M?’/d%\/g? {6%[3 +(9p)? —

Define A = N.e? = €2,
go to the Einstein frame g, = A3 gz
dualize F;

F5 0.¢ NC
e?

a

oc

- FE -



Einstein frame Action

The action In the Einstein frame,
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Einstein frame Action

The action In the Einstein frame,
Sy = M3N? /d%\/_gE {R+ (09)* — V(®) — N °F}

N, appears as an overall factor. String-loop corrections are

small in the large V.. limit.
Axion suppressed by N 2. Do not back-react on the geometry.

The naive dilaton potential

Wl

A
e

The potential is of order ¢, < string o-model corrections are
substantial.

V(A) (1-2?)



The naive potential

V()
END OF AN RG FLOW ?

Exploring Holographic Approaches to QCD
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The naive potential

Fluctuation analysis near Ao = no dimension 4 operator, TrF™

Asymptotic freedom < Asymptotic AdS in the UV

VIN) = Vo+ViA+--- as X\ — 0
The naive theory is not rich enough to describe QCD RG-flow
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String corrections to the naive potential

Higher derivative corrections to the F5 Kinetic term
(after going to the Einstein frame and dualizing)

2 = Z F2r)\2n=lg, as A — 0

with unknown coefficients a,,.
The naive potential is corrected as,

4
A3

2n
= — Ay A
2 n

gS

V()
n=0
Still no constant term V;

Vo can be generated through higher derivative corrections to R
e.g. Inan f(R) type gravity U.G, E. Kiritsis' 07
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General action

Hard to obtain general form of curvature corrections
We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near A < 1 1S to
generate V, and modify the coefficients a.,.

Give up a “derivation” from NCST and simply conjecture:

Sp = M>N? / d°z\/g {R + (09)? = V(A) — Z]a\;j) (0&)2}

C

with a conjectured dilaton potential:

V() = i VA"
n=0

V., Include corrections to F5. We will relate V,, to 3-coefficients
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/
AdS 51 7




Properties of general solutions will be:

AdS inthe UV, A\ — 0

Curvature singularity inthe IR, A\ — o

Construct the theory and justify a posteriori:

CAds
s

Is the singularity of repulsive type? Does the strings or particles
probe in the singular region?

>17




Solutions to the Einstein-dilaton system
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ds? = 24 a2 + du?, O = P(u)
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Solutions to the Einstein-dilaton system

Look for solutions domain-wall type of solutions
ds? = 24 a2 + du?, O = P(u)

Alu) — —% as u— —oo, d(u) - —0c0 as u — —oo
The superpotential
V=w2_ () A =-Ww, =W
Three integration constants:
- Asymptotic freedom, V' — 1}, get rids of one
- Reparametrization invariance u — u + du get rids of another

A single integration constant in the system:
Ay < Agep In the gauge theory



Holographic dictionary |

Exploring Holographic Approaches to QCD
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ENERGY < SCALE FACTOR
ds® = ¢24(r) (da;2 + dfr2)

Measures the energy of gravitational excitations observed at the
boundary »r =0

Monotonically decreasing function
Agrees with the AdS/CFT relation £ = 1/r near boundary

We propose £ = exp A



Holographic dictionary |

ENERGY < SCALE FACTOR
ds® = ¢24(r) (da;2 + dr2)

Measures the energy of gravitational excitations observed at the
boundary »r =0

Monotonically decreasing function
Agrees with the AdS/CFT relation £ = 1/r near boundary

We propose £ = exp A

If replace R — f (¢2R) = >, f»R", with unknown f,,,

dlog E

— 1 2 )\4
7 + [1AT + foA" +
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Holographic dictionary i

't HOOFT COUPLING < DILATON
Insert a probe D3 brane in the geometry. The DBI action:

SD?,O(/B_CI)Fz = )\zeq)zg%/MNC:)\t

Higher order couplings of F5 to D3 probe brane
S = ~Z(e* F2)F?
D3 = E Ve (e F5)

with Z(z) =1+ > 7, cpa”
The 1dentification receives corrections as,

A =A14+c X2+ Xt + )



Holographic dictionary Il

B-FUNCTION < SUPERPOTENTIAL

If one ignores the string corrections:

dA

9 ,dInW(\)
A) = S 9 T 5\ SN R —
5( ) Jn E OA” + 01A” + 1 o
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Holographic dictionary Il

B-FUNCTION < SUPERPOTENTIAL

If one ignores the string corrections:

d 9 HdIn W (A
A2 A = -2V

BN =T E 4 d\

One can solve for the dilaton potential

V(A = Vo (1 — <£>2> elo X

One-to-one correspondence between the coefficients V,, and b,,.
We parameterize our ignorance about the UV part of the dual
geometry by the b,,.



Holographic dictionary IV

By — Bst = —boA® + b\’
+ (bg — 4c1bg + fibo) A?
+ (b3 4 4cibg — f1by) A° A - - -

¢, from corrections to the probe brane, and the £5 Kinetic term

fn, from curvature corrections

¢ corrections appear with the scheme dependent 3-coefficients!



Geometry near the boundary

For B = —boA2 + i\ + - -,
The dilaton

1 b1 log(—logrA)
] A + 2 2
ogr bg log=(rA)

boA = —

The scale factor ds? = e?4(dx? + dr?)

on (1 8 1 8 by log(— logrA) )
== (1+ - — —— > 4 ...
r 9log(rA)  9b5 log“(rA)

€

AdS with logarithmic corrections. Subleading term is model
Independent.



Geometry near the boundary

For B = —boA2 + i\ + - -,
The dilaton

1 b1 log(—logrA)
] A + 2 2
ogr bg log=(rA)

boA = —

The scale factor ds? = e?4(dx? + dr?)

on (1 8 1 8 by log(— logrA) )
== (1+ - — —— > 4 ...
r 9log(rA)  9b5 log“(rA)

€

AdS with logarithmic corrections. Subleading term is model
Independent.

Bianchi, Freedman, Skenderis’01

E. Kiritsis, Y. Papadimitriou
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Einstein’s equations lead to the following IR behaviours:
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Singularity (in the Einstein frame) at a finite point r = rq
Singularity at infinity » = oo



Geometry In the interior

For A(r) — f as r — 0,
Einstein’s equations lead to the following IR behaviours:

AdS, A(r) — £ with I’ <1
Singularity (in the Einstein frame) at a finite point r = rq
Singularity at infinity » = oo

Phenomenologically preferred asymptotics
color confininement
magnetic screening
linear spectra m? ~ n for large n



Constraints on the IR geometry

Color confinement
JMaldacena’98; S. Rey, J. Yee’98

Solve for the string embedding and compute its action:
EgT = Sws



Color Confiniment - Magnetic Screening
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Color Confiniment - Magnetic Screening

String action: Syyg = £52 [ /detgay + [ /detgay, R O(X)
in the string frame, g, = ¢ 1,0, X0, X" .

Coupling to dilaton bounded as L — oo, linear potential,
if at least one minimum of Ag = Ap + 5@

The quark-anti-quark potential is given by,

String probes the geometry up to r,,,;,,, parametrically seperated
from the far interior » = r¢, where the dilaton blows up

Similar consideration for the magnetic charges, using probe D1
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Confining backgrounds

Space ending at finite r
Space ending at » = oo with metric vanishing as e=¢" or faster

In terms of the superpotential, a diffeo-invariant characterization:
W) — (logMF2AQ, X5

Confinement < @ > 2/30or@Q@ =2/3,P >0
The phenomenologically preferred backgrounds for infinite r:

—1
A~ —Cr* & Q=2/3,P==2

84

Linear confiniment in the glueball spectrum for o = 2
Borderline case oo = 1 is linear dilaton background!
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Glueballs

Spectrum of 4D glueballs < Spectrum of normalizable flucutations
of the bulk fields.

Spin 2: n/; Spin 0: mixture of ), and 6®; Pseudo-scalar: da.

Quadratic action for fluctuations:

1

S ~ 5 /d4$d7°623(r) [CQ + (8MC)2}

C4+3BC+m2C =0, 80, =-—m%

Scalar : B(r) = 3/2A(r) + log(®/A)
Tensor : B(r) = 3/2A(r)
Pseudo-scalar: B(r) = 3/2A(r) + 1/2log Z 4



Reduction to a Schrodinger problem
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Reduction to a Schrodinger problem

Define:¢(r) = e~ B W () Schrédinger equation:

HU = -V + V()T =m?¥  Vi(r)=B>+DB

The normalizability condition: [ dr |¥|* < oo

Normalizability in the UV, picks normalizable UV asymptotics
for ¢

Normalizability in the IR, restricts discrete m.?, for confining V.



Mass gap

H = (0, +0,B)(—9,+8,B) =P'P>0:

Spectrum iIs non-negative
Can prove that no normalizable zero-modes
If V(r) — coasr — +oo: Mass Gap



Mass gap

H = (0, +0,B)(—9,+8,B) =P'P>0:

Spectrum iIs non-negative
Can prove that no normalizable zero-modes
If V(r) — coasr — +oo: Mass Gap

This precisely coincides with the condition from color
confinement

e.g. for the infinite geometries A(r) — —Cr®:
color confiniment AND mass gap for o > 1.



Numerics

Choose a specific model. Take a superpotential such that

( W0(1+%b0)\—|_...) A— 0
W

L W23 (log M) /4 A— oo (a=2)

For example:

log(1 + \?)

2 NPT 4262 + 3b b/
W:<1+3b0)\> [1+ (260 + 3b1)
Then, compute numerically metric, dilaton, mass spectrum.

Parameters of the model: by and Ag. We fix b1 /0% = 51/121,
pure YM value.



Comparison with one lattice study wmeyer, 02

JPC | Lattice (MeV) | Our model (MeV) | Mismatch

0t | 1475 (4%) 1475 0

o+t | 2150 (5%) 2055 4%
0t+* | 2755 (4%) 2753 0
ot | 2880 (5%) 2991 4%
0+t | 3370 (4%) 3561 50
0 | 3990 (5%) 4253 6%

ott . TrE?: 2T :TTFWFV'O.




Summary of general results

Mass gap < Color confiniment

Universal asymptotic mass ratios: mgy /mory — 1asn >> 1
In accord with old string models of QCD

Fit the lattice data with single parameter by ~ 4.2
Strong dependence on «, linear spectrum for o = 2 only

Spectrum changes drastically if replace logarithmic running in
the UV with e.g. a fixed point.



Meson sector

Real challenge for phenomenology



Meson sector

Real challenge for phenomenology

Add fundamental matter in the quenched limit V; /N, < 1 by
N¢ D4 — D4 branes.



Meson sector

Real challenge for phenomenology

Add fundamental matter in the quenched limit V; /N, < 1 by
N¢ D4 — D4 branes.

Casero, Paredes, Kiritsis ’07 T < qPrg
Open-string Tachyon condensation = chiral symmetry breaking



Meson sector

Real challenge for phenomenology

Add fundamental matter in the quenched limit V; /N, < 1 by
N¢ D4 — D4 branes.

Casero, Paredes, Kiritsis ’07 T < qPrg
Open-string Tachyon condensation = chiral symmetry breaking



Meson sector

Real challenge for phenomenology

Add fundamental matter in the quenched limit V; /N, < 1 by
N¢ D4 — D4 branes.

Casero, Paredes, Kiritsis ’07 T < qPrg
Open-string Tachyon condensation = chiral symmetry breaking

Choose a Tachyon potential
Vip ~ 6_T2
DBI action = solve the eq. for T

No backreaction on the
geometry

Compute from 64, on D4 =
vector meson spectrum



Meson sector cont.

Fluctuations on D4 < Vector mesons from Schrddinger eqg. with

A—P
V = (B’)2 + B, B = —5 + — log V(T (r))



Meson sector cont.

Fluctuations on D4 < Vector mesons from Schrddinger eqg. with

A-0 1
V =(B)*+ B", B=——+;log V(T (1))
Always linear confinement regardless the background, due to
%3

Typical mass scales for the mesons and the glueballs different
In general:

Aglue — A» Ameson — A(EA)Q_Q

A single scale In the spectrum for oo = 2



Meson sector cont.

Fluctuations on D4 < Vector mesons from Schrddinger eqg. with

A-d 1
V =(B)*+ B", B=——+;log V(T (1))

Always linear confinement regardless the background, due to
%3

Typical mass scales for the mesons and the glueballs different
In general:

Aglue — A7 Ameson — A(EA)Q_Q

A single scale In the spectrum for oo = 2

Highly non-linear T equation, proved very hard to solve
numerically (issue of the initial conditions.) Ongoing work with
F. Nitti, A. Paredes, E. Kiritsis
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The axion sector

Axion action S4 = M= [ /5Z4(\)(da)?
with

Za, A— 0  for non — trivial(TrF' A F)

M X — oo for mor_/mosy — 1

Za(N\) — {

No backreaction on the geometry as S4/S « N2
General solution:

" dr e 34
a(r) =120 —|—C’a/
(r) =fo o ¢ Za(N)
Cq A
90+4Z€4 + - as r—0

the axionic glueball condensate
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The axion sector cont.

o
Vacuum energy from E = S4[a] o< a(r)
0]

Require no contribution from the IR end » = r
The IR boundary condition: a(rg) =0

The glueball condensate 32;2 (TrF AN F) = — 7 546]91 (o)
The vacuum energy E(0y) = — ]\2@3 fliéo)

Effects of CP violation e.g. electric dipole moment of neutron,
0™~ decay into 0™ etc. « the axion a

Renormalized effects of the #-parameter vanishes in the IR!

Pseudo-scalar glueball screens the 6, In the IR, a hint at
resolution of the strong CP problem?



Summary and discussion

A holographic model for QCD

- Effectively describe the uncontrolled physics in the UV by a
general dilaton potential, with parameters G-function
coefficients

- Focused on a model with two parameters by and Ay.
Improvement on AdS/QCD: linear confinement, magnetic
screening, agreement with lattice, mesons can be treated

Asymptotic AdS in the UV with log-corrections, %—d ~ 7

Singularity in the IR. But R¢ — 0: A log-corrected linear
dilaton background in the IR.

Dilaton diverges in the IR, that region is not probed neither by
probe strings nor by bulk excitations

Some qualitative results: confinement < mass gap, universal
mass ratios for n > 1, a suggestion for the resolution of CP

nrnhlnm
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Outlook

Precise computations in the axionic sector, predictions for
experiments

Meson spectra

Holographic renormalization program for log-corrected AdS
geometries

Finite temperature physics:
At finite T, thermal gas (zero 1" geometry with Euclidean time
compactified) and two Black-hole geometries (big and small)

ds® = 24) <— f(r)dt* + di? + dr22>
f(r)

General results: Hawking-Page transition at ... For T" > T big
black-hole dominates

Color confiniment < confiniment-deconfiniment transition at
T, # 0.
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Outlook cont.

Finite baryon chemical potential, phase diagram of large N
Yang-Mills in T", u

Most importantly: Precise string configurations (e.g. in 6D
NCST) ?

THANK YOU !
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