Gauge theories on circles and the decoding of F-theory geometries

Thomas W. Grimm

Max Planck Institute for Physics \&
Utrecht University

Mainly based on works with Andreas Kapfer and Denis Klevers arXiv: 1502.05398 (AK) 1510.04281 (AK \& DK)

Using results with Federico Bonetti, Stefan Hohenegger, Andreas Kapfer, Jan Keitel arXiv: 1112.1082, 1302.2918, 1305.1929

Introduction / Motivation

Effective actions of F-theory

- F-theory compactifications arguably provide the richest class of string theory effective actions
- original excitement about GUTs in F-theory - not realized in pert. strings

$$
\rightarrow \text { e.g. talk of Weigand }
$$

, numerous examples with exotic matter spectra \rightarrow e.g. talks of Anderson, Klevers

- dualities to heterotic and Type I compactifications \rightarrow e.g. talks of Mayrhofer, Lüst
' new 'exotic' theories, for example, 4D N=3 theories of [García-Etxebarria,Regalado]
\rightarrow e.g. talk Iñaki
- Two questions arise:
- How can we infer reliably information about the 2D / 4D / 6D effective actions of F-theory?
- Is there a classification in sight? What do F-theory geometries classify?

Some background material

- Well-known slogan: F-theory compactifications on elliptically-fibered Calabi-Yau threefolds yield 6D theories with
 minimal $N=(1,0)$ supersymmetry
pinching of two-torus indicates location of seven-branes
- brane and bulk physics encoded by singular complex geometry
- Six-dimensional theories are perfect to answer the above questions
- have a rich structure - there are many topologically distinct CY threefolds
- are strongly constraint by anomalies - fermions in 'all' $\mathrm{N}=1$ multiplets can contribute to anomalies

Goals of this talk

- (1) Argue that the complete information in the F-theory geometries actually describe gauge/sugra theories on a circle.
- This is not unexpected since the M-theory to F-theory approach has been suggested already in [Vafa '96]. However, its importance and power might have been underappreciated. Currently this limit is the only reliable way to infer information about F-theory effective actions.
- (2) Show that F-theory geometries can teach us valuable lessons about circle-reduced theories.
- Example: How are anomalies of the higher-dimensional theories visible in the lower-dimensional effective theory?
- (3) Comment on possibility of classifying Calabi-Yau threefolds (with elliptic fibration) by using the insights from gauge theory.

Goals of this talk

- (1) Argue that the complete information in the F-theory geometries actually describe gauge/sugra theories on a circle.
- (2) Show that F-theory geometries can teach us valuable lessons about circle-reduced theories.
- (3) Comment on possibility of classifying Calabi-Yau threefolds (with elliptic fibration) by using the insights from gauge theory.

6D gauge theories / Sugra theories on circle \Longleftrightarrow
Geometry of resolved elliptically fibered Calabi-Yau threefolds
Our systematics is somewhat complementary to the approach and classifications of: [Morrison,Taylor etal.] [Heckman,Morrison,Rudelius,Vafa]

Some comments on the M-theory to F-theory duality

Approaching the problem via M-theory

- Viewing F-theory as an actually 12 dim. theory is problematic (e.g. torus volume unphysical, meaning of non-perturbative states...)
- F-theory effective actions via M-theory (as of now: definition of F-theory) Consider M-theory on space $T^{2} \times M_{9}$
τ is the complex structure modulus of the $T^{2}, \quad v$ volume of T^{2}

F-theory limit:
(1) A-cycle: if small than M-theory becomes Type IIA
(2) B-cycle: T-duality \Rightarrow Type IIA becomes Type IIB, τ is indeed dilaton-axion
(3) grow extra dimension: send $v \rightarrow 0$ than T-dual B-cycle becomes large

Consequences of M-theory to F-theory limit

- First step: approach M-theory via 11D supergravity on a smooth geometry
- resolution of singular Calabi-Yau geometry [almost everyone who has worked on \Rightarrow classification of resolutions at each co-dimensions in base F-theory,...]
- co-dimension 1 in base
\rightarrow non-Abelian gauge group
\rightarrow simple roots
co-dimension 2 in base
\rightarrow matter in representation R
\rightarrow weights w of \boldsymbol{R}

Abelian gauge group factors: $n_{U(1)}+1$ rational sections of the fibration zero section (assumed to exist throughout this talk)

- Second step: M-theory to F-theory limit shrinks fiber torus and resolutions and grows extra dimension (5D $\rightarrow 6 \mathrm{D}$) - keep track of M2-brane states
- e.g. M2-branes on two-torus fiber correspond to circle Kaluza-Klein states

Massive states in five dimensions

- 11D Sugra on smooth geometry
\Rightarrow 5D effective theory

Both types of theories need to be computed and then compared

- 5D gauge group in Coulomb branch: $U(1)^{\mathrm{rank} G} \times U(1)^{n_{U(1)}}$
- mass of 5D state at Kaluza-Klein level n descending from 6D state in representation \boldsymbol{R} of G with weights w and $\mathrm{U}(1)$-charges q_{m}

$$
m=m_{\mathrm{CB}}+m_{\mathrm{KK}}=w_{I} \zeta^{I}+q_{m} \zeta^{m}+\frac{n}{r}
$$

Coulomb branch vevs (blow-up vevs) circle radius (torus fiber volume)

Anomaly cancellation and circle compactifications

M-theory on Calabi-Yau threefolds

- effective action has been studied long ago: 5D N=2 theory
- important to us are the Chern-Simons terms:

$$
-\frac{1}{48 \pi^{2}} \mathcal{K}_{A B C} \int_{\mathcal{M}_{5}} A^{A} \wedge F^{B} \wedge F^{C}-\frac{1}{384 \pi^{2}} c_{B} \int_{\mathcal{M}_{5}} A^{B} \wedge \operatorname{Tr}(R \wedge R)
$$

triple intersection numbers:
second Chern class: $A=1, \ldots, h^{1,1}\left(Y_{3}\right)$
$\mathcal{K}_{A B C}=\int_{Y_{3}} \omega_{A} \wedge \omega_{B} \wedge \omega_{C}$

$$
c_{A}=\int_{Y_{3}} \omega_{A} \wedge c_{2}\left(Y_{3}\right)
$$

- arise from 11D sugra action including terms up to 8 derivatives
- comparison to Chern-Simons terms obtained after circle reduction \rightarrow classical and one-loop corrections required early works: [Morrison,Seiberg][Witten][Intriligator, Morrison,Seiberg]

Chern-Simons terms on circle side

- Classical and one-loop Chern-Simons terms
- classical terms depend on $\Omega_{\alpha \beta}, b^{\alpha}, a^{\alpha}$ (6D tensor coupling, anomaly coefficients)
$\rightarrow \Omega_{\alpha \beta}, b^{\alpha}$, a^{α} fixed by geometry (intersection numbers base, location of branes, canonical class of base)
\rightarrow there are many more Chern-Simons terms in M-theory
[Bonetti,TG '11]
- one-loop CS-terms in the effective theory induced by integrating out:
$\mathcal{K}_{A B C}=\sum_{\text {mass. states }} k_{\mathrm{r}} \cdot q_{A} q_{B} q_{C} \operatorname{sign}(m)$
massive spin 1 / 2 fermions massive spin $3 / 2$ fermions massive 'self-dual' tensors
[Bonetti,TG,Hohenegger '13]

$$
c_{A}=\sum_{\text {mass. states }} \kappa_{\mathrm{r}} \cdot q_{A} \operatorname{sign}(m)
$$

massive Kaluza-Klein states of all 6D fields that carry chirality and contribute to the 6D anomaly

Jumping Chern-Simons terms

- match was still not possible for certain geometries

[TG,Kapfer,Keitel '13] regularization of infinite sum over KK modes in one-loop CS terms gets modified
- While one-loop CS terms are independent of the precise numerical value of the mass of a state, they do depend on
(1) sign of CB mass $\operatorname{sign}\left(m_{\mathrm{CB}}\right)$
(2) hierarchy of $m_{\mathrm{KK}}^{n}=n / r$ and m_{CB}
\rightarrow associate an integer label $\ell_{w, q}$ to each massive state: m_{CB} is between mass of $\ell_{w, q}$ and $\ell_{w, q}+1$ Kaluza-Klein state

Extending box graphs

- Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases
[Hayashi, Lawrie, Morrison, Schäfer-Nameki][Braun,Schäfer-Nameki]...
- Example: anti-symmetric representation 10 of $\operatorname{SU}(5)$

Extending box graphs

- Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases
[Hayashi, Lawrie, Morrison, Schäfer-Nameki][Braun,Schäfer-Nameki]...
- Example: anti-symmetric representation 10 of $\operatorname{SU}(5)$

Extending box graphs

- Box graphs have been introduced to systematically classify the signinformation and realized Coulomb branch phases
[Hayashi, Lawrie, Morrison, Schäfer-Nameki][Braun,Schäfer-Nameki]...
- Example: anti-symmetric representation 10 of $\operatorname{SU}(5)$

What are the rules for such diagrams? What are the inherent symmetries?

Large gauge transformations

- large gauge transformations precisely induce certain types of jumps
, 6D gauge transformation: $\quad \hat{\Lambda}^{\mathcal{I}}(x, y)=\left\{\begin{array}{cc}-k^{I} y & \hat{\Lambda}^{m}(x, y)=-k^{m} y \\ 0\end{array}\right.$
, shift of Coulomb branch vevs: $\quad \tilde{\zeta}^{I}=\zeta^{I}+\frac{k^{I}}{r}, \quad \tilde{\zeta}^{m}=\zeta^{m}+\frac{k^{m}}{r}$,
mix of 5D vectors:

$$
\begin{aligned}
\tilde{A}^{I} & =A^{I}-k^{I} A^{0} \\
\tilde{A}^{m} & =A^{m}-k^{m} A^{0}
\end{aligned}
$$

mixing-in the Kaluza-Klein vector A^{0} rearrangement of whole Kaluza-Klein tower

- large gauge transformations act on non-trivially on $\ell_{w, q} \Rightarrow$ Symmetry?
- Yes! But only if one takes into account 6D anomalies!

One-loop corrected effective 5D theories differing by the above transformation are identified if and only if 6D anomalies are cancelled.

Discovering the 6D anomaly conditions

- Recall the form of the 6D anomaly cancellation conditions: e.g.
pure Abelian: $\quad-\left(b_{m n}^{\alpha} b_{p q}^{\beta}+b_{m p}^{\alpha} b_{n q}^{\beta}+b_{m q}^{\alpha} b_{n p}^{\beta}\right) \Omega_{\alpha \beta}=\sum_{q} F_{1 / 2}(q) q_{m} q_{n} q_{p} q_{q}$
pure non-Abelian:

$$
-3 \frac{b^{\alpha}}{\lambda(G)} \frac{b^{\beta}}{\lambda(G)} \Omega_{\alpha \beta}=\sum_{\boldsymbol{R}} F_{1 / 2}(\boldsymbol{R}) C_{\boldsymbol{R}}
$$

- differ from one-loop Chern-Simons terms: e.g.
pure Abelian:

$$
\mathcal{K}_{m n p}=\frac{1}{2} \sum_{q} F_{1 / 2}(q) q_{m} q_{n} q_{p}\left(2 \ell_{q}+1\right) \operatorname{sign}\left(m_{\mathrm{CB}}^{q}\right)
$$

pure non-Abelian:

$$
\mathcal{K}_{I J K}=\frac{1}{2} \sum_{\boldsymbol{R}} F_{1 / 2}(\boldsymbol{R}) \sum_{w \in \boldsymbol{R}} w_{I} w_{J} w_{K}\left(2 \ell_{w}+1\right) \operatorname{sign}\left(m_{\mathrm{CB}}^{w}\right)
$$

Discovering the 6D anomaly conditions

- We were able to show:

Properties of 1-loop CS-terms:
(1) additional q_{r}, w_{I} from large gauge transformation acting on

$$
\begin{aligned}
& \delta_{r}\left(2 \ell_{q}+1\right) \operatorname{sign}\left(m_{\mathrm{CB}}^{q}\right) \longrightarrow q_{r} \\
& \delta_{L}\left(2 \ell_{w}+1\right) \operatorname{sign}\left(m_{\mathrm{CB}}^{w}\right) \longrightarrow w_{L}
\end{aligned}
$$

(2) identities involving four weights to obtain $C_{\boldsymbol{R}}$

6D anomalies:

$$
\begin{aligned}
& \sum_{q} F_{1 / 2}(q) q_{m} q_{n} q_{p} q_{q} \\
& \sum_{\boldsymbol{R}} F_{1 / 2}(\boldsymbol{R}) C_{\boldsymbol{R}}
\end{aligned}
$$

[TG,Kapfer '15] Change in classical and 1-loop ChernSimons terms cancel if and only if 6D anomalies are cancelled

Arithmetic structures and anomaly cancellation

- A proof anomaly cancellation for F-theory geometries requires to show that the large gauge transformations are actually a geometric symmetry.
- for models with only Abelian gauge symmetries this is possible [TG,Kapfer '15] large gauge transformations \cong Mordell-Weil group of rational sections

$$
M W\left(Y_{3}\right) \cong \mathbb{Z}^{n_{U(1)}} \oplus \mathbb{Z}_{k_{1}} \oplus \ldots \oplus \mathbb{Z}_{k_{n_{\text {tor }}}}
$$

key: in the M-theory to F-theory limit we are free to pick the 'zero-section' that specifies the Kaluza-Klein vector (any choice works fine!)

- define new arithmetic structures for non-Abelian large gauge transformations define arithmetic structure on geometries with multi-sections
\rightarrow mathematical meanings?
[TG,Kapfer,Klevers '15]
- Higgsing might connect non-Abelian models to Abelian models
\rightarrow arithmetic structures need to be compatible

Comments on the classification of threefolds

Characteristic topological data

- Wall's classification theorem:
- The homotopy types of Calabi-Yau threefolds are classified by the following numerical characteristics:

$$
\begin{aligned}
& \text { Hodge numbers: } \quad h^{1,1}\left(Y_{3}\right), h^{2,1}\left(Y_{3}\right) \\
& \text { Triple intersection numbers: } \mathcal{K}_{A B C} \\
& \text { Second Chern class: } \quad c_{A}
\end{aligned}
$$

- Spaces differing in these numerical data cannot be continuously deformed into each other without encountering singularities.
- Are these data systematically specified by the F-theory effective actions on an additional circle?

Information from gauge theories on circles

- (1) Hodge numbers are determined by spectrum (in the following: only non-Abelian)

$$
\begin{aligned}
& h^{1,1}\left(Y_{3}\right)=T+2+\operatorname{rank}(G) \\
& h^{2,1}\left(Y_{3}\right)=H_{\text {neut }}-1
\end{aligned}
$$

- (2) Intersection numbers and second Chern class determined by:
, classical data: $\Omega_{\alpha \beta}, b^{\alpha}, a^{\alpha}$

$$
\mathcal{K}_{0 \alpha \beta}=\Omega_{\alpha \beta} \quad \mathcal{K}_{I J \alpha}=-\mathcal{C}_{I J} \Omega_{\alpha \beta} b^{\beta} \quad c_{\alpha}=-12 \Omega_{\alpha \beta} a^{\beta}
$$

- one-loop data: spectrum plus circle info (sign table, jump levels)

\rightarrow extended box graphs as convenient object for classification?

Intersection and Chern class data

- Intersection numbers and Chern classes (non-Abelian groups only)

$$
\begin{aligned}
\mathcal{K}_{000} & =\frac{1}{120}\left(2\left(T_{s d}-T_{a s d}\right)-F_{1 / 2}-5 F_{3 / 2}\right)+\frac{1}{4} \sum_{R} F_{1 / 2}(R) \sum_{w \in R} l_{w}^{2}\left(l_{w}+1\right)^{2}, \\
\mathcal{K}_{00 I} & =\frac{1}{6} \sum_{R} F_{1 / 2}(R) \sum_{w \in R} l_{w}\left(l_{w}+1\right)\left(2 l_{w}+1\right) w_{I} \operatorname{sign}\left(m_{\mathrm{CB}}^{w}\right), \\
\mathcal{K}_{0 I J} & =\frac{1}{12} \sum_{R} F_{1 / 2}(R) \sum_{w \in R}\left(1+6 l_{w}\left(l_{w}+1\right)\right) w_{I} w_{J}, \\
\mathcal{K}_{I J K} & =\frac{1}{2} \sum_{R} F_{1 / 2}(R) \sum_{w \in R}\left(2 l_{w}+1\right) w_{I} w_{J} w_{K} \operatorname{sign}\left(m_{\mathrm{CB}}^{w}\right), \\
c_{0} & =\frac{1}{6}\left(19 F_{3 / 2}-F_{1 / 2}-4\left(T_{s d}-T_{a s d}\right)\right)-\sum_{R} F_{1 / 2}(R) \sum_{w \in R} l_{w}\left(l_{w}+1\right), \\
c_{I} & =-\sum_{R} F_{1 / 2}(R) \sum_{w \in R}\left(2 l_{w}+1\right) w_{I} \operatorname{sign}\left(m_{\mathrm{CB}}^{w}\right),
\end{aligned}
$$

Two classification problems

- (1) given a 6D N=(1,0) anomaly-free theory in tensor Coulomb branch \rightarrow construct classifying topological data of Calabi-Yau threefolds
- Systematics: - start with gauge theories of non-Higgsable clusters $\begin{gathered}\text { [Morrison, } \\ \text { Taylor] }\end{gathered}$
- successive un-Higgsing of gauge groups in field theory
- generate tree of topological data
- Challenges: - moding out symmetries
- detecting additional geometric constraints
- extending analysis to non-resolvable geometries
\Rightarrow String Universality: Is F-theory a theory of F-rything in 6D?
- (2) given an set of Calabi-Yau geometries, as provided e.g. by the Kreuzer-Skarke list
\rightarrow classify $6 \mathrm{D} \mathrm{N}=(1,0)$ theories associated to elliptic fibrations

Conclusions

- The map between the Calabi-Yau threefold geometry and a 6D sugra theory on a circle has been established at classical and one-loop level.
- Anomalies can be inferred from Chern-Simons terms, if the latter are probed by large gauge transformations.
- Large gauge transformations map to arithmetic structures on ell. fibrations.
for Abelian gauge groups one encounters the Mordell-Weil group
\rightarrow general proof of anomaly cancellation for viable F-theory geometries
new arithmetic structures for non-Abelian groups and geometries with multi-sections.
, Extension to 3D / 4D has been worked out for chiral spectrum induced by fluxes
- F-theory provides a novel way to approach classification problems.
- topological data of resolved Calabi-Yau threefolds are robust and corse information directly related to corse information about gauge theories

Are there mathematical restrictions on viable Hodge numbers, intersection numbers Chern classes? \rightarrow ruling out 6D gauge theories coupled to gravity?

Thank you for your attention!

