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LHC will turn on roughly one year from now.  It will
probe the details of electroweak symmetry breaking,

and hopefully elucidate the mechanism responsible for 
protecting this hierarchy.

One of the central mysteries of fundamental physics is
the dimensionless ratio:

MW
MP

∼ 10−16

The front runner, at least in many people’s minds, is
low-energy supersymmetry.



In addition to stabilizing the hierarchy, SUSY has two
additional nice features that come along for free:

1) SUSY grand unified theories correctly predict       given 
the measured values of 

α3
α1, α2



2)  In models with intermediate scale SUSY breaking
and R-parity, the freeze-out abundance of the LSP

is in the right ballpark to explain why  

ΩDM ∼ .25

Now, although SUSY makes the hierarchy radiatively
stable, in order to really explain the small ratio,

one needs a natural mechanism whereby a 
supersymmetric theory decides to break SUSY

at an exponentially small scale:

F
M2

P
≤ 10−16



Witten proposed one such mechanism, dynamical
supersymmetry breaking, in 1981.

Imagine a SUSY field theory with chiral multiplets Φi

Φ = φ + θαψα + θ2Fφ

The Lagrangian takes the schematic form

L =
∫

d4θ K(Φi, Φ̄i) +
(∫

d2θ W (Φi) + c.c.
)

(I assume gauge fields are present, but have neglected to
explicitly describe the gauge supermultiplets, kinetic terms, 

etc.)



Powerful non-renormalization theorems, proven by
supergraph techniques in the late 1970s and explained
by holomorphy arguments in the early 1990s, allow one

to show that in wide classes of theories, the superpotential
is of the form

W = Wtree +O(e−
1

g2 )

  The scalar potential takes the form:

V =
∑

i |Fφi |2

with Fφi = ∂W
∂φi



So, one can hope to build models where:

* To all orders in perturbation theory, the vacuum (or all 
vacua) have vanishing F-terms.

* But non-perturbative corrections to W give rise to one or
more vacua with F != 0

It would then be natural to expect that

〈F 〉 ∼ e
− 1

g2 << M2
P

Then, however this SUSY breaking is mediated to the
Standard Model, the parametrically low breaking
scale (and hence protection of the Higgs mass) will
have been explained.



The search for examples was time consuming and
required many non-trivial developments, but they
were eventually found (first by Affleck, Dine and Seiberg).

Typical examples are rather complicated (with even the 
simplest recent models involving multiple small scales that 
need to be explained in a full theory, like string theory).

Obviously, one way to obtain low-scale supersymmetry 
breaking in string theory, is to engineer a DSB gauge theory 
on branes and embed it into a string compactification.  Here, 
I propose an alternative.   I describe string models that 
dynamically break supersymmetry without non-Abelian 
gauge dynamics.



SUSY  for  dummies

The simplest models of supersymmetry breaking
that one can imagine are the Polonyi model, the

Fayet model, and the O’Raifeartaigh model.

The Polonyi model is the theory of a single chiral
superfield X, with:

K = X†X + · · ·

W = µ2X



Naively, this theory breaks supersymmetry with

FX = µ2

However, the leading approximation to the scalar
potential is then:

V = |µ2|2

In this approximation the theory has a moduli space of
degenerate, non-supersymmetric vacua.  A priori it is

not protected by any symmetry in various UV completions.
The fate of the theory then depends on the ... in K.



If the leading correction induced by UV physics at scale 
M is given by:

K = X†X + c (X†X)2

M2 + ...

then for one sign of c one obtains a stable SUSY breaking
vacuum at the origin, while for the other, there is a runaway

to large field vevs.  Note that if one could justify

 

µ2 << M2
P

this would be a perfectly respectable model of SUSY
breaking; but the dynamics of this field theory clearly
does not generate a small scale via non-perturbative 

effects.



The Fayet model is only slightly more complicated.

The field content consists of a U(1) gauge multiplet, and two
chiral multiplets with opposite charges.

The superpotential is given by

W = mΦ+Φ−
The U(1) gauge field can also have a Fayet-Iliopoulos term

with coefficient r,  so the potential including the D-term 
takes the form

For any nonzero m & r,  this theory breaks supersymmetry.

V = |m|2
(
|φ+|2 + |φ−|2

)
+ 1

2

(
e|φ+|2 − e|φ−|2 − r

)2



Unlike the Polonyi model, here the vacuum is stable even 
before considering radiative corrections.

E.g., for r2 >> m2

2e2 the minimum of  V  is at

|φ+|2 = r − m2

2e2 ∼ r, φ− = 0

and the SUSY breaking order parameter is

Fφ− ! m
√

r



The limit m→ 0 restores a non-anomalous axial 
symmetry, Φ± → eiλΦ± .

Therefore, any model where m is generated by exponentially
small effects is natural in the sense of  `t Hooft and Wilson.

I now describe simple D-brane constructions where 
precisely this model is realized, and where an exponentially 
small supersymmetry breaking scale is obtained by 
generating m from a stringy instanton effect.  



D-brane construction:  The basic idea

Branes at singularities, or intersecting branes, give rise
quite generally to quiver gauge theories.  The quiver
that we need to engineer the field content of the

Fayet model is completely trivial:

A Euclidean D1-brane wrapped on C contributes an instanton effect with precisely the

right zero-mode structure to generate the superpotential (2.1); this cannot be interpreted

as an ordinary field-theoretic instanton, since there is no field theory associated with this

cycle, and no non-Abelian gauge dynamics is required for the effect. m and r are fixed

parameters at the level of the non-compact system since they arise from non-normalizable

modes.3

1 2 3

0 1

!

"

X

X
32

23

1
 

Figure 1: The quiver diagram that leads to the Fayet model. The
first, square, node corresponds to a USp(r1) group, while the circular
nodes correspond to U(ri) groups. For our application we need to have
r2 = r3 = 1, and r1 = 0 (this is the node wrapped by the D-instanton);
the bifundamentals connecting node 1 and node 2 are then Ganor strings.

Concretely, we can obtain the simple subquiver in Figure 1, as well as a generalization

relevant for gauge mediation to be discussed in §3, starting from the singular geometries

(xy)n = zw . (2.4)

These are ZZn orbifolds of the conifold, studied in [23].4 The quivers describing the effective

gauge theories living on D3 and D5-branes at these singularities have 2n U(ri) nodes with

bifundamentals Xi,i+1, Xi+1,i going each way between adjacent nodes, as in the left-hand

side of Figure 2, and with a superpotential

W = h
2n
∑

i=1

(−1)i Xi,i+1Xi+1,i+2Xi+2,i+1Xi+1,i . (2.5)

Specific orientifolds of this theory which lead to interesting stringy instanton effects were

described in [24,25]. In the case where the quiver nodes are occupied by space-filling

wrapped branes, these modify the field content such that nodes 1 and n + 1 correspond

3 In a compact model with finite four dimensional Planck scale, these modes become dynamical.

Then, as with all proposals for dynamical supersymmetry breaking in string theory, one must

stabilize the closed string moduli which control the scales of the gauge theory.
4 The quivers we use can probably be obtained from many other singularities as well.

3

The numbers in the circles are node numbers, the
numbers underneath are the ranks.



Our basic idea is the following.  Consider a non-compact
Calabi-Yau space which contains two 2-cycles on which 

space-filling D5 branes are wrapped, and a third two-cycle C
which is not wrapped by a 5-brane.  There are two chiral
multiplets of charges                    under the U(1) gauge 

groups.

The superpotential is zero perturbatively.  A Euclidean D1-
brane wrapped on C contributes an instanton effect with 

precisely the right zero-mode structure to generate

(±1,∓1)

W ∼ Φ+Φ−



This cannot be interpreted as an ordinary field-theoretic
instanton.  There is no field theory associated with the
cycle C, and no non-Abelian gauge dynamics is required

for the effect.

Note also that if one can engineer such a gauge theory, m 
and r are fixed parameters at the level of the non-compact

system; they arise from non-normalizable modes in the
geometry.



How to find this arising at a singularity?

A simple class of non-chiral quivers arises at the
singularities

(xy)n = zw

The gauge theories on D3 branes and fractional D5 branes
in type IIB string theory at such a singularity, are 

captured by the quiver (e.g. for n=3):

to symplectic gauge groups instead of unitary groups, while the remaining U(ri) nodes

are pairwise identified by the obvious reflection symmetry. The identification of node 1

with itself by the orientifold is important because it reduces the number of fermion zero

modes on the Euclidean D1-brane wrapping the corresponding cycle C to the two that are

required for a contribution to the space-time superpotential. The T-dual type IIA string

description of the branes at this orientifolded orbifolded conifold is shown in Figure 3.
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Figure 2: The quiver gauge theories of the orbifolded conifold and of
its orientifold for n = 3. The circular nodes have U(ri) gauge groups,
and the square nodes have USp(ri) groups. More generally there are 2n
nodes before orientifolding and n + 1 nodes after orientifolding.

The model we are interested in arises when we have n ≥ 3, and we have single

(space-filling) branes on nodes 2 and 3 (r2 = r3 = 1), and vanishing occupation numbers

elsewhere. The tree-level superpotential (2.5) vanishes in this case. The D-instanton

wrapping node 1 has bifundamental fermionic “Ganor strings” α and β stretching to node

2 [12,24] (see Figure 1). These modes have a coupling analogous to (2.5) to the fields

X23, X32; performing the path integral over α and β then generates a superpotential [24,26]

W = Λ1X23X32 , (2.6)

where Λ1 is the instanton action controlled by the size of node 1 in the geometry, and it

can naturally be exponentially small.5

The sum of the U(1)’s associated to nodes 2 and 3 acts trivially on all fields and

decouples. The low-energy theory consists of a single U(1) gauge field (the difference of

the U(1)’s at the two nodes), with X23 and X32 carrying equal and opposite charges.

This U(1) does not decouple at low energies, because its renormalization group running

stops below the scale of the mass of the charged fields. Thus, we obtain precisely the

5 For n = 3 there would be a similar contribution arising also from node 4.

4

Uranga



The bi-fundamentals connecting the 2n nodes are
governed by a tree-level superpotential:

A Euclidean D1-brane wrapped on C contributes an instanton effect with precisely the

right zero-mode structure to generate the superpotential (2.1); this cannot be interpreted

as an ordinary field-theoretic instanton, since there is no field theory associated with this

cycle, and no non-Abelian gauge dynamics is required for the effect. m and r are fixed

parameters at the level of the non-compact system since they arise from non-normalizable

modes.3
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Figure 1: The quiver diagram that leads to the Fayet model. The
first, square, node corresponds to a USp(r1) group, while the circular
nodes correspond to U(ri) groups. For our application we need to have
r2 = r3 = 1, and r1 = 0 (this is the node wrapped by the D-instanton);
the bifundamentals connecting node 1 and node 2 are then Ganor strings.

Concretely, we can obtain the simple subquiver in Figure 1, as well as a generalization

relevant for gauge mediation to be discussed in §3, starting from the singular geometries

(xy)n = zw . (2.4)

These are ZZn orbifolds of the conifold, studied in [23].4 The quivers describing the effective

gauge theories living on D3 and D5-branes at these singularities have 2n U(ri) nodes with

bifundamentals Xi,i+1, Xi+1,i going each way between adjacent nodes, as in the left-hand

side of Figure 2, and with a superpotential

W = h
2n
∑

i=1

(−1)i Xi,i+1Xi+1,i+2Xi+2,i+1Xi+1,i . (2.5)

Specific orientifolds of this theory which lead to interesting stringy instanton effects were

described in [24,25]. In the case where the quiver nodes are occupied by space-filling

wrapped branes, these modify the field content such that nodes 1 and n + 1 correspond

3 In a compact model with finite four dimensional Planck scale, these modes become dynamical.

Then, as with all proposals for dynamical supersymmetry breaking in string theory, one must

stabilize the closed string moduli which control the scales of the gauge theory.
4 The quivers we use can probably be obtained from many other singularities as well.

3

Since the theories are non-chiral, any occupation numbers
are allowed at the various nodes.ri

Choosing 
r2 = r3 = 1

with other occupation numbers vanishing, gives us a
gauge theory whose field content reproduces the
Fayet model (up to a completely decoupled U(1)).



The Euclidean D1-brane wrapping node 1 is of
potential interest.  It breaks half of the supersymmetry.
It has massless Ramond sector open strings connecting

it to the (fractional) D5 brane on node 2.  

The relevant extended quiver diagram including these Ganor 
strings which stretch to/from the instanton, is:

A Euclidean D1-brane wrapped on C contributes an instanton effect with precisely the

right zero-mode structure to generate the superpotential (2.1); this cannot be interpreted

as an ordinary field-theoretic instanton, since there is no field theory associated with this

cycle, and no non-Abelian gauge dynamics is required for the effect. m and r are fixed

parameters at the level of the non-compact system since they arise from non-normalizable

modes.3
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Figure 1: The quiver diagram that leads to the Fayet model. The
first, square, node corresponds to a USp(r1) group, while the circular
nodes correspond to U(ri) groups. For our application we need to have
r2 = r3 = 1, and r1 = 0 (this is the node wrapped by the D-instanton);
the bifundamentals connecting node 1 and node 2 are then Ganor strings.

Concretely, we can obtain the simple subquiver in Figure 1, as well as a generalization

relevant for gauge mediation to be discussed in §3, starting from the singular geometries

(xy)n = zw . (2.4)

These are ZZn orbifolds of the conifold, studied in [23].4 The quivers describing the effective

gauge theories living on D3 and D5-branes at these singularities have 2n U(ri) nodes with

bifundamentals Xi,i+1, Xi+1,i going each way between adjacent nodes, as in the left-hand

side of Figure 2, and with a superpotential

W = h
2n
∑

i=1

(−1)i Xi,i+1Xi+1,i+2Xi+2,i+1Xi+1,i . (2.5)

Specific orientifolds of this theory which lead to interesting stringy instanton effects were

described in [24,25]. In the case where the quiver nodes are occupied by space-filling

wrapped branes, these modify the field content such that nodes 1 and n + 1 correspond

3 In a compact model with finite four dimensional Planck scale, these modes become dynamical.

Then, as with all proposals for dynamical supersymmetry breaking in string theory, one must

stabilize the closed string moduli which control the scales of the gauge theory.
4 The quivers we use can probably be obtained from many other singularities as well.
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Zero mode subtleties 

Such stringy instantons, which arise from Euclidean
branes on unoccupied quiver nodes, have recently

been studied by several groups.
Florea,  S.K. ,  McGreevy,  Saulina;

Ibanez, Uranga;
Blumenhagen, Cvetic, Weigand;

.............

There are two important points about the integral over
the Ramond sector collective coordinates of the instanton.

1)  The Ganor strings have a coupling

S = · · · + αX23X32β

in their worldvolume action.



Although naively the instanton breaks half of the N=1
supersymmetry preserved by the space-filling D-branes in a 

Calabi-Yau, locally in its ED1-ED1 open string
sector,   “it thinks”  it is breaking half of the N=2

supersymmetry of the Calabi-Yau model.

Performing the integral over α,β then generates
a superpotential term which is proportional to

∆W ! X23X32 Exp(−Area)

2)



So there is a danger that there will be four fermion
zero modes in the ED1-ED1 Ramond sector, 2 too many for 

this instanton to correct the space-time superpotential!

Perhaps, in some cases, these extra modes are lifted by
interactions with background flux.  However, a trivial

and explicit way to get the correct zero mode counting
for a superpotential correction, is to put an orientifold

plane on the node wrapped by the instanton.  This
halves the number of ED1-ED1 Ramond sector zero

modes to the 2 required for a correction to W.

Such orientifolds of the 2n-node quivers are easy to
construct; they leave our gauge theory untouched while

allowing the Euclidean D1-brane on C to contribute.
Argurio, Bertolini, Franco, S.K.;

Franco, Hanany, Krefl, Park, Uranga, Vegh



The end result is that the simple quiver:

A Euclidean D1-brane wrapped on C contributes an instanton effect with precisely the

right zero-mode structure to generate the superpotential (2.1); this cannot be interpreted

as an ordinary field-theoretic instanton, since there is no field theory associated with this

cycle, and no non-Abelian gauge dynamics is required for the effect. m and r are fixed

parameters at the level of the non-compact system since they arise from non-normalizable

modes.3
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nodes correspond to U(ri) groups. For our application we need to have
r2 = r3 = 1, and r1 = 0 (this is the node wrapped by the D-instanton);
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Concretely, we can obtain the simple subquiver in Figure 1, as well as a generalization

relevant for gauge mediation to be discussed in §3, starting from the singular geometries

(xy)n = zw . (2.4)

These are ZZn orbifolds of the conifold, studied in [23].4 The quivers describing the effective

gauge theories living on D3 and D5-branes at these singularities have 2n U(ri) nodes with

bifundamentals Xi,i+1, Xi+1,i going each way between adjacent nodes, as in the left-hand

side of Figure 2, and with a superpotential

W = h
2n
∑
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(−1)i Xi,i+1Xi+1,i+2Xi+2,i+1Xi+1,i . (2.5)

Specific orientifolds of this theory which lead to interesting stringy instanton effects were

described in [24,25]. In the case where the quiver nodes are occupied by space-filling

wrapped branes, these modify the field content such that nodes 1 and n + 1 correspond

3 In a compact model with finite four dimensional Planck scale, these modes become dynamical.

Then, as with all proposals for dynamical supersymmetry breaking in string theory, one must

stabilize the closed string moduli which control the scales of the gauge theory.
4 The quivers we use can probably be obtained from many other singularities as well.

3

with the square node denoting now a node that would
give rise to a symplectic group if wrapped by a 
fractional D5, generates the Fayet model with

exponentially small SUSY breaking scale:

n gauge dynamics.

V = |m|2
(
|φ+|2 + |φ−|2

)
+ 1

2

(
e|φ+|2 − e|φ−|2 − r

)2

with m ∼ Exp(−Area) ,  so F ∼ m
√

r << MP .



In other words, string theory in the appropriate geometries 
``retrofits” (in the parlance of Dine, Feng, Silverstein) one of 

the old classic SUSY breaking toy models, to make it a
model of dynamical SUSY breaking!  There is no need here 

for intricate non-Abelian gauge dynamics.

Of course there are dual type IIA views of the same
geometry.  Here is one.  (Others with intersecting

D6-branes undoubtedly exist).

D4D4

NS NSNS’ O6O6
xx

x6
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Figure 3: The T-dual type IIA brane configuration for our Fayet model
when it is embedded in the n = 3 orientifold. NS branes stretch in the
012345 directions, NS’ branes in the 012389 directions, and D4 branes
stretch in the 01236 directions. The O6 planes extend along the 01237
directions, and lie at a 45 degree angle with respect to the 45 and 89
planes. The x6 direction is compact and becomes an interval after the
orientifolding.

Fayet model, with Φ+ = X23, Φ− = X32, and with the parameter m of (2.1) having been

dynamically generated by a D-instanton. For generic choices of the FI term r (which is a

non-normalizable mode in the non-compact geometry), this model breaks supersymmetry

at an exponentially low scale F ∼ Λ1

√
r (2.3). This can be considered a retrofitted Fayet

model, in the spirit of [13]. However, no non-Abelian gauge dynamics is invoked in the

retrofitting; it is automatically implemented by string theory. In the type IIA language of

Figure 3, the FI term corresponds to the x7 position of the NS’ between the two D4-branes.

The effective action of the model described above (and of the models we will discuss

below) will in general be corrected by higher-dimension operators. These generically shift

the location of the vacuum slightly, and can also introduce a supersymmetric vacuum

elsewhere in field space, rendering the SUSY breaking vacuum metastable.

2.2. The Polonyi model

An even simpler model of SUSY breaking is the Polonyi model. This is the theory of

a single chiral superfield with superpotential

W = µ2X . (2.7)

FX = µ2 provides the order parameter of SUSY breaking. At tree level, this model has a

flat direction. The existence of a stable non-SUSY vacuum at X = 0 depends on the sign

of the leading quartic correction to the Kähler potential

K = X†X +
c

M2
∗

(X†X)2 + · · · . (2.8)

5



It is natural to ask: what happens if the instanton effect  
generates additional field theory operators?

Simple dimensional analysis shows that if higher powers of 

Φ+Φ− are generated, they appear with additional

powers of Mstring

Such potential corrections would be negligible in the vicinity 
of our SUSY breaking vacuum.

suppression:

(∆W ) = ( 1
Mstring

)2N−3(Φ+Φ−)NExp(−Area)



The Polonyi Model redux

Now,  it is easy to see quivers that would generate
other classic SUSY breaking toy models with very

modest field content, automatically retrofitted
by stringy instantons.  For instance, to get the

Polonyi model, consider:

D-branes at the same singularity described in the previous subsection. This raises the pos-

sibility of UV completing the SUSY breaking configuration with a cascading non-Abelian

gauge theory. Then, the Polonyi model would arise as the effective low-energy description

of the SUSY breaking in much the same way that an O’Raifeartaigh model captures the

SUSY breaking vacua of SUSY QCD with slightly massive quark flavors [28]. Of course in

the spirit of simplicity and minimality, we are free to consider the final brane configuration

of interest (UV completed by string theory) without invoking the RG cascade and the

consequent increased complexity of our hidden sector.

1 2
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Figure 4: The two-node quiver which gives rise directly to a Polonyi
model, after considering the instanton wrapping symplectic node 1. The
arrow from node 2 to itself is a chiral superfield in the adjoint represen-
tation of U(r2).

An advantage of obtaining the Polonyi model from a limit of the Fayet model as above,

is that (for suitable r) one is certain of the existence of the stable SUSY breaking minimum;

this is not clear when we obtain the Polonyi model directly from a brane configuration. It

would be interesting to compute the constant c in the latter case, to see if it leads to a

stable SUSY breaking vacuum.

2.3. An O’Raifeartaigh model

We obtained the Polonyi model by removing the NS’ brane between the two NS 5-

branes in our type IIA brane construction of the Fayet model. Now, we can make an

O’Raifeartaigh model (retrofitted by a stringy instanton) by inserting another NS-5 brane

where the NS’ brane originally was. There are then adjoint fields both for node 2 and for

node 3, as in Figure 5.6

6 Again, one can also obtain this configuration by performing several steps in the RG cascade

of the theories described in §2.1 [26]. Thus, it corresponds to branes on the same geometrical

singularity of §2.1 (with different blow-up parameters).

7



In fact, it is trivial to engineer this quiver by starting
with our IIA brane configuration for the Fayet model:

D4D4

NS NSNS’ O6O6
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x6
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Figure 3: The T-dual type IIA brane configuration for our Fayet model
when it is embedded in the n = 3 orientifold. NS branes stretch in the
012345 directions, NS’ branes in the 012389 directions, and D4 branes
stretch in the 01236 directions. The O6 planes extend along the 01237
directions, and lie at a 45 degree angle with respect to the 45 and 89
planes. The x6 direction is compact and becomes an interval after the
orientifolding.

Fayet model, with Φ+ = X23, Φ− = X32, and with the parameter m of (2.1) having been

dynamically generated by a D-instanton. For generic choices of the FI term r (which is a

non-normalizable mode in the non-compact geometry), this model breaks supersymmetry

at an exponentially low scale F ∼ Λ1

√
r (2.3). This can be considered a retrofitted Fayet

model, in the spirit of [13]. However, no non-Abelian gauge dynamics is invoked in the

retrofitting; it is automatically implemented by string theory. In the type IIA language of

Figure 3, the FI term corresponds to the x7 position of the NS’ between the two D4-branes.

The effective action of the model described above (and of the models we will discuss

below) will in general be corrected by higher-dimension operators. These generically shift

the location of the vacuum slightly, and can also introduce a supersymmetric vacuum

elsewhere in field space, rendering the SUSY breaking vacuum metastable.

2.2. The Polonyi model

An even simpler model of SUSY breaking is the Polonyi model. This is the theory of

a single chiral superfield with superpotential

W = µ2X . (2.7)

FX = µ2 provides the order parameter of SUSY breaking. At tree level, this model has a

flat direction. The existence of a stable non-SUSY vacuum at X = 0 depends on the sign

of the leading quartic correction to the Kähler potential

K = X†X +
c

M2
∗

(X†X)2 + · · · . (2.8)

5

Consider moving the NS’ brane in e.g. the        direction,
so it swaps placed with one of the NS branes.  

x6

Then one is left with two parallel NS 5 branes with a
D4 stretched between them (and the neighboring O-plane).



This engineers precisely the desired Polonyi quiver;
the stringy instanton stretching between the O6-plane
and the NS 5 brane, generates a non-perturbatively
small potential linear in the adjoint field X describing 
the position of the D4 brane in the x4 − x5 plane.

Alternatively one can obtain the Polonyi model (with a 
stable vacuum) as a limit of the Fayet model.  In the

limit where one takes:

the Fayet model reduces to a Polonyi model with linear
superpotential µ2X

r →∞, m
√

r ≡ µ2 fixed



In the string construction, we should keep r smaller than
the string scale to avoid introducing new degrees of 

freedom.  This still leaves a regime where the low energy
effective theory is a Polonyi model with a stable minimum

and a dynamically generated, exponentially small SUSY 
breaking scale.

The U(1) under which         are charged becomes very
massive, along with        .   This leaves a free U(1) theory
with a singlet                  that has a linear superpotential.
In the limit there is a small stabilizing mass at the origin: 

Φ±
Φ+

X = Φ−

m2 ∼ µ2
√

r
.



The O’Raifeartaigh Model

Not to discriminate against the third classic SUSY breaking
model...

A simple O’Raifeartaigh model is described by the theory 
with U(1) gauge group and four chiral multiplets, two 

with equal and opposite charges           and

W = XΦ̃Φ + X̃(Φ̃Φ + µ2)

Φ, Φ̃
 two which are gauge neutral.  The superpotential is:



In addition, there is a D-term constraint for SUSY vacua:

|φ|2 − |φ̃|2 = r

In the limit                    there would be a SUSY vacuum:µ2 → 0
one can set one of the charged fields to zero, and saturate 

the D-term constraint with the other.

So one can design a stringy retrofitted O’Raifeartaigh
model by considering the following quiver (which
again arises from an appropriate configuration of

two D-branes):
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Figure 5: A quiver leading to an O’Raifeartaigh model.

We now have a U(1)×U(1) gauge group. Let us call the two “adjoints” of U(1)×U(1)

arising at nodes 3 and 2, respectively, X and X̃. In addition, there are bifundamentals

Φ, Φ̃. The tree-level superpotential is

Wtree = Φ̃X̃Φ + Φ̃XΦ . (2.9)

A stringy instanton at node 1 generates a perturbation

δW = µ2X̃, (2.10)

as in §2.2. The resulting full superpotential is

Wtot = XΦ̃Φ + X̃
(

Φ̃Φ + µ2
)

. (2.11)

The X and X̃ F-terms conspire to break supersymmetry. In absence of (2.10), one could

solve the D-term constraint |φ|2 − |φ̃|2 = r by setting one of φ, φ̃ to
√

r and the other to

zero. This would yield a supersymmetric vacuum. The presence of the stringy instanton

effect (2.10) instead leads to supersymmetry breaking, with an exponentially small scale

set (in the natural regime r $ µ2) by µ.

This model has a flat direction at this level of analysis. Lifting the flat direction by

“UV completing” the model with a slightly larger quiver, in analogy with what we did for

the Polonyi model in §2.2, is one way to potentially stabilize the flat direction.

3. Discussion

For realistic model building, there are various options for communicating supersym-

metry breaking to the Standard Model sector. If a Standard Model brane system sits far

away from our SUSY-breaking system, we may obtain gravity mediation. We can also

generalize the models above in a straightforward way to obtain messengers appropriate for

8

The two “adjoints” of U(1) x U(1) play the role of
the            fields.   The Ganor strings have X, X̃

S = ... + αX̃β

and the D-instanton at node 1 generates an
exponentially small     .µ2



A classical description via geometric transitions

Geometric transitions can recast the instanton generated
superpotential as a classical flux superpotential

W =
∫

M (F − τH) ∧ Ω

As a bonus, this allows us to compute all multi-instanton
contributions at once.

Gukov, Vafa, Witten



We look at a general family of geometries given by
A_r fibrations over the x-plane:

uv = Πr+1
i=1 (z − zi(x))

As described by Cachazo, Katz and Vafa, this geometry
contains r          whose volumes can be independently
dialed.  A given           arises by blowing up the locus

P1s
S2

i

zi(x) = zi+1(x) = z



If we wrap D5-branes on these spheres, the gauge
theory we find has a field content given by adjoints
   and bi-fundamentals between adjacent spheres

                   governed by a superpotential
Φi
Qi,i+1, Qi+1,i

W =
∑

i (Wi(Φi) + Qi,i+1ΦiQi+1,i −Qi,i+1Φi+1Qi+1,i)

The adjoints just parametrize the positions of the
D5s on the x-plane.



The superpotential for each adjoint              can be 
computed by using the formula due to Witten:       

Wi =
∫

Ci
Ω, ∂Ci = S2

i

For the class of geometries at hand, one can prove that
this simplifies to just:

Wi =
∫

dx (zi(x)− zi+1(x))

W (Φi)



So consider, for instance, the geometry:

uv = (z −mx)(z + mx)(z −mx)(z + m(x− 2a))

Wrap e.g. one brane on each of the three two-spheres 
(more general cases also work, but this is the most modest 

choice; wrapping an O-plane on node 3 would also work and
be directly analogous to what we just did).

The superpotential is now

W =
∑

i Wi(Φi) + Q12Φ2Q21 −Q21Φ1Q12 + Q23Φ3Q32 −Q32Φ2Q23



The          are easily computed from the geometry,  yielding: Wi

W1(Φ1) = mΦ2
1, W2(Φ2) = −mΦ2

2, W3(Φ3) = m(Φ3 − a)2

The important point is that the third node will be localized
away from the other two nodes on the x-plane.  The
quarks stretching to it from node 2 will be massive 
as is its adjoint, so node 3 is completely massive.

In this situation, we are free to perform a geometric
transition on node 3. 

Vafa;
Klebanov, Strassler



This results in a deformed geometry:

uv = (z −mx)(z + mx)((z −mx)(z + m(x− 2a))− s)

s is the local deformation parameter of a conifold-like
singularity on the x-plane.  In addition, there should be

flux through the new  “A-cycle”  three-sphere created by the
deformation, as well as its B-cycle dual:

down the resulting structure of the partition function for genus g in the next section, when

we make a detailed comparison. The other feature of the topological A-model that we will

need is that it is independent of the complex structure deformations of M and depends

only on the kahler ones. The particular Calabi-Yau M that we are proposing in our dual

is the local geometry near a conifold singularity which has been resolved by an S2. We

will be led to the identification of λ with the B-field flux through the S2 and gs = iλ
N .

As we mentioned earlier, the SU(N) Chern-Simons theory itself arises from the open

string version of the topological A-model in the presence of D-branes. In fact, the A-model

open string theory on the Calabi-Yau T ∗S3 with Dirichlet boundary conditions on the S3

gives rise to the SU(N) gauge theory on S3 in the manner outlined below Eq.(2.1). The

T ∗S3 geometry happens to be the other side of the conifold. In other words when the

singularity has been resolved by an S3. So we see that, just as in the AdS/CFT cases,

summing over holes has made the original T ∗S3 undergo the conifold transition to the

resolved geometry with no branes. (See Fig.1)
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3

2

Fig.1: The geometry of T ∗S3 with an S3 of finite size goes into an S2 resolved geometry after

the conifold transition.

As the figure indicates, the geometry of the conifold is essentially like a cone with a

base which is topologically S2×S3. In the S2 resolved geometry on the right, the space at

infinity is S2×S3 with the S2 of finite size. This is like the analogous S5 of the Maldacena

conjecture. The gauge theory itself can be thought of as living on the large S3. In fact

one can push the analogy even further: In the AdS5×S5 description of N = 4 Yang-Mills,

(in Euclidean version) the boundary is S4 × S5 with the radial direction of AdS5 filling

in the S4. In the weak coupling regime, the boundary is still S4 × S5 but the difference

is that now it is the S5 that gets filled. So in some sense there is already a conifold like

transition in the N = 4 Yang-Mills as well, when we go from weak to strong coupling. In

fact, Fig.1 for the conifold is topologically also accurate for this case if we replace S3 → S4

and S2 → S5.
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∫
A F3 = 1,

∫
B H3 = −t

The periods of the holomorphic three-form in this 
geometry are:

∫
A Ω = S,

∫
B Ω = S

(
log( S

∆3 )− 1
)

where  S = s/m

After the transition, the third D5 brane is gone.  But
there is a flux superpotential, and               has changed.W2(Φ)



The total superpotential is now:

W = W1(Φ1) + W̃2(Φ2, S) + Q12Φ2Q21 −Q21Φ1Q12 + Wflux(S)

The flux superpotential is:

Wflux(S) = t
gs

S + S
(
log( S

∆3 )− 1
)

while

W̃2(x) =
∫

(z2(x)− z̃3(x))



Here, we’ve defined

(z − z̃3(x))(z − z̃4(x)) = (z − z3(x))(z − z4(x))− s

where one chooses for         the branch which
asymptotically looks like z_3 at large x.

z̃3

As a result:

W̃2(x) =
∫ x
∆

(
−m(x′ + a)−

√
m2(x′ − a)2 + s

)
dx′

This superpotential sums up the instanton effects due to
Euclidean D1-branes wrapping node 3!



We can now solve for S and for the location of the
D5-brane vacuum in the x-plane.

The result is:

S = ∆3exp(− t̃
gs

)

t̃ = t− 1
2gslog( a

∆ )

and
Φ1 = − 1

2mQ12Q21

Φ2 = 1
2mQ21Q12 + 1

4maS + ...



The omitted terms are higher order in 

Q21Q12
ma , exp(− t̃

gs
)

Then the low-energy effective superpotential is:

W = 1
mQ12Q21Q12Q21 − S

4maQ12Q21 + ...

Up to irrelevant terms, this is again the Fayet model
“retrofitted” by the geometric transition to have

exponentially small SUSY breaking scale.  In this case,
however, we can classically and explicitly compute the full 
series of instanton corrections!  As promised, the higher
corrections do nothing to the SUSY breaking vacuum.



We could have done the same thing with an (Sp-type)
O5-plane wrapping node 3.  After the geometric
transition, this still generates a flux superpotential,
and the story is much the same.  The absence of 
the instanton effect if instead we had an empty,
un-orientifolded node, is also clear from the transition
picture.  So, the transition picture and the stringy
instanton picture seem to be in complete agreement.

Intriligator, Kraus, Ryzhov, Shigemori, Vafa



Applications

What one would really like to do, is to find a way to use
these very simple models in combination with a 

realization of the supersymmetric Standard Model.
Then the natural question to ask is:  how is the

SUSY breaking transmitted to the (M)SSM?

If one is not afraid of the SUSY flavor problem, one can
use ``gravity mediation” and leave it at that.  But I am afraid

of the SUSY flavor problem.



Probably the most elegant idea would be to use gauge 
mediation.  Very roughly, one can imagine a quiver like:

gauge mediation, as follows.7 Consider (for example) the extension of the brane system

of §2.1 depicted in Figure 6, where we now occupy node 4 with a toy “Standard Model.”

This introduces a second set of chiral fields η, η̃ charged under the new gauge group, and

a superpotential of the form

W = Λ1Φ+Φ− +
1

M∗
ηη̃Φ+Φ− + Mηη̃, (3.1)

where the quartic term arises from the superpotential (2.5), and we have included a possible

supersymmetric mass term M for η, η̃. In the supersymmetry breaking vacuum with

φ+ ∼
√

r and FΦ
−

∼ Λ1

√
r, the operator Φ+Φ− has zero VEV and an F component

of order 〈φ+〉FΦ
−

. As a result, the superpotential (3.1) is of the form appropriate for

gauge mediation with messengers η, η̃ of mass M , and with an effective SUSY-breaking

F-term of order 〈φ+〉FΦ
−

/M∗ ∼ rΛ1/M∗. The quartic term in (3.1) leads to the existence

of additional (supersymmetric) vacua far away in field space, but it does not affect the

non-supersymmetric vacuum that we are interested in (which is now metastable).

1 2 3

0 1 1
 

4 5

0SM

Figure 6: A quiver with a coupling to the “Standard Model” at node
4 and symplectic nodes (with stringy D-instantons) at nodes 1 and 5.

For high-scale gauge mediation, one requires a messenger mass M well below the string

scale but much higher than the TeV scale.8 One possibility for obtaining such a mass is

by turning on closed string moduli (blow-up modes), and this then involves a small tune

of parameters. If one prefers a dynamical mechanism to obtain M , which is particularly

important for lower-scale gauge mediation, one can (as in Figure 6) make node 5 another

(unoccupied) symplectic node. Then, if we put a single brane at node 4, we get a mass

term for η, η̃ of magnitude Λ5 from the stringy instanton at node 5. This provides a

tunable messenger mass. Since node 4 must be a U(1) for this to happen, we would need

to consider an extension of the Standard Model by this U(1) symmetry, with appropriate

charges to get gauge-mediated masses from this setup.

7 For a review of gauge mediation, see [29]. For recent attempts to engineer such models using

branes, see [30,31,32,33].
8 This has various phenomenological advantages [34,35].

9

Then, the instanton on node 1 generates the small
mass of the Fayet model.  The strings between nodes

3 and 4 are messengers.  (As long as their mass is
large compared to the SUSY breaking scale, they do

not change the SUSY breaking dynamics).
c.f. Kawano, Ooguri, Ookouchi
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1

one would obtain dynamically generated messenger
masses, from the stringy instanton at node 5.

This kind of mechanism could explain the very small
messenger masses needed for low-scale gauge mediation,

in a U(1) extension of the SM.



An idea which is perhaps less elegant, would be to
embed our quiver theories at the end of a 

renormalization group cascade with its associated 
(gravity dual) throat geometry.

In closely related theories,  we have explicitly constructed
appropriate RG cascades and seen how the stringy

instanton effect is generated (in a dual view) by
dynamical gauge theory effects. Aharony,   S.K.



Since SUSY breaking at the end of such warped
throats is ``sequestered’’ in at least some of the

simplest cases (like the warped, deformed conifold case
with SUSY breaking by anti-branes), this could be 

a way to make models of anomaly mediation.
S.K. ,  McAllister,  Sundrum

One would need to incorporate a cure for the
tachyonic sleptons, about which I have nothing to say here.



Directions for Further Work

*  These models require only one or two D-branes, and
an appropriate cycle to be wrapped by the Euclidean
brane.  There should be many simple avatars, some 
simpler than the singularities I mentioned.

*  For model building, one should extend this idea to
make simple SUSY breaking sectors that break R-symmetry.

*   A general understanding of Euclidean branes in quivers
that arise at Calabi-Yau singularities may be within reach.

*  It would be worthwhile to design similar theories in
corners of the landscape that naturally accomodate

gauge coupling unification.

Kumar


