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Spinors

• Spinor representations for the 11-d theory decompose as

SO(1,10)  -   32          4+8    
• For N=1 SUSY in 4-d we need 1 covariantly constant spinor 

on X7

It turns out…

A 7-dimensional G2 space comes with exactly such a structure. 
Compactification on a G2 space breaks supersymmetry to 
1/8 of the original amount (N=1 in 4-d).

( 8SO(7)

[1+7]G2 )

So, what is a G2 space?…



  

Recall, the exceptional Lie-group 
G2 is…
• 14-real dimensional
• The automorphism group of the octonions

• A G2 space is a 7-dim space with G2 holonomy

• G2 holonomy manifold       Ricci flat
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ϕ0={dx123dx145dx167dx246−dx257−dx 347−dx356 }

• The space comes equipped with a smooth 3-form, φmnp, which is  
   isomorphic to the “flat” 3-form

•This generates an associated metric and a single globally 
defined spinor

• The pair(φ0, g) together form what is called a “G2 structure”
•The subgroup of GL(7,R) preserving φ0 is G2  
• Several systematic attempts have been made to construct G2 
spaces. Examples include the work of Joyce (orbifolded tori) and 
Hitchin (non-compact spaces).
• It is hard to make G2 Spaces…

•No G2 version of Yau’s theorem
•Generally a complicated object!

gmn=ϕmlp ϕnqr ϕstuε lpqrstu ϕmnp=i ηγ mnpη



  

M-theory compactification on a 
G2 manifold
• Witten, Papadopoulos and Townsend compactified M-theory 

on a smooth 7-manifold with G2 holonomy. They found the 
following field content in 4-d…

• Abelian vector multiplets
– b2(X) of them, descending from the 3-form of 11-d SUGRA

• Uncharged chiral multiplets
– b3(X) of them, descending from the metric moduli of X and the 

associated axions.

                                    
…This is clearly unphysical! 

For reasonable 4-dim physics, we need:
 Non-Abelian gauge fields
 Charged chiral matter



  

Singularities
The problem gets harder…

In the late 90’s it was found that while smooth G2-spaces are
uninteresting, much better things could occur for singular 
G2-spaces (Witten, Atiyah, Acharya, etc). In the neighborhoods of
these singularities it turns out that…

Co-dim 4 
Singularities

Non-Abelian 
Gauge Fields

Co-dim 7 
(Conical)

Singularities

Charged Chiral 
Fermions

So, for realistic physics, we need to construct G2 spaces in which the co-
dimension 4 singular locus intersects a conical singularity…this is hard to 

do! 



  

The goal…
The current goal of M-theory phenomenology is to
produce an effective action for M-theory in the neighborhood
of intersecting co-dimension 4 and 7 singularities….

What are the corrections to 11-dimensional supergravity? 
What are the properties of the effective 4-dimensional theory?

To answer this question, we turn first to co-dimension four
 singularities…



  

Co-dimension 4 Singularities

We are lead to the idea of singular spaces in M-theory
through dualities with heterotic strings.

In particular, we are interested in compactifying 11-d supergravity
on a space with orbifold singularities of the form,

C2/Γ ADE×B3×M4
Where ΓADE  is an ADE subgroup of SU(2)

To begin, we’ll look at C2/ZN type 
singularities

M-Theory compactified on K3  =    Heterotic string theory
                                                          compactified on a 3-Torus



  

C2/ZN Orbifolds

Z2 symmetry

Z2 Example:

ZN symmetry:   (z1,z2) (e2πi/N z1, e-2πi/N z2)

Orbifold singularity at z1 =z2=0

SU(N) gauge fields at (0,0)xB3xM4 ZN orbifold



  

New states at a 
singularity

Example: C2/Z2

We “cut out” the singularity and replace it with an 
Eguchi-Hanson space, which comes with:

• 2-cycle, C, at the origin
• Associated harmonic form ω

Then there is one U(1) vector, A, arising from the 3-

form, C=A^ω

In the limit that C shrinks to zero, two additional 
states arise from a membrane wrapping the 2-cycle. 



  

New SU(N) fields - 
C2/ZN

Blow up the  C2/ZN singularities with a chain of  (N-1) 2-cycles, 

(with harmonic 2-forms, ωi ) at the origin 

(i.e. a Gibbons-Hawking space).

• U(1)N-1 gauge fields, Ai arise from C=Ai
^ωi

• Non-Abelian part of SU(N) arises from membranes
wrapping the 2-cycles.

Different origin for Abelian and non-Abelian parts
Of SU(N)



  

M-Theory Inspiration: 
Horava-Witten Theory

Horava and Witten propose that the strong coupling limit
of the 10-dim E8xE8 heterotic string is 11-dim M-theory
compactified on

                        R1,9 x S1/Z2

With the gauge fields entering via 10-d vector multiplets
propagating only on the boundary of spacetime.

The new states in M-theory appeared in the form of 2 E8

Super YM multiplets, located on the two 10-d fixed planes of the
orbifold.



  



  

This implies something 
interesting…

      There must exist a supersymmetric coupling of 10-d vector 
multiplets on the orbifold fixed plane to the 11-d 
supergravity multiplet propagating in the bulk!

Horava and Witten explicitly construct such a theory in the 
following steps…

• Require 11-d SUGRA to be consistent with orbifolding
• Impose conditions from anomaly cancellation
• Add global E8 multiplets to the orbifold fixed planes

• Apply Noether procedure to get a locally supersymmetric 
theory.



  

Brane/Bulk Coupled 
Theory

   
Horava-Witten theory proves to be interesting:
Phenomenology, Newton’s constant, Gluino 

condensation as susy breaking, domain walls, etc.

What about the same approach to M-theory on other 
orbifolds?

   

SHW=
1

κ2 ∫
M11

dx11−g R. ..  1
λ2 ∫

M11

δ x11
dx11−g trF 2

.. .  



  

the question:

Can we explicitly write down 11-d SUGRA on the orbifold R1,6 
x C2/ZN coupled to 7-d SU(N) Super-Yang-Mills theory 
located on the orbifold fixed plane R1,6 x {0}?

Further, can such a construction be directly used in a G2 
compactification? That is, can we find the structure of low-
energy M-theory near a C2/ZN singularity embedded into a 
G2 space?
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Review of Einstein Yang-Mills Theory 
in 
7-d (what we’re aiming for…)
• Field content:
Gravity multiplet
Gauge multiplet

• R-symmetry index, i=1,2
• Gauge group G, a=1,…M
• The scalars, φai

j parametrize the coset

              SO(3,M)/SO(3)x SO(M)
• Symplectic Majorana Spinors

gμν ,Cμνρ , A
μ j

i ,σ ,ψμ
i , χ i 

Aμ
a ,φ

ai j , λai




  

11-d Supergravity on C2/ZN 

Has field content:

7+4 Coord split:

Spinor decomposition:

gMN ,ΨM ,CMNP 

G=dC
xM

= x μ , y A
= xμ , zp , z p





  

The Orbifold action

Where

invariant
not invariant

Bi-linear



  

Different 7-d field content for the 
N=2
and N>2 cases

For N>2

For N=2

The two cases lead to different structure

SO(3,1)/SO(3)
coset

U(1)3 Gauge fields
SO(3,3)/SO(3)xSO(3)

coset

U(1) Gauge fields



  

Field 
Identifications

And for Z2

For ZN



  

Reviewing the pieces…
The ‘component’ Lagrangians

• Begin with…

                      L11

• Truncate under orbifold action to…

                     L7
(n)

• Add SU(N) Yang-Mills

                      LSU(N)

• Complete theory is M-theory on C2/ZN

                   L11+δ(4)(LSU(N)- L7
(n))



  

11-d SUGRA           U(1)n EYM in 7-d



  

To the bulk 11-d theory we now want to add SU(N) 
multiplets on the orbifold fixed plane. So the coset 
structure of the scalar fields of the 7-d Einstein Yang-
Mills theory will become

SO(3, n+N2-1)/SO(3)x SO(n+ N2 -1)

Where n=1,3.

Note that the gravity and SU(N) scalars have now
become entangled.



  

The Action Schematically

Where 

δ11 - acts on bulk fields 
δ7 - acts on brane fields

δ11
11 - 11-d susy transformations 

δ7   - 7-d susy transformations

Susy transformations



  

Expansion in coupling constants:

Because the coset structure of the 7-d theory entangles the gravity
and scalar fields in the coset,

SO(3, n+N2-1)/SO(3)xSO(n+ N2 -1),

in order to quantitatively understand the corrections, we perform an 
expansion in the coupling constants:

Where

and



  

We expand to order h2

The coset representative then takes the form

Unlike Horava-Witten, the 7-d theory does not fix the value of
gYM. However from comparing with IIA D6 branes, (Friedmann 
and Witten) one finds,

• The coupled theory is supersymmetric to order h2

• At order h4 we encounter δ(0) singularity (also present in 
Horava-Witten theory).



  



  



  

Supersymmetry corrections



  

The Brane Bosonic Theory

Gauge-Kinetic Function (SU(N))

Contributes to D-term 
potential

Gauge-Kinetic Function for 
gravi-photons

Where we recall, the bulk fields are coupled in this action through
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G2 Compactification

After constructing the 7-dimensional theory, we are now ready to embed our 
singular neighborhood into a G2 space...

• We will utilize G2 orbifolds, T7/ Γ , constructed by dividing a 7-torus, T7, 
by a discrete symmetry, Γ, such that the resulting singularities are of co-
dimension 4 and A-type. We choose particular symmetry groups such 
that the singular loci will always be 3-tori, T3.

• In the neighborhood of a singularity, the G2 space looks like 

     C2/ZN x T3.

• While the full 4-dimensional theory will be N=1 supersymmetric, the 
gauge sub-sectors associated to each singularity have enhanced N=4 

supersymmetry. 



  

To begin the compactification, we write the 11-dimensional 
metric as 

There exists a G2 structure, a harmonic 3 form associated to the
metric above

(where the some of the RA are related by orbifolding). From this we define 
the metric moduli 

where the RA are the seven radii of the T7

Similarly, the 3-form of 11-dim SUGRA can be expanded as



  

Field Content from the singularity

In addition to the field content from 11-dim SUGRA, we also have 
contributions from the 7-dim Einstein Yang-Mills theory living at the singularity. 

Reducing this theory we find that the 7-dim vector potential,
decomposes into a four dimensional vector,       plus three scalar fields       .
The 7-dim scalars,       , simply become 4-dim scalars. 

A useful redefinition is  



  

N=1 Superfields

We split the 4-dimensional field content into “geometric” (or “bulk”) fields
Which descend from 11-dim SUGRA and “matter fields” which descend 
From the 7-dim super Yang-Mills theories at the singularities.

• Geometric
The metric moduli and the 3-form axions combine to form a bosonic 

superfield

• Matter
The fields descending from the 7-dim theory at the singularity can be 

combined to form 4-dim, complex, chiral matter fields



  

The reduction of the “bulk” theory (11-dim SUGRA) on a G2 space
is well-known and gives rise to the following Kahler potential for the 
N=1 theory

Meanwhile, from the 7-dim SU(N) terms we get the following 4-dim
Lagrangian terms



  

The full N=1 theory in the 
neighborhood of an isolated 
singularity

Kahler potential

Gauge kinetic
funtion

Superpotential

D-terms

where



  

Relationship to N=4 super Yang-
Mills theory
• This G2 compactification clearly has N=1 SUSY. However, if we 

neglect the gravity sector (that is, hold constant the geometric moduli, 
TA), the remaining theory is N=4 SYM, (this makes sense because we 
are compactifying 7-dim SYM on a 3-torus). We can re-write our 
results in N=4 language.

• The N=4 SYM Lagrangian

This is exactly our 4-dim effective theory if we define…



  

Interesting N=4 SYM features
• Montonen-Olive and S-duality
If we define 

Then action is invariant under the SL(2, Z) transformation

where ad-bc=1, with a,b,c,d є Z. This includes S-duality 

Since the real part of T0 is the volume of the 3-torus, here S-duality is 
manifested as T-duality!

• “Superconformal” Phase
Unbroken symmetry, in the neighborhood of the singularity.

• “Coulomb” Phase
Spontaneously broken symmetry, blowing up the singularities
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Overview: What we did so 
far

• Considering M-theory compactifications, we are lead naturally
to G2 spaces
• We need singular spaces –ADE type singularities
• Inspiration from Horava-Witten Theory
• M-theory on C2/ZN 
   1. Inspiration from the structure of 7-d Super Einstein Yang-
Mills theory
   2. Constructed a locally SUSY theory to order h2

• We use this theory to study M-theory on singular G2 spaces. In
particular, we use G2 spaces constructed by orbifolding 7-tori.
• Symmetry breaking: Wilson lines and Flux
• Relationship to N=4 Super Yang-Mills theory
•“Matching up” to the smooth G2 case.
 



  

Co-dimension 7 singularities

• In order to incorporate charged chiral matter, we 
must intersect the co-dimension 4 and 7 
singularities

• The fixed plane of the co-dim 4 singularity must 
intersect the tip of the cone (co-dim 7) singularity. 

• No compact examples are known of G2 spaces with 
conical singularities

• How to get them to intersect?



  

The goal…

• Be able to write an explict M-theory 
effective action in the neighborhood of the 
two intersecting singularities

S=1

κ2 ∫
M11

dx11−g R.. . 1
λ2 ∫

M11

δ x4
 orbifold singularity 


1

ρ2 ∫
M11

δ  x7
 conical singularity 

This work is in progress…



  

Further Directions and 
Applications

• Compactify on other G2 spaces with 
Compact subspace different from T3. (Local
N=1 SUSY?)
•Generalize the procedure for other ADE 
singularities
• M-theory on K3 with ADE singularities
• Chiral matter – including co-dimension 
7 singularities, d=4, N=1 matter fields
• Duality with type IIA and intersecting branes



  

The End



  

Comparison to the smooth 
limit
• We find that we can compare this form of the Kahler 

potential to the case of a smooth G2 manifold where we 
have “blown-up” the A-type singularities. 

• Physically, this corresponds to assigning VEVs to the real 
parts of the chiral multiplets along D-flat directions.

• Generically, symmetry is broken to U(1)(N-1) 

• We find unexpectedly that the results agree exactly with 
those previously found in the smooth limit (up to a choice of 
embedding the U(1)(N-1) into SU(N) ).

• Potential applications close to (and at) the singularity. 
Useful for studying wrapped branes and their associated low 
energy physics.



  

Wilson lines and symmetry 
breaking

• The first fundamental group of a 3-torus is Z3. This leads to

11-dim View
Compactification and 
Wilson lines

4-dim View
Turning on VEVs for certain 
directions of the scalar 
fields in the potential



  

Flux

• We can consider G- and F- flux and find Gukov-type formulas

The effect of G-flux is

Similarly, F-flux

where


