AdS spacetimes and Kaluza-Klein consistency

Oscar Varela

based on work with

Jerome Gauntlett and Eoin Ó Colgáin hep-th/0611219, 0707.2315, 0711.xxxx

> CALTECH 16 November 2007

Outline

- Consistent KK reductions
- 2 $AdS_5 \times_w M_6$ solutions with dual d = 4, N = 1 SCFTs
 - Undeformed geometry
 - Consistent truncation of D = 11 supergravity on M_6
- 3 $AdS_5 \times_w N_6$ solutions with dual d = 4, N = 2 SCFTs
 - Undeformed geometry
 - Consistent truncation of D = 11 supergravity on N_6
- Conclusions and outlook

Consistent KK reductions

- 1 Consistent KK reductions
- 2 $AdS_5 \times_w M_6$ solutions with dual d = 4, N = 1 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on M_6
- 3 $AdS_5 \times_w N_6$ solutions with dual d=4, N=2 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on N_6
- Conclusions and outlook

Motivation

- A powerful method to construct solutions to sugra theories in a higher dimension D is to
 uplift solutions of simpler sugras in lower dimension d.
- For this uplift to be well defined, there must exist a consistent Kaluza-Klein (KK) reduction from the sugra in dimension D to the sugra in dimension d.
- To determine if such KK reduction is consistent is an interesting problem by its own.

KK consistency

- Upon compactification on an internal manifold M_{D-d} , the *D*-dimensional fields give rise to *d*-dimensional fields: a finite set of light *L* and a KK tower of heavy *H* fields.
- The *D*-dimensional e.o.m.'s can be rewritten in terms of these:

$$\Box L \sim a_{mn} L^m H^n$$

$$\Box H \sim b_{mn} L^m H^n$$

- A truncation keeping L and discarding H (H=0) will be consistent only if $b_{m0}=0$.
- Then, the fields L satisfy d-dimensional e.o.m.'s: □L = 0. Any solution to the
 d-dimensional theory can then be uplifted to D dimensions (via the 'KK ansatz').

Some cases of consistent reductions

- Only in a few cases there is a group-theoretical argument behind the consistency of the truncation (when all the singlets under a convenient symmetry group are retained):
- (Toroidal) dimensional reductions,
- Compactifications on group manifolds.
- But in general, the compactification on arbitrary manifolds will be inconsistent.

$AdS \times Sphere$ compactifications

- Remarkable consistent compactifications of D=10,11 sugra are associated with the (maximally supersymmetric) solutions $AdS_7 \times S^4$, $AdS_4 \times S^7$ and $AdS_5 \times S^5$:
- The compactification of D=11 sugra on S^4 can be consistently truncated to SO(5) gauged (maximal) supergravity in d=7 [Nastase, Vaman, van Nieuwenhuizen, hep-th/9905075, 9911238].
- The compactification of D=11 sugra on S^7 can be consistently truncated to SO(8) gauged (maximal) supergravity in d=4 [De Wit, Nicolai, NPB 281 (1987) 211].
- Similarly, the compactification of IIB sugra on S^5 is expected to consistently yield SO(6) (maximal) gauged d=5 sugra [Cvetič, Duff, Hoxha, Liu, Lu, Lu, Martinez-Acosta, Pope, Sati, Tran, hep-th/9903214; Lu, Pope, Tran, hep-th/9909203; Cvetič, Lu, Pope, Sadrzadeh, Tran, hep-th/0003103].

A conjecture about consistency

- String/M-theory on all these backgrounds is dual, via the AdS/CFT correspondence, to a superconformal field theory (SCFT) in the boundary of AdS.
- Indeed, we would like to view the compactifications on those backgrounds as special cases of the following conjecture:
- For any supersymmetric $AdS_d \times_w M_{D-d}$ solution of D=10 or D=11 supergravity there is a consistent Kaluza-Klein truncation on M_{D-d} to a gauged supergravity theory in d-dimensions for which the fields are dual to those in the superconformal current multiplet of the (d-1)-dimensional dual SCFT [Gauntlett, OV, arXiv:0707.2315].

A conjecture about consistency

- Equivalently, the fields of the gauged supergravity are those that contain the d-dimensional graviton and fill out an irreducible representation of the superisometry algebra of the D=10 or D=11 supergravity solution $AdS_d \times_w M_{D-d}$.
- This is essentially a restricted version of the conjecture in [Duff, Pope, Nucl. Phys. B255 (1985) 355].
- General arguments supporting it were subsequenty put forward in [Pope, Stelle, Phys. Lett. B198 (1987) 151].

A conjecture about consistency

- For example, the $AdS_5 \times S^5$ solution of type IIB, which has superisometry algebra SU(2,2|4), is dual to N=4 superYang-Mills theory in d=4.
- The superconformal current multiplet of the latter theory includes the energy momentum tensor, SO(6) R-symmetry currents, along with scalars and fermions.
- These are dual to the metric, SO(6) gauge fields along with scalar and fermion fields, and are precisely the fields of the maximally supersymmetric SO(6) gauged supergravity in d=5.
- Here we will give evidence of this conjecture for the cases of $AdS_5 \times_w M_6$ solutions in D=11, which are dual to N=1 and N=2 SCFTs in 4 dimensions.

$AdS_5 \times_w M_6$ solutions with dual d=4, N=1 SCFTs

- Consistent KK reductions
- 2 $AdS_5 \times_w M_6$ solutions with dual d = 4, N = 1 SCFTs
 - Undeformed geometry
 - Consistent truncation of D = 11 supergravity on M_6
- 3 $AdS_5 \times_w N_6$ solutions with dual d = 4, N = 2 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on N_6
- Conclusions and outlook

$AdS_5 \times_w M_6$ solutions with dual d = 4, N = 1 SCFTs

- Consider the $AdS_5 \times_w M_6$ solutions in D=11, which are dual to N=1 SCFTs in 4 dimensions.
- These SCFTs all have a U(1) R-symmetry and so we expect that D=11 sugra on M_6 gives a d=5 sugra with
 - N = 1 supersymmetry
 - \bullet a metric ds_5^2 (dual to the energy-momentum tensor of the SCFT)
 - \bullet and a U(1) gauge field A (dual to the R-symmetry current).
- This is precisely the content of minimal d = 5 gauged sugra.
- Hence we expect that the reduction of D = 11 supergravity on M_6 truncates consistently to D = 5 minimal gauged supergravity.

$AdS_5 \times_w M_6$ solutions of D = 11 sugra with N = 1 susy

The most general solution of the D=11 sugra equations containing an AdS_5 factor in the metric was analysed in [Gauntlett, Martelli, Sparks, Waldram, hep-th/0402153] using G-structure techniques [Gauntlett, Martelli, Pakis, Waldram, hep-th/0205050].

The most general form of the D=11 bosonic fields ds_{11}^2 , $G_4=dA_3$ containing AdS_5 , compatible with SO(4,2) symmetry is

$$ds_{11}^2 = e^{2\lambda}[ds^2(AdS_5) + ds^2(M_6)],$$

$$G_4 \in \Omega_4(M_6, \mathbb{R})$$

$$\lambda \in \Omega_0(M_6, \mathbb{R}) \text{ (warp factor)}$$

and subject to the field equations.

N = 1 supersymmetry

• In order to have N=1 supersymmetry, the solution must admit a Killing spinor ϵ , solution to the Killing spinor equation

$$\mathcal{D}\epsilon = 0$$

where \mathcal{D} is the supercovariant derivative, involving the ordinary Riemannian covariant derivative and the D=11 sugra fields.

N = 1 supersymmetry

• The D = 11 Killing spinor splits as

$$\epsilon = \varepsilon \otimes e^{\lambda/2} \xi,$$

where ε is a Killing spinor on AdS_5 and ξ is a (non-chiral) spinor on M_6 .

- The Killing spinor equation also splits into
 - an equation for ε on AdS_5 , immediately satisfied, and
 - equations for ξ on M_6 , which specify a particular G-structure on M_6 (with G = SU(2)).

The G-structure on M_6

The existence of ξ defines a G-structure on M_6 , alternatively specified by a set of bilinears on ξ (e.g., $\tilde{K}_m^2 = \frac{1}{2}\bar{\xi}\gamma_m\gamma_7\xi$):

$$K^1, \tilde{K}^2 \in \Omega_1(M_6, \mathbb{R})$$

$$J \in \Omega_2(M_6, \mathbb{R})$$

$$\Omega \in \Omega_2(M_6, \mathbb{C})$$

$$\cos \zeta \in \Omega_0(M_6, \mathbb{R})$$

The G-structure on M_6

- The Killing spinor equations for ξ translate into a set of differential and algebraic equations among these bilinear forms and the warp factor λ and four-form G_4 .
- e.g., $\nabla_{(\mu} \tilde{K}_{\nu)}^2 = 0$, i.e., $\tilde{K}^2 \equiv \cos \zeta K^2$ defines a Killing vector (related to the R-symmetry of the dual CFT)
- The equations among the bilinear forms constrain the internal geometry, *i.e.*, the metric on M_6 , the flux G_4 and the warp factor λ .

The metric on M_6

• The existence of two vectors K^1 , K^2 on M_6 allows one to choose the convenient frame

$$ds^{2}(M_{6}) = e^{-6\lambda}e^{i} \otimes e^{i} + (K^{1})^{2} + (K^{2})^{2}, \quad i = 1, 2, 3, 4$$

and coordinates $y,\,\psi$ can be introduced such that $K^1\sim dy,\,K^2\sim d\psi.$

- $e^{-6\lambda}e^i\otimes e^i$ defines a family of four-dimensional manifolds M_4 with Kähler metrics parametrised by y.
- $e^{-6\lambda}J$ is the Kähler form on M_4 and is independent of y.
- The explicit expression of the four-form flux G_4 will not be needed in this discussion.

Kaluza-Klein ansatz: the metric

- The 'KK ansatz' must express the D = 11 fields ds_{11}^2 , $G_4 = dA_3$ in terms of the d = 5 fields ds_5^2 , $F_2 = dA$.
- It is natural to think of the d=5 U(1) gauge field A as arising from the U(1) isometry of M_6 generated by \tilde{K}^2 .
- Thus, we take the usual KK ansatz for the metric:

In
$$ds_{11}^2=e^{2\lambda}[ds^2(AdS_5)+ds^2(M_6)]$$

replace $ds^2(AdS_5)\longrightarrow ds_5^2$, $ds^2(M_6)\longrightarrow ds^2(\hat{M}_6)$

to get

$$ds_{11}^2 = e^{2\lambda} [ds_5^2 + ds^2(\hat{M}_6)]$$

where \hat{M}_6 denotes the deformation of M_6 parametrised by A as

$$K^2 \longrightarrow \hat{K}^2 = K^2 + \frac{1}{2}\cos\zeta A$$

Kaluza-Klein ansatz: the four-form

KK ansatz for the four-form:

$$G_4' = \hat{G}_4 + F_2 \wedge \hat{\beta}_2 + *_5 F_2 \wedge \hat{\beta}_1.$$

Here,

- $F_2 = dA$
- hatted quantities are forms on \hat{M}_6 (i.e. with K^2 \longrightarrow $\hat{K}^2 = K^2 + \frac{1}{2}\cos\zeta A$)
- G_4 is the four-form on M_6 corresponding to the undeformed background $AdS_5 \times_w M_6$
- β_1 , β_2 are forms on M_6 to be determined.

Consistent truncation

- \bullet Direct substitution shows that the KK ansatz satisfies the D=11 field equations provided that
 - the d=5 fields satisfy the equations of minimal d=5 gauged supergravity, and
 - a set of differential and algebraic equations among β_1 , β_2 and the warp factor λ and four-form G_4 is satisfied.
- These equations are actually of the same form than those among the bilinear forms defining the G-structure on M_6 .
- Indeed β_1 , β_2 have a solution in terms of some of the spinor bilinears on M_6 :

$$\beta_1 = -\frac{1}{3}e^{3\lambda}\cos\zeta K^1$$

$$\beta_2 = \frac{1}{3}e^{3\lambda} \left(-\sin\zeta J + K^1 \wedge K^2 \right) .$$

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト 9 年 9 9 0 0

Consistency and the Einstein equation

The D = 11 Einstein equations reduce to

$$R_{\alpha\beta} = -4g_{\alpha\beta} + \frac{\mathbf{k}_1}{\mathbf{k}_1} F_{\alpha\gamma} F_{\beta}{}^{\gamma} - \frac{\mathbf{k}_2}{\mathbf{k}_2} g_{\alpha\beta} F_{\gamma\delta} F^{\gamma\delta},$$
$$d(*_5F) + \frac{\mathbf{k}_3}{\mathbf{k}_3} F \wedge F = 0,$$

where, in general, k_1 , k_2 , k_3 are functions of M_6 (given by combinations of the components of β_1 , β_2).

- This is a potential source of inconsistency of the KK reduction [Duff, Nilsson, Pope, Warner,
 Phys. Lett. B 149 (1984) 90; Hoxha, Martínez-Acosta, Pope, hep-th/0005172].
- However, for β_1 , β_2 conveniently chosen, k_1 , k_2 , k_3 are constants, and the D=11 Einstein equation reduces to the right equations in D=5.
- Moreover, this provides yet another check on the constants appearing in the e.o.m. of minimal gauged supergravity in D = 5.

→□▶→□▶→□▶→□▶ □ 900

Consistent truncation

• To summarise, the d=5 fields ds_5^2 , F_2 can be embedded into the D=11 fields ds_{11}^2 , G_4 through the KK ansatz

$$\begin{split} ds_{11}^2 &= e^{2\lambda} [ds_5^2 + ds^2(\hat{M}_6)] \;, \qquad \tilde{K}^2 &\longrightarrow \quad \hat{\tilde{K}}^2 = \tilde{K}^2 + A \\ G_4' &= \hat{G}_4 + F_2 \wedge \frac{1}{2} e^{3\lambda} (-\sin\zeta J + K^1 \wedge \hat{K}^2) - *_5 F_2 \wedge \frac{1}{2} e^{3\lambda} \cos\zeta K^1 \end{split}$$

- This shows the consistency of the truncation, at the level of the bosonic equations [Gauntlett, O Colgain, OV, hep-th/0611219] .
- The D=11 gravitino variations also reduce consistently to the d=5 gravitino variation [Gauntlett, O Colgain, OV, hep-th/0611219] .

$AdS_5 \times_w M_6$ solutions with dual d=4, N=2 SCFTs

- Consistent KK reductions
- \bigcirc $AdS_5 \times_w M_6$ solutions with dual d=4, N=1 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on M_6
- 3 $AdS_5 \times_w N_6$ solutions with dual d = 4, N = 2 SCFTs
 - Undeformed geometry
 - \bullet Consistent truncation of D=11 supergravity on N_6
- 4 Conclusions and outlook

$AdS_5 \times_w N_6$ solutions with dual d=4, N=2 SCFTs

- Consider the $AdS_5 \times_w N_6$ solutions in D=11, which are dual to N=2 SCFTs in 4 dimensions.
- These SCFTs have now a $U(1) \times SU(2)$ R-symmetry.
- Along with $U(1) \times SU(2)$ gauge fields $B, A^i, i = 1, 2, 3$, the corresponding gauged supergravity multiplet contains a scalar X and a complex two-form C_2 .
- This are the fields of Romans' D=5, N=4 gauged supergravity [Romans, Nucl. Phys. B **267** (1986) 433.].

Consistent truncation to D = 5, N = 4 gauged supergravity

- Hence we expect that the reduction of D=11 supergravity on N_6 truncates consistently to Romans' D=5, N=4 gauged supergravity.
- A consistent truncation of IIB supergravity on S⁵ down to D = 5, N = 4 gauged supergravity was found in [Lu, Pope, Tran, hep-th/9909203].
- A consistent truncation of D = 11 down to D = 5, N = 4 gauged supergravity was found
 in [Cvetič, Lu, Pope, hep-th/0007109].

$AdS_5 \times_w N_6$ solutions of D = 11 sugra with N = 2 susy

The most general AdS_5 solutions of D=11 supergravity that are dual to N=2 SCFTs in d=4 where first derived by LLM [Lin, Lunin, Maldacena, hep-th/0409174]. and rederived by

• The metric is

$$ds_{11}^2 = \lambda^{-1} ds^2 (AdS_5) + ds^2 (N_6), \qquad \lambda \in \Omega_0(M_6, \mathbb{R})$$

• A frame (e^1, \ldots, e^6) can be introduced for N_6 with

[Gauntlett, Mac Conamhna, Mateos, Waldram, arXiv:hep-th/0605146].

$$e^4 = \frac{\lambda}{2m\sqrt{1-z}}d\rho$$

$$(e^5)^2 + (e^6)^2 = \frac{\lambda^2 \rho^2}{4m^2} d\mu^i d\mu^i$$

where $z \equiv \lambda^3 \rho^2$, $\mu^i \mu^i = 1$ parametrise an S^2 and e^3 is a U(1) Killing vector; in all, $ds^2(N_6)$ has $U(1) \times SU(2)$ isometry.

◆ロト ◆御 ト ◆注 ト ◆注 ト 注 り へ ○

N=2 supersymmetry

• N=2 supersymmetry places the following constraints on the frame:

$$\begin{split} &\mathrm{d} \left(\lambda^{-1} \sqrt{1-z} e^1 \right) = m \lambda^{-1/2} \left(\lambda^{3/2} \rho e^{14} + e^{23} \right), \\ &\mathrm{d} \left(\lambda^{-1} \sqrt{1-z} e^2 \right) = m \lambda^{-1/2} \left(\lambda^{3/2} \rho e^{24} - e^{13} \right), \\ &\mathrm{d} \left(\frac{\lambda^{1/2}}{\sqrt{1-z}} e^3 \right) = -\frac{2m \lambda}{1-z} e^{12} - \frac{3 \lambda \rho}{(1-z)^{3/2}} \left[(\mathrm{d} \lambda)_4 e^{12} - (\mathrm{d} \lambda)_2 e^{14} + (\mathrm{d} \lambda)_1 e^{24} \right], \end{split}$$

• The four-form flux is given by

$$G_4 = -\frac{1}{8m^2} \epsilon_{ijk} \mu^i d\mu^j \wedge d\mu^k \wedge \left[d \left(\lambda^{1/2} \rho \sqrt{1-z} e^3 \right) + 2m \left(\lambda \rho e^{12} + \lambda^{-1/2} e^{34} \right) \right].$$

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Field content of D = 5, N = 4 gauged supergravity

Romans' D=5, N=4 gauged supergravity [Romans, Nucl. Phys. B **267** (1986) 433.]. consists of a metric ds_5^2 , a scalar field X, $U(1) \times SU(2)$ gauge fields B, A^i with i=1,2,3 and a complex two form C_2 which is charged with respect to the U(1) gauge field. The corresponding field strengths for these potentials are

$$G_2 = dB$$

$$F_2^i = dA^i + \frac{g}{\sqrt{2}} \epsilon_{ijk} A^j \wedge A^k$$

$$F_3 = dC_2 - igB \wedge C_2$$

Kaluza-Klein ansatz: the metric

The KK ansatz for the metric is

$$ds_{11}^2 = \lambda^{-1} X^{-1/3} \Delta^{1/3} ds_5^2 + ds^2 (\hat{N}_6)$$

where

$$\Delta = Xz + X^{-2}(1-z)$$

$$ds^{2}(\hat{N}_{6}) = X^{2/3} \Delta^{1/3} \left[(e^{1})^{2} + (e^{2})^{2} + (e^{4})^{2} \right] + X^{5/3} \Delta^{-2/3} (\hat{e}^{3})^{2} + X^{-4/3} \Delta^{-2/3} \frac{\lambda^{2} \rho^{2}}{4g^{2}} D\mu^{i} D\mu^{i}$$

and

$$\hat{e}^3 = e^3 + \frac{\sqrt{1-z}}{\lambda^{1/2}}B$$

$$D\mu^i = d\mu^i - \sqrt{2}g\epsilon_{ijk}A^k\mu^j$$

$$(m=-g)$$

AdS spacetimes and KK consistency

Kaluza-Klein ansatz: the four-form

For the four-form, the KK ansatz is

$$G_4 = \tilde{G}_4 + G_2 \wedge \beta_2 + F_2^i \wedge \beta_2^i + *_5 F_2^i \wedge \beta_{1i} + (C_2 \wedge \alpha_2 + F_3 \wedge \alpha_1 + c.c.)$$

where

$$\tilde{G}_{4} = -\frac{1}{8g^{2}} \epsilon_{ijk} \mu^{i} D \mu^{j} \wedge D \mu^{k} \wedge \left[d \left(X^{-2} \Delta^{-1} \rho (1-z) \right) \frac{\lambda^{1/2}}{\sqrt{1-z}} \hat{e}^{3} + X^{-2} \Delta^{-1} \rho (1-z) d \left(\frac{\lambda^{1/2}}{\sqrt{1-z}} e^{3} \right) - 2g \left(\lambda \rho e^{12} + \lambda^{-1/2} \hat{e}^{34} \right) \right].$$

and...

4 □ > 4 □ > 4 □ > 4 □ > ...

Kaluza-Klein ansatz: the four-form

$$G_4 = \tilde{G}_4 + G_2 \wedge \beta_2 + F_2^i \wedge \beta_2^i + *_5 F_2^i \wedge \beta_{1i} + (C_2 \wedge \alpha_2 + F_3 \wedge \alpha_1 + c.c.)$$

$$\beta_{2} = \frac{1}{8g^{2}}\rho z X \Delta^{-1} \epsilon_{ijk} \mu^{i} D \mu^{j} \wedge D \mu^{k}$$

$$\beta_{2i} = -\frac{1}{2\sqrt{2}g} \left[X^{-2} \Delta^{-1} \rho \lambda^{1/2} \sqrt{1-z} D \mu^{i} \wedge \hat{e}^{3} - 2m \mu_{i} (\lambda \rho e^{12} + \lambda^{-1/2} \hat{e}^{34}) \right]$$

$$\beta_{1}^{i} = -\frac{X^{-2}}{2\sqrt{2}g} \left(\mu^{i} d\rho + \rho D \mu^{i} \right)$$

$$\alpha_{1} = \frac{1}{8g^{2}} \lambda^{-1} \sqrt{1-z} (e^{1} - ie^{2})$$

$$\alpha_{2} = -\frac{1}{8g} (e^{1} - ie^{2}) \left(\lambda \rho e^{4} + i \lambda^{-1/2} \hat{e}^{3} \right)$$

◆□▶ ◆圖▶ ◆蓮≯ ◆蓮≯ ○蓮○

Consistent truncation

The KK ansatz satisfies the D=11 field equations provided the d=5 fields satisfy the equations of $D=5,\ N=4$ gauged supergravity:

$$d(X^{-1}*dX) = \frac{1}{3}X^{4}*G_{2} \wedge G_{2} - \frac{1}{6}X^{-2}(*F_{2}^{i} \wedge F_{2}^{i} + *\bar{C}_{2} \wedge C_{2})$$

$$-\frac{4}{3}g^{2}(X^{2} - X^{-1}) \operatorname{vol}_{5},$$

$$d(X^{4}*G_{2}) = -\frac{1}{2}F_{2}^{i} \wedge F_{2}^{i} - \frac{1}{2}\bar{C}_{2} \wedge C_{2},$$

$$D(X^{-2}*F_{2}^{i}) = -F_{2}^{i} \wedge G_{2},$$

$$X^{2}*F_{3} = -igC_{2},$$

$$R_{\mu\nu} = 3X^{-2}\partial_{\mu}X\partial_{\nu}X - \frac{4}{3}g^{2}(X^{2} + 2X^{-1})g_{\mu\nu}$$

$$+\frac{1}{2}X^{4}(G_{\mu}{}^{\rho}G_{\nu\rho} - \frac{1}{6}g_{\mu\nu}G_{2}^{2}) + \frac{1}{2}X^{-2}(F_{\mu}^{i}{}^{\rho}F_{\nu\rho}^{i} - \frac{1}{6}g_{\mu\nu}(F_{2}^{i})^{2})$$

$$+\frac{1}{2}X^{-2}(\bar{C}_{(\mu}{}^{\rho}C_{\nu)\rho} - \frac{1}{6}g_{\mu\nu}|C_{2}|^{2}),$$

which proves the consistency of the truncation [Gauntlett, OV, arXiv:0711.xxxx].

←ロト ←団ト ← 重ト ← 重 ・ 釣り(で)

$AdS_5 \times_w M_6$ solutions with dual d=4, N=2 SCFTs

- Consistent KK reductions
- \triangle $AdS_5 \times_w M_6$ solutions with dual d=4, N=1 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on M_6
- 3 $AdS_5 \times_w N_6$ solutions with dual d = 4, N = 2 SCFTs
 - Undeformed geometry
 - Consistent truncation of D=11 supergravity on N_6
- 4 Conclusions and outlook

Further examples in D = 11

Other examples suport our conjecture about consistent KK reductions.

- The D=11 solutions of the form $AdS_4 \times SE_7$, where SE_7 is Sasaki-Einstein are dual to 3d N=2 SCFTs, and the reduction of D=11 on M_7 consistently truncates to d=4, N=2 gauged sugra [Gauntlett, OV, arXiv:0707.2315].
- The D=11 solutions of the form $AdS_4 \times_w M_7$, corresponding to M5-branes wrapping SLAG 3 cycles [Gauntlett, Mac Conamhna, Mateos, Waldram hep-th/0605146], also allow for a consistent reduction of D=11 sugra on M_7 to d=4, N=2 gauged sugra [Gauntlett, OV, arXiv:0707.2315].

Further examples in IIB

- IIB sugra on d=5 Sasaki-Einstein spaces is dual to a 4d N=1 SCFT, and consistently truncates to minimal d=5 gauged sugra [Buchel, Liu, hep-th/0608002].
- The IIB solutions of the form $AdS_5 \times_w M_5$ with N=1 susy and all fluxes active [Gauntlett, Martelli, Sparks, Waldram, hep-th/0510125] also allow for a consistent reduction of IIB on M_5 to d=5 minimal gauged sugra [Gauntlett, OV, arXiv:0707.2315].

Conclusions

- Supersymmetric solutions $AdS_d \times_w M_{D-d}$ in D=11,10 have been conjectured to give rise to a consistent truncation of D=11,10 sugra on M_{D-d} down to a pure, gauged sugra in d dimensions whose fields are dual to those defining the (d-1)-dimensional dual SCFT.
- Consistent truncations have been explicitly shown to exist for the most general solutions in D = 11 sugra with d = 4, N = 1 and N = 2 dual SCFTs.
- Other examples including AdS_4 , AdS_5 in IIB and D=11 give further evidence.

Outlook

- The conditions that allow D = 11, 10 solutions with AdS_d factors allow for consistent truncations: how about the other way around?
- Better understanding of the opposite statement could lead to the characterisation of new AdS solutions (e.g.: the most general AdS_5 solutions in IIB dual to d=4, N=2 SCFTs).
- Our explicit KK ansatze allow for the uplift of lower d solutions to higher D, that would need to be interpreted in D dimensions.
- It would be interesting to recast the known KK truncations on spheres in this language.
- It would be interesting to prove the conjecture, both from the sugra and CFT sides.