

5-brane webs and 5d, 6d SCFTs

Hirotaka Hayashi

(IFT UAM-CSIC)

Based on the collaboration with

Sung-Soo Kim, Kimyeong Lee, Masato Taki, Futoshi Yagi

[arXiv:1505.04439], [arXIv:1509.03300] and [arXiv:1512.08239]

24th of February 2016, **F-theory at 20** at Caltech

1. Introduction

- Understanding 6d N = (1, 0) SCFTs that have various interesting properties.
- An indirect way to study 6d SCFTs
 - → Use a 5d gauge theory which has a 6d UV completion.
- In general, gauge theories in higher dimensions are not renormalizable. The gauge coupling becomes infinitely strong at high energies.

- Those gauge theories in higher dimensions may make sense at UV if they admit a UV fixed point.
- In the case of 5d gauge theories, the UV completion is given by either a 5d SCFT or a 6d SCFT.
- When the UV completion is a 6d SCFT, KK modes of the circle compactification may be identified with an infinite tower of instantons in the 5d theory.

What is a 5d gauge theory that has a 6d UV completion?

Example: 5d SU(2) gauge theories with N_f flavors

Seiberg 96, Morrison, Seiberg 96 Douglas, Katz, Vafa 96 Ganor, Morrison, Seiberg 96

(i) $N_f = 8 \rightarrow 6d$ SCFT called "E-string"

5d Nekrasov partition function = 6d elliptic genus

Kim, Kim, Lee, Park, Vafa 14

(ii) $N_f \le 7 \rightarrow 5d$ SCFT with $E_{N_{f+1}}$ flavor symmetry

Can we generalize this, for example to higher rank cases?

This question turns out to be quite non-trivial!

6d ??? on S¹ KK modes = instantons 5d SU(N>2) gauge theory with ??? flavors decoupling flavors Other UV complete 5d SU(N>2) gauge theories?

What is the landscape of UV complete 5d theories?

I will address the questions from string theory.

I will argue that:

- String theory predicts new UV complete 5d gauge theories that admit a 6d UV completion and gives a direct relation between 5d and 6d.
- String theory also implies new 5d "UV dualities".
- The landscape of UV complete 5d gauge theories may be largely expanded!

1. Introduction

2. 5d gauge theories from string theory

3. 5-brane webs and 6d SCFTs

4. New 5d UV dualities

5. Conclusion

2. 5d gauge theories from string theory

 We construct a 5d supersymmetric field theory with eight supercharges as the worldvolume theory on a 5brane web.

The 5-brane configuration in Type IIB string theory.

	0	1	2	3	4	5	6	7	8	9
D5-brane	×	X	×	×	X	×				
NS5-brane	×	×	X	X	×		X			
(p, q) 5-brane	×	×	×	X	×	angle				
7-brane	×	×	X	×	×			×	X	×

5-brane web

Aharony, Hanany 97, Aharony, Hanany, Kol 97 DeWolfe, Iqbal, Hanany, Katz 99 • Ex. Pure SU(2) gauge theory with $\theta = 0$.

- This theory has a fixed point where the gauge coupling is infinitely strong.

 Seiberg 96
- Enhancement of flavor symmetry: $U(1) \rightarrow SU(2) = E_1$.

• What happens if we consider the SU(2) gauge theory with 8 flavors? We know that its UV fixed point is the 6d E-string theory.

• Then the 5-brane web starts rotating when we pull 7-branes to infinity.

 The topological vertex computation reproduces the Nekrasov partition function of 5d SU(2) gauge theory with 8 flavors • The infinitely rotating structure is essential to reproduce the infinite tower of KK modes.

Conjectures:

- The existence of a standard 5-brane web implies the corresponding 5d theory has a 5d UV fixed point.
- The existence of an infinitely rotating 5-brane web implies the corresponding 5d theory has a 6d UV fixed point.

 Then let us think about the generalization by utilizing the infinitely rotating structure of 5-brane webs! 3. 6d SCFTs and 5-brane webs

• The generalization to higher rank cases is straightforward. The infinitely rotating structure of a 5-brane web appears when it yields a 5d SU(n) gauge theory with N_f = 2n+4 flavors.

Ex. 5-brane web for 5d SU(3) with 10 flavors

Does it corresponds to a 6d SCFT at UV? → Yes!

Hayashi, Kim, Lee, Taki, Yagi 15 Yonekura 15

Our claim is

6d (D_{n+2} , D_{n+2}) minimal conformal matter theory on S^1

5d SU(n) gauge theory with $N_f = 2n+4$ & CS-level 0

• In fact, we can "derive" this claim by using a brane construction in string theory.

Hayashi, Kim, Lee, Taki, Yagi 15

• On the tensor branch, the 6d (D_{n+2}, D_{n+2}) minimal conformal matter theory becomes a 6d Sp(n-2) gauge theory with 2n+4 fundamental hypermultiplets, coupled to a tensor multiplet.

The type IIA brane configuration

X_{7,8,9}

Brunner, Karch 97 Hanany, Zaffaroni 97

	0	1	2	3	4	5	6	7	8	9
D6-brane	×	X	X	X	×	×	×			
NS5-brane							×			
D8-brane	×	×	×	X	X		×	×	X	×
O8-plane	×	×	×	×	×		×	×	×	×

• We then compactify the x_6 -direction on S^1 and perform the T-duality along the direction.

Ex. n = 3

Resolving two O7⁻-planes

• Pulling out the 7-branes outside the 5-brane loop yields the 5-brane web for the SU(3) gauge theory with $N_f = 10$ flavors.

 By decoupling flavors, we obtain 5d SU(n) gauge theories whose UV completion is 5d SCFTs.

The condition for the UV completion

$$N_f + 2|k| \le 2n + 4$$

• The infinitely rotating 5-brane web hides the structure of a "circle" given by the two O7⁻-planes.

- It is possible to generalize the analysis to other 6d SCFTs constructed by type IIA brane configurations.
- (i) Including more NS5-branes gives new 5d A-type quiver gauge theories.

 Yonekura 15

Zafrir 15, Hayashi, Kim, Lee, Yagi 15 Ohmori, Shimizu 15

(ii) Including an ON⁰-plane gives new 5d D-type quiver gauge theories.

Hayashi, Kim, Lee, Taki, Yagi 15

Largely expands the landscape of 5d gauge theories!

Examples:

(i) 6d SU(2n) with
$$N_f = 2n+8$$
 and $N_a = 1$ on S^1

5d
$$[n+3] - SU(n+1) - SU(n+1) - [n+3]$$

(ii)
$$6d [8] - SU(2n) - Sp(2n-4) - SO(4n) - Sp(2n-4) - [2n] on S1$$

[4]
$$-SU(n+3)$$

5d $-SU(n+3)$ $-SU(2n+2) - SU(2n-2) - SU(2n-6) - [2n-8]$

4. New 5d UV dualities

 The derivation using the brane configuration also implies another interesting 5d dualities.

• 5d SU(n) \leftrightarrow 5d Sp(n-1) duality

Gaiotto, Kim 15

5d SU(n) gauge theory with N_f flavors & $|\kappa| = (n + 2 - N_f/2)$

5d Sp(n-1) gauge theory with N_f flavors

Why ???

• The derivation again starts from the Type IIA brane configuration for the 6d Sp(n-2) gauge theory with $N_f = 2n+4$ flavors, coupled to a tensor multiplet.

Ex. n = 3

Resolving one O7⁻-plane

• The resulting brane configuration is a 5d Sp(2) gauge theory with $N_f = 10$.

• In general, we obtain a 5d Sp(n-1) gauge theory with $N_f = 2n+4$.

Hayashi, Kim, Lee, Yagi 15

 (D_{n+2}, D_{n+2}) minimal conformal matter

SU(n) with $N_f = 2n+4$

Sp(n-1) with $N_f = 2n+4$

- Decoupling flavors on both sides in the same way reproduces the 5d SU – Sp duality.
- The generalization to other 6d SCFTs yields various new 5d UV dualities.

Hayashi, Kim, Lee, Yagi 15 Hayashi, Kim, Lee, Taki, Yagi 15

Examples:

(i)
$$[n+3] - SU(n+1) - SU(n+1) - [n+3]$$

$$SU(2n+1)$$
 with $N_f = 2n+7$ and $N_a = 1$

(ii)
$$[4] - SU(n+3)$$

 $SU(2n+2) - SU(2n-2) - SU(2n-6) - [2n-8]$
 $[4] - SU(n+3)$

$$[8] - SU(2n+3) - Sp(2n-1) - SO(4n-2) - Sp(2n-5) - [2n-4]$$

5. Conclusion

- 5-brane webs predict a large class of new 5d gauge theories that have a 5d or 6d UV completion.
- The combination of the T-duality and the resolution of O7-planes gives a way to directly identify the 6d UV completion of the new 5d gauge theories.
- The method also implies various new 5d UV dualities.