Exploring Holographic Approaches to QCD

Umut Gürsoy

CPhT, École Polytechnique LPT, École Normale Supérieure

Caltech - November 9, 2007

U.G., E. Kiritsis, F.Nitti arXiv:0707.1349 U.G., E. Kiritsis arXiv:0707.1324

Physics of Strong Interactions

- QCD perturbation theory, in the UV
- Non-perturbative phenomena in the IR Lattice QCD

Physics of Strong Interactions

- QCD perturbation theory, in the UV
- Non-perturbative phenomena in the IR Lattice QCD
- Dynamical phenomena, finite Temperature, real-time correlation functions,
 Applications to RHIC physics:
 Holographic approaches
 String theory may have real impact!

Physics of Strong Interactions

- QCD perturbation theory, in the UV
- Non-perturbative phenomena in the IR Lattice QCD
- Dynamical phenomena, finite Temperature, real-time correlation functions,
 Applications to RHIC physics:
 Holographic approaches
 String theory may have real impact!

QCD in this talk:

- Pure Yang-Mills at $N_c \gg 1$
- QCD in the quenced limit: $N_f/N_c \ll 1$

Holographic Approaches to QCD

"TOP - BOTTOM APPROACH"

- 10D critical string theory
- D-brane configurations
- Decoupling limit of open and closed string sectors
- Treatable in the supergravity limit, $\ell_s \to 0$

Holographic Approaches to QCD

"TOP - BOTTOM APPROACH"

- 10D critical string theory
- D-brane configurations
- Decoupling limit of open and closed string sectors
- Treatable in the supergravity limit, $\ell_s \to 0$

EXAMPLES

- Klebanov-Strassler, Polchinski-Strassler, Maldacena-Nunez, orbifold constructions, etc. for $\mathcal{N}=1,2$ gauge theories
- Witten's model for pure Yang-Mills

Witten's Model '98

- YM_5 on D4 Branes
- Antiperiodic boundary conditions on for the fermions on S^1 $m_{\psi} \sim \frac{1}{R}$, $m_{\phi} \sim \frac{\lambda_4}{R}$
- UV cut-off in the 4D theory at E = 1/R
- Pure YM_4 in the IR

Witten's model

Witten's model

- Pure YM_4
- $\lambda_0\gg 1$
- Weak curvature
- Confinement, mass gap

Witten's model

- Pure YM_4
- $\lambda_0 \gg 1$
- Weak curvature
- Confinement, mass gap

- Mixing with KK
- $\lambda_0 \ll 1$
- High curvature corrections
- No asymptotic freedom

Confining Gauge Theories in the SG Regime

- UV and the IR physics disconnected
 - Effects of the logarithmic running not captured
- Mixing of pure gauge sector with the KK sector
 - To disentangle need $\lambda_0 \ll 1$
 - Then ℓ_s corrections!
- Problems with the glueball spectra (Witten '98, Ooguri et al. '98;)

The glueball spectra

Normalizable modes of $\phi(r, \vec{x}) = f(r)e^{i\vec{k}\cdot\vec{x}}$ \Leftrightarrow spectrum of $\mathcal{O}(\vec{x})|vac\rangle$

KK like spectra $m_n^2 \propto n^2$ for $n \gg 1$!

Solution to problems

- Full σ -model $S_{WS}[\lambda_0]$ on Wittens's background \mathcal{M}_{10}
- Compute corrections as $\mathcal{M}_{10}[\lambda_0]$ \Rightarrow Compute e.g. the glueball spectra perturbatively in λ_0^{-1}
- Generally need to sum over all series
- 2D lattice for $S_{WS}[\lambda_0]$?

VERY HARD OPEN PROBLEM

General Lessons: confining gauge theories

- Effects of either KK modes or ℓ_s corrections
- UV completion non-unique
- Only low lying excitations in QCD, up to spin 2

General Lessons: confining gauge theories

- Effects of either KK modes or ℓ_s corrections
- UV completion non-unique
- Only low lying excitations in QCD, up to spin 2
- Still certain quantities receive very little corrections e.g. glueball mass ratios, m_{0++}/m_{0--} , etc. Ooguri et al. '98

General Lessons: confining gauge theories

- Effects of either KK modes or ℓ_s corrections
- UV completion non-unique
- Only low lying excitations in QCD, up to spin 2
- Still certain quantities receive very little corrections e.g. glueball mass ratios, m_{0++}/m_{0--} , etc. Ooguri et al. '98

IS IT POSSIBLE TO CONSTRUCT AN EFFECTIVE THEORY FOR THE IR PHYSICS OF LOW LYING EXCITATIONS BY PARAMETERIZING THE UV REGION?

- tunable parameters
- Fixed by input from gauge theory + experiment (or lattice)

Build an effective theory for the lowest lying excitations by introducing MINIMUM ingredients

Build an effective theory for the lowest lying excitations by introducing MINIMUM ingredients

Guideline

- insights from AdS/CFT:
 - Space-time symmetries $T_{\mu\nu} \Leftrightarrow g_{\mu\nu}$
 - Energy \Leftrightarrow radial direction r
 - $\Lambda_{QCD} \Leftrightarrow$ broken translation invariance in r

5D space-time
$$ds^{2} = e^{2A(r)} (dx^{2} + dr^{2})$$

Build an effective theory for the lowest lying excitations by introducing MINIMUM ingredients

Guideline

- insights from AdS/CFT:
 - Space-time symmetries $T_{\mu\nu} \Leftrightarrow g_{\mu\nu}$
 - Energy \Leftrightarrow radial direction r
 - $\Lambda_{QCD} \Leftrightarrow$ broken translation invariance in r

5D space-time
$$ds^{2} = e^{2A(r)} (dx^{2} + dr^{2})$$

- insights from SVZ sum rules
 - Non-perturbative effects through glueball condensates e.g. $\langle \text{Tr} F^2 \rangle$, $\langle \text{Tr} F \wedge F \rangle$, etc.

Build an effective theory for the lowest lying excitations by introducing MINIMUM ingredients

Guideline

- insights from AdS/CFT:
 - Space-time symmetries $T_{\mu\nu} \Leftrightarrow g_{\mu\nu}$
 - Energy \Leftrightarrow radial direction r
 - $\Lambda_{QCD} \Leftrightarrow$ broken translation invariance in r

5D space-time
$$ds^{2} = e^{2A(r)} (dx^{2} + dr^{2})$$

- insights from SVZ sum rules
 - Non-perturbative effects through glueball condensates e.g. $\langle \text{Tr} F^2 \rangle$, $\langle \text{Tr} F \wedge F \rangle$, etc.
- insights from 5D non-critical string theory

Simplest model: AdS/QCD

Polchinski-Strassler '02; Erlich et al. '05; Da Rold, Pomarol '05 AdS_5 with an IR cut-off

- color confininement
- mass gap
- $\Lambda_{QCD} \sim {1 \over r_0}$

Simplest model: AdS/QCD

Polchinski-Strassler '02; Erlich et al. '05; Da Rold, Pomarol '05 AdS_5 with an IR cut-off

- color confininement
- mass gap
- $\Lambda_{QCD} \sim {1 \over r_0}$

- Mesons by adding $D4 \overline{D}4$ branes in probe approximation
- Fluctuations of the fields on D4: meson spectrum e.g. $A_{\mu}^{L} + A_{\mu}^{R} \Leftrightarrow$ vector meson spectrum
- surprisingly successful: certain qualitative features, meson spectra %13 of the lattice

Problems

- No running gauge coupling, no asymptotic freedom
- Ambiguity with the IR boundary conditions at r_0
- No linear confiniment, $m_n^2 \sim n^2$, $n \gg 1$
- No magnetic screening Soft wall models Karch et al. '06 AdS_5 with dilaton $\phi(r) \Leftrightarrow$ linear confinement
- No gravitational origin, not solution to diffeo-invariant theory
- No obvious connection with string theory

Our Purpose

- Use insight from non-critical string theory
- Construct a 5D gravitational set-up
- To parametrize the ℓ_s corrections in the UV, use to gauge theory input β -function
- Classify and investigate the solutions
- Improvement on AdS/QCD
- Gain insights for possible mechanisms in QCD
- General, model independent results:
 - Color confiniment ⇔ mass gap
 - A proposal for the strong CP problem ??
 - Finite Temperature physics

Outline

- Two derivative effective action in 5D, $S[g, \phi, a]$
- Constrain small ϕ asymptotics, asymptotic freedom
- UV physics parametrized by the perturbative β -function
 - β -function \Leftrightarrow superpotential
 - ℓ_s -corrections \Leftrightarrow scheme-dependent β -coefficients
- Constrain large ϕ asymptotics, color confinement
- Fluctuations in g, ϕ, a , the glueball spectrum
- Mesons
- Axion sector
- Discussion, Finite Temperature results, Outlook

Construction of the effective action

• Ingredients in S_{eff}

Pure
$$YM_4$$

$$\begin{cases} SU(N_c) & \Leftrightarrow & F_5 \propto N_c \\ g_{YM} & \Leftrightarrow & e^{\phi} \\ \theta_{YM} & \Leftrightarrow & a \end{cases}$$

Construction of the effective action

• Ingredients in S_{eff}

Pure
$$YM_4$$

$$\begin{cases} SU(N_c) & \Leftrightarrow & F_5 \propto N_c \\ g_{YM} & \Leftrightarrow & e^{\phi} \\ \theta_{YM} & \Leftrightarrow & a \end{cases}$$

• Two-derivative action Klebanov-Maldacena '04

$$S_S = M^3 \int d^5x \sqrt{g_S} \left\{ e^{-2\phi} \left[R + (\partial \phi)^2 - \frac{\delta c}{\ell_s^2} \right] - F_5^2 - F_1^2 \right\}$$

Construction of the effective action

• Ingredients in S_{eff}

Pure
$$YM_4$$

$$\begin{cases} SU(N_c) & \Leftrightarrow & F_5 \propto N_c \\ g_{YM} & \Leftrightarrow & e^{\phi} \\ \theta_{YM} & \Leftrightarrow & a \end{cases}$$

• Two-derivative action Klebanov-Maldacena '04

$$S_S = M^3 \int d^5x \sqrt{g_S} \left\{ e^{-2\phi} \left[R + (\partial \phi)^2 - \frac{\delta c}{\ell_s^2} \right] - F_5^2 - F_1^2 \right\}$$

Define
$$\lambda \equiv N_c e^\phi \equiv e^\Phi,$$
 go to the Einstein frame $g_s = \lambda^{\frac{4}{3}} g_E$ dualize F_5

Einstein frame Action

The action in the Einstein frame,

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g_E} \left\{ R + (\partial \Phi)^2 - V(\Phi) - N_c^{-2} F_1^2 \right\}$$

Einstein frame Action

The action in the Einstein frame,

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g_E} \left\{ R + (\partial \Phi)^2 - V(\Phi) - N_c^{-2} F_1^2 \right\}$$

- N_c appears as an overall factor. String-loop corrections are small in the large N_c limit.
- Axion suppressed by N_c^{-2} . Do not back-react on the geometry.

Einstein frame Action

The action in the Einstein frame,

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g_E} \left\{ R + (\partial \Phi)^2 - V(\Phi) - N_c^{-2} F_1^2 \right\}$$

- N_c appears as an overall factor. String-loop corrections are small in the large N_c limit.
- Axion suppressed by N_c^{-2} . Do not back-react on the geometry.

The naive dilaton potential

$$V(\lambda) = \frac{\lambda^{\frac{4}{3}}}{\ell_s^2} \left(1 - \lambda^2 \right)$$

• The potential is of order $\ell_s \Leftrightarrow \text{string } \sigma\text{-model corrections are substantial.}$

• Fluctuation analysis near $\lambda_0 \Rightarrow$ no dimension 4 operator, $\operatorname{Tr} F^2$ It can not be UV end of an RG-flow

- Fluctuation analysis near $\lambda_0 \Rightarrow$ no dimension 4 operator, ${\rm Tr} F^2$ It can not be UV end of an RG-flow
- Asymptotic freedom ⇔ Asymptotic AdS in the UV

$$V(\lambda) \to V_0 + V_1 \lambda + \cdots$$
 as $\lambda \to 0$

- Fluctuation analysis near $\lambda_0 \Rightarrow$ no dimension 4 operator, ${\rm Tr} F^2$ It can not be UV end of an RG-flow
- Asymptotic freedom ⇔ Asymptotic AdS in the UV

$$V(\lambda) \to V_0 + V_1 \lambda + \cdots$$
 as $\lambda \to 0$

The naive theory is not rich enough to describe QCD RG-flow

String corrections to the naive potential

• Higher derivative corrections to the F_5 kinetic term (after going to the Einstein frame and dualizing)

$$F_5^2 \Rightarrow \sum_n F_5^{2n} \lambda^{2(n-1)} a_n \qquad as \ \lambda \to 0$$

with unknown coefficients a_n .

String corrections to the naive potential

• Higher derivative corrections to the F_5 kinetic term (after going to the Einstein frame and dualizing)

$$F_5^2 \Rightarrow \sum_n F_5^{2n} \lambda^{2(n-1)} a_n \qquad as \ \lambda \to 0$$

with unknown coefficients a_n .

• The naive potential is corrected as,

$$V(\lambda) = \frac{\lambda^{\frac{4}{3}}}{\ell_s^2} \sum_{n=0}^{\infty} a_n \lambda^{2n}$$

Still no constant term V_0

String corrections to the naive potential

• Higher derivative corrections to the F_5 kinetic term (after going to the Einstein frame and dualizing)

$$F_5^2 \Rightarrow \sum_n F_5^{2n} \lambda^{2(n-1)} a_n \qquad as \ \lambda \to 0$$

with unknown coefficients a_n .

• The naive potential is corrected as,

$$V(\lambda) = \frac{\lambda^{\frac{4}{3}}}{\ell_s^2} \sum_{n=0}^{\infty} a_n \lambda^{2n}$$

Still no constant term V_0

• V_0 can be generated through higher derivative corrections to R e.g. in an f(R) type gravity U.G, E. Kiritsis '07

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near $\lambda \ll 1$ is to generate V_0 and modify the coefficients a_n .

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near $\lambda \ll 1$ is to generate V_0 and modify the coefficients a_n .

Give up a "derivation" from NCST and simply conjecture:

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R + (\partial \Phi)^2 - V(\lambda) - \frac{Z_a(\lambda)}{N_c^2} (\partial a)^2 \right\}$$

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near $\lambda \ll 1$ is to generate V_0 and modify the coefficients a_n .

Give up a "derivation" from NCST and simply conjecture:

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R + (\partial \Phi)^2 - V(\lambda) - \frac{Z_a(\lambda)}{N_c^2} (\partial a)^2 \right\}$$

with a conjectured dilaton potential:

$$V(\lambda) = \sum_{n=0}^{\infty} V_n \lambda^n$$

Hard to obtain general form of curvature corrections

We adopt a phenomenological approach and take a bold step:

The sole effect of the curvature corrections near $\lambda \ll 1$ is to generate V_0 and modify the coefficients a_n .

Give up a "derivation" from NCST and simply conjecture:

$$S_E = M^3 N_c^2 \int d^5 x \sqrt{g} \left\{ R + (\partial \Phi)^2 - V(\lambda) - \frac{Z_a(\lambda)}{N_c^2} (\partial a)^2 \right\}$$

with a conjectured dilaton potential:

$$V(\lambda) = \sum_{n=0}^{\infty} V_n \lambda^n$$

• V_n include corrections to $\overline{F_5}$. We will relate V_n to β -coefficients

- AdS in the UV, $\lambda \to 0$
- Curvature singularity in the IR, $\lambda \to \infty$

- AdS in the UV, $\lambda \to 0$
- Curvature singularity in the IR, $\lambda \to \infty$

Construct the theory and justify a posteriori:

- AdS in the UV, $\lambda \rightarrow 0$
- Curvature singularity in the IR, $\lambda \to \infty$

Construct the theory and justify a posteriori:

$$\frac{\ell_{AdS}}{\ell_s} \gg 1$$
 ?

- AdS in the UV, $\lambda \to 0$
- Curvature singularity in the IR, $\lambda \to \infty$

Construct the theory and justify a posteriori:

•

$$\frac{\ell_{AdS}}{\ell_s} \gg 1$$
 ?

• Is the singularity of repulsive type? Does the strings or particles probe in the singular region?

Look for solutions domain-wall type of solutions

$$ds^2 = e^{2A(u)}dx^2 + du^2, \qquad \Phi = \Phi(u)$$

•
$$A(u) \to -\frac{u}{\ell} \ as \ u \to -\infty, \qquad \Phi(u) \to -\infty \ as \ u \to -\infty$$

Look for solutions domain-wall type of solutions

$$ds^2 = e^{2A(u)}dx^2 + du^2, \qquad \Phi = \Phi(u)$$

•
$$A(u) \rightarrow -\frac{u}{\ell} \ as \ u \rightarrow -\infty, \qquad \Phi(u) \rightarrow -\infty \ as \ u \rightarrow -\infty$$

The superpotential

•
$$V = W^2 - \left(\frac{\partial W}{\partial \Phi}\right)^2$$
, $A' = -W$, $\Phi' = \frac{\partial W}{\partial \Phi}$

Look for solutions domain-wall type of solutions

$$ds^2 = e^{2A(u)}dx^2 + du^2, \qquad \Phi = \Phi(u)$$

•
$$A(u) \to -\frac{u}{\ell} \ as \ u \to -\infty, \qquad \Phi(u) \to -\infty \ as \ u \to -\infty$$

The superpotential

•
$$V = W^2 - \left(\frac{\partial W}{\partial \Phi}\right)^2$$
, $A' = -W$, $\Phi' = \frac{\partial W}{\partial \Phi}$

Three integration constants:

- Asymptotic freedom, $V \rightarrow V_0$, get rids of one
- Reparametrization invariance $u \rightarrow u + \delta u$ get rids of another

Look for solutions domain-wall type of solutions

$$ds^2 = e^{2A(u)}dx^2 + du^2, \qquad \Phi = \Phi(u)$$

•
$$A(u) \to -\frac{u}{\ell} \ as \ u \to -\infty, \qquad \Phi(u) \to -\infty \ as \ u \to -\infty$$

The superpotential

•
$$V = W^2 - \left(\frac{\partial W}{\partial \Phi}\right)^2$$
, $A' = -W$, $\Phi' = \frac{\partial W}{\partial \Phi}$

Three integration constants:

- Asymptotic freedom, $V \rightarrow V_0$, get rids of one
- Reparametrization invariance $u \rightarrow u + \delta u$ get rids of another

A single integration constant in the system:

 $A_0 \Leftrightarrow \Lambda_{QCD}$ in the gauge theory

Holographic dictionary I

ENERGY ⇔ SCALE FACTOR

$$ds^2 = e^{2A(r)} \left(dx^2 + dr^2 \right)$$

Holographic dictionary I

ENERGY ⇔ SCALE FACTOR

$$ds^2 = e^{2A(r)} \left(dx^2 + dr^2 \right)$$

- Measures the energy of gravitational excitations observed at the boundary r=0
- Monotonically decreasing function
- Agrees with the AdS/CFT relation E = 1/r near boundary

We propose
$$E = \exp A$$

Holographic dictionary I

ENERGY ⇔ SCALE FACTOR

$$ds^2 = e^{2A(r)} \left(dx^2 + dr^2 \right)$$

- Measures the energy of gravitational excitations observed at the boundary r=0
- Monotonically decreasing function
- Agrees with the AdS/CFT relation E = 1/r near boundary

We propose
$$E = \exp A$$

String corrections:

If replace
$$R \to f\left(\ell_s^2 R\right) = \sum_n f_n R^n$$
, with unknown f_n ,

$$\frac{d\log E}{dA} = 1 + f_1\lambda^2 + f_2\lambda^4 + \cdots$$

Holographic dictionary II

't HOOFT COUPLING ⇔ DILATON

Insert a probe D3 brane in the geometry. The DBI action:

$$S_{D3} \propto \int e^{-\Phi} F^2 \quad \Rightarrow \quad \lambda = e^{\Phi} = g_{YM}^2 N_c = \lambda_t$$

Holographic dictionary II

't HOOFT COUPLING ⇔ DILATON

Insert a probe D3 brane in the geometry. The DBI action:

$$S_{D3} \propto \int e^{-\Phi} F^2 \quad \Rightarrow \quad \lambda = e^{\Phi} = g_{YM}^2 N_c = \lambda_t$$

String corrections:

Higher order couplings of F_5 to D3 probe brane

$$S_{D3} = \frac{T_3}{\ell_s^4} \int \sqrt{g} e^{-\phi} Z(e^{2\phi} F_5^2) F^2$$

with
$$Z(x) = 1 + \sum_{n=1}^{\infty} c_n x^n$$

The identification receives corrections as,

$$\lambda_t = \lambda(1 + c_1\lambda^2 + c_2\lambda^4 + \cdots)$$

Holographic dictionary III

β -FUNCTION \Leftrightarrow SUPERPOTENTIAL

• If one ignores the string corrections:

$$\beta(\lambda) = \frac{d\lambda}{d\ln E} = -b_0\lambda^2 + b_1\lambda^3 + \dots = -\frac{9}{4}\lambda^2 \frac{d\ln W(\lambda)}{d\lambda}$$

Holographic dictionary III

β -FUNCTION \Leftrightarrow SUPERPOTENTIAL

• If one ignores the string corrections:

$$\beta(\lambda) = \frac{d\lambda}{d\ln E} = -b_0\lambda^2 + b_1\lambda^3 + \dots = -\frac{9}{4}\lambda^2 \frac{d\ln W(\lambda)}{d\lambda}$$

One can solve for the dilaton potential

$$V(\lambda) = V_0 \left(1 - \left(\frac{\beta}{3\lambda} \right)^2 \right) e^{\int_0^{\lambda} \frac{d\lambda \beta}{3\lambda}}$$

Holographic dictionary III

β -FUNCTION \Leftrightarrow SUPERPOTENTIAL

• If one ignores the string corrections:

$$\beta(\lambda) = \frac{d\lambda}{d\ln E} = -b_0\lambda^2 + b_1\lambda^3 + \dots = -\frac{9}{4}\lambda^2 \frac{d\ln W(\lambda)}{d\lambda}$$

• One can solve for the dilaton potential

$$V(\lambda) = V_0 \left(1 - \left(\frac{\beta}{3\lambda} \right)^2 \right) e^{\int_0^{\lambda} \frac{d\lambda \beta}{3\lambda}}$$

• One-to-one correspondence between the coefficients V_n and b_n . We parameterize our ignorance about the UV part of the dual geometry by the b_n .

Holographic dictionary IV

The string corrections:

$$\beta_t \to \beta_{st} = -b_0 \lambda^2 + b_1 \lambda^3 + (b_2 - 4c_1b_0 + f_1b_0) \lambda^4 + (b_3 + 4c_1b_0 - f_1b_1) \lambda^5 + \cdots$$

 c_n from corrections to the probe brane, and the F_5 kinetic term

 f_n from curvature corrections

 ℓ_s corrections appear with the scheme dependent β -coefficients!

Geometry near the boundary

For
$$\beta = -b_0\lambda^2 + b_1\lambda^3 + \cdots$$
,

• The dilaton

$$b_0 \lambda = -\frac{1}{\log r \Lambda} + \frac{b_1}{b_0^2} \frac{\log(-\log r \Lambda)}{\log^2(r \Lambda)} + \cdots$$

• The scale factor $ds^2 = e^{2A}(dx^2 + dr^2)$

$$e^{2A} = \frac{\ell^2}{r^2} \left(1 + \frac{8}{9} \frac{1}{\log(r\Lambda)} - \frac{8}{9} \frac{b_1}{b_0^2} \frac{\log(-\log r\Lambda)}{\log^2(r\Lambda)} + \cdots \right)$$

 AdS with logarithmic corrections. Subleading term is model independent.

Geometry near the boundary

For
$$\beta = -b_0\lambda^2 + b_1\lambda^3 + \cdots$$
,

• The dilaton

$$b_0 \lambda = -\frac{1}{\log r \Lambda} + \frac{b_1}{b_0^2} \frac{\log(-\log r \Lambda)}{\log^2(r \Lambda)} + \cdots$$

• The scale factor $ds^2 = e^{2A}(dx^2 + dr^2)$

$$e^{2A} = \frac{\ell^2}{r^2} \left(1 + \frac{8}{9} \frac{1}{\log(r\Lambda)} - \frac{8}{9} \frac{b_1}{b_0^2} \frac{\log(-\log r\Lambda)}{\log^2(r\Lambda)} + \cdots \right)$$

 AdS with logarithmic corrections. Subleading term is model independent.

Holographic renormalization Bianchi, Freedman, Skenderis '01

AdS with log-corrections, ongoing with E. Kiritsis, Y. Papadimitriou

Geometry in the interior

For
$$A(r) \to \frac{\ell}{r}$$
 as $r \to 0$,

Einstein's equations lead to the following IR behaviours:

- AdS, $A(r) \rightarrow \frac{\ell'}{r}$ with $l' \leq l$
- Singularity (in the Einstein frame) at a finite point $r = r_0$
- Singularity at infinity $r = \infty$

Geometry in the interior

For
$$A(r) \to \frac{\ell}{r}$$
 as $r \to 0$,

Einstein's equations lead to the following IR behaviours:

- AdS, $A(r) \rightarrow \frac{\ell'}{r}$ with $l' \leq l$
- Singularity (in the Einstein frame) at a finite point $r = r_0$
- Singularity at infinity $r = \infty$

Phenomenologically preferred asymptotics

- color confininement
- magnetic screening
- linear spectra $m_n^2 \sim n$ for large n

Constraints on the IR geometry

Color confinement

J Maldacena '98; S. Rey, J. Yee '98

Solve for the string embedding and compute its action:

$$E_{q\overline{q}}T = S_{WS}$$

String action: $S_{WS} = \ell_s^{-2} \int \sqrt{\det g_{ab}} + \int \sqrt{\det g_{ab}} R^{(2)} \Phi(X)$ in the string frame, $g_{ab} = g^S_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu}$.

String action: $S_{WS} = \ell_s^{-2} \int \sqrt{\det g_{ab}} + \int \sqrt{\det g_{ab}} R^{(2)} \Phi(X)$ in the string frame, $g_{ab} = g^S_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu}$.

• Coupling to dilaton bounded as $L \to \infty$, linear potential, if at least one minimum of $A_S = A_E + \frac{2}{3}\Phi$

String action: $S_{WS} = \ell_s^{-2} \int \sqrt{\det g_{ab}} + \int \sqrt{\det g_{ab}} R^{(2)} \Phi(X)$ in the string frame, $g_{ab} = g^S_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu}$.

• Coupling to dilaton bounded as $L \to \infty$, linear potential, if at least one minimum of $A_S = A_E + \frac{2}{3}\Phi$

The quark-anti-quark potential is given by,

$$E_{q\bar{q}} = T_s L = \frac{e^{A_S(r_{min})}}{\ell_s^2} L$$

• String probes the geometry up to r_{min} , parametrically seperated from the far interior $r = r_0$, where the dilaton blows up

String action: $S_{WS} = \ell_s^{-2} \int \sqrt{\det g_{ab}} + \int \sqrt{\det g_{ab}} R^{(2)} \Phi(X)$ in the string frame, $g_{ab} = g^S_{\mu\nu} \partial_a X^{\mu} \partial_b X^{\nu}$.

• Coupling to dilaton bounded as $L \to \infty$, linear potential, if at least one minimum of $A_S = A_E + \frac{2}{3}\Phi$

The quark-anti-quark potential is given by,

$$E_{q\bar{q}} = T_s L = \frac{e^{A_S(r_{min})}}{\ell_s^2} L$$

- String probes the geometry up to r_{min} , parametrically seperated from the far interior $r = r_0$, where the dilaton blows up
- Similar consideration for the magnetic charges, using probe D1

Confining backgrounds

- Space ending at finite r_0
- Space ending at $r = \infty$ with metric vanishing as e^{-Cr} or faster

Confining backgrounds

- Space ending at finite r_0
- Space ending at $r = \infty$ with metric vanishing as e^{-Cr} or faster

In terms of the superpotential, a diffeo-invariant characterization:

$$W(\lambda) \to (\log \lambda)^{P/2} \lambda^Q, \qquad \lambda \to \infty$$

Confinement
$$\Leftrightarrow Q > 2/3 \text{ or } Q = 2/3, P > 0$$

Confining backgrounds

- Space ending at finite r_0
- Space ending at $r = \infty$ with metric vanishing as e^{-Cr} or faster

In terms of the superpotential, a diffeo-invariant characterization:

$$W(\lambda) \to (\log \lambda)^{P/2} \lambda^Q, \qquad \lambda \to \infty$$

Confinement
$$\Leftrightarrow Q > 2/3 \text{ or } Q = 2/3, P > 0$$

The phenomenologically preferred backgrounds for infinite r:

$$A \sim -Cr^{\alpha} \quad \Leftrightarrow \quad Q = 2/3, P = \frac{\alpha - 1}{\alpha}$$

Linear confiniment in the glueball spectrum for $\alpha = 2$

• Borderline case $\alpha = 1$ is linear dilaton background!

Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable flucutations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta\Phi$; Pseudo-scalar: δa .

Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable flucutations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta\Phi$; Pseudo-scalar: δa . Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4x dr e^{\mathbf{2}B(\mathbf{r})} \left[\dot{\zeta}^2 + (\partial_{\mu}\zeta)^2 \right]$$

$$\ddot{\zeta} + 3\dot{B}\dot{\zeta} + m^2\zeta = 0, \quad \partial^{\mu}\partial_{\mu}\zeta = -m^2\zeta$$

Glueballs

Spectrum of 4D glueballs ⇔ Spectrum of normalizable flucutations of the bulk fields.

Spin 2: $h_{\mu\nu}^{TT}$; Spin 0: mixture of h_{μ}^{μ} and $\delta\Phi$; Pseudo-scalar: δa . Quadratic action for fluctuations:

$$S \sim \frac{1}{2} \int d^4x dr e^{\mathbf{2}B(\mathbf{r})} \left[\dot{\zeta}^2 + (\partial_{\mu}\zeta)^2 \right]$$

$$\ddot{\zeta} + 3\dot{B}\dot{\zeta} + m^2\zeta = 0, \quad \partial^{\mu}\partial_{\mu}\zeta = -m^2\zeta$$

- Scalar : $B(r) = 3/2A(r) + \log(\dot{\Phi}/\dot{A})$
- Tensor : B(r) = 3/2A(r)
- Pseudo-scalar: $B(r) = 3/2A(r) + 1/2 \log Z_A$

Reduction to a Schrödinger problem

Define: $\zeta(r) = e^{-B(r)}\Psi(r)$ Schrödinger equation:

$$\mathcal{H}\Psi \equiv -\ddot{\Psi} + V(r)\Psi = m^2\Psi$$
 $V_s(r) = \dot{B}^2 + \ddot{B}$

Reduction to a Schrödinger problem

Define: $\zeta(r) = e^{-B(r)}\Psi(r)$ Schrödinger equation:

$$\mathcal{H}\Psi \equiv -\ddot{\Psi} + V(r)\Psi = m^2\Psi$$
 $V_s(r) = \dot{B}^2 + \ddot{B}$

- The normalizability condition: $\int dr |\Psi|^2 < \infty$
- Normalizability in the UV, picks normalizable UV asymptotics for ζ
- Normalizability in the IR, restricts discrete m^2 , for confining V_s .

Mass gap

$$\mathcal{H} = (\partial_r + \partial_r B)(-\partial_r + \partial_r B) = \mathcal{P}^{\dagger} \mathcal{P} \ge 0$$
:

- Spectrum is non-negative
- Can prove that no normalizable zero-modes
- If $V(r) \to \infty$ as $r \to +\infty$: Mass Gap

Mass gap

$$\mathcal{H} = (\partial_r + \partial_r B)(-\partial_r + \partial_r B) = \mathcal{P}^{\dagger} \mathcal{P} \ge 0$$
:

- Spectrum is non-negative
- Can prove that no normalizable zero-modes
- If $V(r) \to \infty$ as $r \to +\infty$: Mass Gap
- This precisely coincides with the condition from color confinement
- e.g. for the infinite geometries $A(r) \rightarrow -Cr^{\alpha}$: color confiniment AND mass gap for $\alpha \geq 1$.

Numerics

Choose a specific model. Take a superpotential such that

$$W \sim \begin{cases} W_0 \left(1 + \frac{4}{9} b_0 \lambda + \dots \right) & \lambda \to 0 \\ W_0 \lambda^{2/3} (\log \lambda)^{1/4} & \lambda \to \infty \quad (\alpha = 2) \end{cases}$$

For example:

$$W = \left(1 + \frac{2}{3}b_0\lambda\right)^{2/3} \left[1 + \frac{4(2b_0^2 + 3b_1)}{9}\log(1 + \lambda^2)\right]^{1/4}$$

Then, compute numerically metric, dilaton, mass spectrum.

Parameters of the model: b_0 and A_0 . We fix $b_1/b_0^2 = 51/121$, pure YM value.

Comparison with one lattice study Meyer, '02

J^{PC}	Lattice (MeV)	Our model (MeV)	Mismatch
0++	1475 (4%)	1475	0
2++	2150 (5%)	2055	4%
0++*	2755 (4%)	2753	0
2++*	2880 (5%)	2991	4%
0++**	3370 (4%)	3561	5%
0++***	3990 (5%)	4253	6%

$$0^{++}: TrF^2; \qquad 2^{++}: TrF_{\mu\rho}F^{\rho}_{\nu}.$$

Summary of general results

- Mass gap ⇔ Color confiniment
- Universal asymptotic mass ratios: $m_{0++}/m_{2++} \rightarrow 1$ as n >> 1In accord with old string models of QCD
- Fit the lattice data with single parameter $b_0 \approx 4.2$
- Strong dependence on α , linear spectrum for $\alpha = 2$ only
- Spectrum changes drastically if replace logarithmic running in the UV with e.g. a fixed point.

• Real challenge for phenomenology

- Real challenge for phenomenology
- Add fundamental matter in the quenched limit $N_f/N_c\ll 1$ by $N_f~D4-\overline{D4}$ branes.

- Real challenge for phenomenology
- Add fundamental matter in the quenched limit $N_f/N_c\ll 1$ by $N_f~D4-\overline{D4}$ branes.
- Casero, Paredes, Kiritsis '07 $T \Leftrightarrow qP_L\overline{q}$ Open-string Tachyon condensation \Rightarrow chiral symmetry breaking

- Real challenge for phenomenology
- Add fundamental matter in the quenched limit $N_f/N_c \ll 1$ by $N_f \ D4 \overline{D4}$ branes.
- Casero, Paredes, Kiritsis '07 $T \Leftrightarrow qP_L\overline{q}$ Open-string Tachyon condensation \Rightarrow chiral symmetry breaking

- Real challenge for phenomenology
- Add fundamental matter in the quenched limit $N_f/N_c \ll 1$ by $N_f \ D4 \overline{D4}$ branes.
- Casero, Paredes, Kiritsis '07 $T \Leftrightarrow qP_L\overline{q}$ Open-string Tachyon condensation \Rightarrow chiral symmetry breaking

- Choose a Tachyon potential $V_T \sim e^{-T^2}$
- DBI action \Rightarrow solve the eq. for T
- No backreaction on the geometry
- Compute from δA_{μ} on D4 \Rightarrow vector meson spectrum

Meson sector cont.

Fluctuations on D4 \Leftrightarrow Vector mesons from Schrödinger eq. with

$$V = (B')^2 + B'',$$
 $B = \frac{A - \Phi}{2} + \frac{1}{2} \log V_T(T(r))$

Meson sector cont.

Fluctuations on D4 \Leftrightarrow Vector mesons from Schrödinger eq. with

$$V = (B')^2 + B'',$$
 $B = \frac{A - \Phi}{2} + \frac{1}{2} \log V_T(T(r))$

- Always linear confinement regardless the background, due to V_T
- Typical mass scales for the mesons and the glueballs different in general:

$$\Lambda_{glue} = \Lambda, \qquad \Lambda_{meson} = \Lambda(\ell\Lambda)^{\alpha-2}$$

A single scale in the spectrum for $\alpha = 2$

Meson sector cont.

Fluctuations on D4 \Leftrightarrow Vector mesons from Schrödinger eq. with

$$V = (B')^2 + B'',$$
 $B = \frac{A - \Phi}{2} + \frac{1}{2} \log V_T(T(r))$

- Always linear confinement regardless the background, due to V_T
- Typical mass scales for the mesons and the glueballs different in general:

$$\Lambda_{glue} = \Lambda, \qquad \Lambda_{meson} = \Lambda(\ell\Lambda)^{\alpha-2}$$

A single scale in the spectrum for $\alpha = 2$

 Highly non-linear T equation, proved very hard to solve numerically (issue of the initial conditions.) Ongoing work with

F. Nitti, A. Paredes, E. Kiritsis

• Axion action $S_A = \frac{M^3}{2} \int \sqrt{g} Z_A(\lambda) (\partial a)^2$ with

• Axion action $S_A = \frac{M^3}{2} \int \sqrt{g} Z_A(\lambda) (\partial a)^2$ with

$$Z_A(\lambda) \to \begin{cases} Z_a, & \lambda \to 0 & \text{for non-trivial}\langle \text{Tr} F \wedge F \rangle \\ \lambda^4 & \lambda \to \infty & \text{for } m_{0+-}/m_{0++} \to 1 \end{cases}$$

• Axion action $S_A = \frac{M^3}{2} \int \sqrt{g} Z_A(\lambda) (\partial a)^2$ with

$$Z_A(\lambda) \to \begin{cases} Z_a, & \lambda \to 0 & \text{for non - trivial}\langle \text{Tr} F \wedge F \rangle \\ \lambda^4 & \lambda \to \infty & \text{for } m_{0+-}/m_{0++} \to 1 \end{cases}$$

- No backreaction on the geometry as $S_A/S \propto N_c^{-2}$

• Axion action $S_A = \frac{M^3}{2} \int \sqrt{g} Z_A(\lambda) (\partial a)^2$ with

$$Z_A(\lambda) \to \begin{cases} Z_a, & \lambda \to 0 & \text{for non-trivial}\langle \text{Tr} F \wedge F \rangle \\ \lambda^4 & \lambda \to \infty & \text{for } m_{0+-}/m_{0++} \to 1 \end{cases}$$

- No backreaction on the geometry as $S_A/S \propto N_c^{-2}$
- General solution:

$$a(r) = \theta_0 + C_a \int_0^r \frac{dr}{\ell} \frac{e^{-3A}}{Z_A(\lambda)}$$

$$\rightarrow \theta_0 + \frac{C_a}{4Z_a\ell^4}r^4 + \cdots \qquad as \qquad r \rightarrow 0$$

the axionic glueball condensate

• Vacuum energy from
$$E = S_A[a] \propto a(r) \Big|_0^{r_0}$$

- Vacuum energy from $E = S_A[a] \propto a(r) \bigg|_0^{r_0}$
- Require no contribution from the IR end $r = r_0$
- The IR boundary condition: $a(r_0) = 0$

- Vacuum energy from $E = S_A[a] \propto a(r) \Big|_0^{r_0}$
- Require no contribution from the IR end $r = r_0$
- The IR boundary condition: $a(r_0) = 0$
- The glueball condensate $\frac{1}{32\pi^2}\langle {\rm Tr} F \wedge F \rangle = -\frac{\theta_0}{Z_a \ell^4 f_1(r_0)}$
- The vacuum energy $E(\theta_0) = -\frac{M^3}{2\ell} \frac{\theta_0^2}{f_1(r_0)}$

- Vacuum energy from $E = S_A[a] \propto a(r) \Big|_0^{r_0}$
- Require no contribution from the IR end $r = r_0$
- The IR boundary condition: $a(r_0) = 0$
- The glueball condensate $\frac{1}{32\pi^2}\langle {\rm Tr} F \wedge F \rangle = -\frac{\theta_0}{Z_a \ell^4 f_1(r_0)}$
- The vacuum energy $E(\theta_0) = -\frac{M^3}{2\ell} \frac{\theta_0^2}{f_1(r_0)}$
- Effects of CP violation e.g. electric dipole moment of neutron, 0^{+-} decay into 0^{++} etc. \Leftrightarrow the axion a
- Renormalized effects of the θ -parameter vanishes in the IR!
- Pseudo-scalar glueball screens the θ_0 in the IR, a hint at resolution of the strong CP problem?

Summary and discussion

nrohlam

A holographic model for QCD

- Effectively describe the uncontrolled physics in the UV by a general dilaton potential, with parameters β -function coefficients
- Focused on a model with two parameters b_0 and A_0 . Improvement on AdS/QCD: linear confinement, magnetic screening, agreement with lattice, mesons can be treated
- Asymptotic AdS in the UV with log-corrections, $\frac{\ell_{Ads}}{\ell_s} \approx 7$
- Singularity in the IR. But $R_S \rightarrow 0$: A log-corrected linear dilaton background in the IR.
- Dilaton diverges in the IR, that region is not probed neither by probe strings nor by bulk excitations
- Some qualitative results: confinement \Leftrightarrow mass gap, universal mass ratios for $n \gg 1$, a suggestion for the resolution of CP

• Precise computations in the axionic sector, predictions for experiments

- Precise computations in the axionic sector, predictions for experiments
- Meson spectra

- Precise computations in the axionic sector, predictions for experiments
- Meson spectra
- Holographic renormalization program for log-corrected AdS geometries

- Precise computations in the axionic sector, predictions for experiments
- Meson spectra
- Holographic renormalization program for log-corrected AdS geometries
- Finite temperature physics:

At finite T, thermal gas (zero T geometry with Euclidean time compactified) and two Black-hole geometries (big and small)

$$ds^{2} = e^{2A(r)} \left(-f(r)dt^{2} + d\vec{x}^{2} + \frac{dr^{2}}{f(r)^{2}} \right)$$

• General results: Hawking-Page transition at T_c . For $T > T_c$ big black-hole dominates

- Precise computations in the axionic sector, predictions for experiments
- Meson spectra
- Holographic renormalization program for log-corrected AdS geometries
- Finite temperature physics:

At finite T, thermal gas (zero T geometry with Euclidean time compactified) and two Black-hole geometries (big and small)

$$ds^{2} = e^{2A(r)} \left(-f(r)dt^{2} + d\vec{x}^{2} + \frac{dr^{2}}{f(r)^{2}} \right)$$

- General results: Hawking-Page transition at T_c . For $T > T_c$ big black-hole dominates
- Color confiniment \Leftrightarrow confiniment-deconfiniment transition at $T_c \neq 0$.

Outlook cont.

• Finite baryon chemical potential, phase diagram of large N Yang-Mills in $T,\ \mu$

Outlook cont.

- Finite baryon chemical potential, phase diagram of large N Yang-Mills in $T,\ \mu$
- Most importantly: Precise string configurations (e.g. in 6D NCST)?

Outlook cont.

- Finite baryon chemical potential, phase diagram of large N Yang-Mills in $T,\ \mu$
- Most importantly: Precise string configurations (e.g. in 6D NCST)?

THANK YOU!