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Probing rigid singularities

We will be interested in understanding the four dimensional physics
coming from (probe D3 branes on) F-theory compactifications in
the presence of singularities that do no admit supersymmetric
smoothings. I.e. they cannot be resolved or deformed into a
smooth space without spending energy.

Complex codimension 4 Calabi-Yau singularity in a geometry
with a F-theory limit. There are many such geometries, and
we will only scratch the surface.
Simplest case: Zk orbifolds of C3 ⇥ T 2, with non-trivial T 2

action and isolated fixed points.

(Such orbifolds have appeared for two-folds [Dasgupta, Mukhi ’96]
and threefolds [Witten ’96], but in these cases they are deformable.)
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Summary of results
Calabi-Yau fourfolds of the form (C3 ⇥ T 2

)/Zk can be classified
completely: the orbifold actions preserving susy were classified in
[Morrison, Stevens ’84], [Anno ’03], [Font, López ’04]. We focus on the
cases preserving at least 12 supercharges.

In the F-theory limit, adding D3 brane probes:

k = 1 gives IIB string theory ! 4d U(N) N = 4 SYM.

k = 2 gives IIB w/ O3 plane ! 4d N = 4 SYM w/ orthogonal or
symplectic groups. (Locally C4/Z2, so at least in some cases such
rigid singularities make perfect physical sense.)

k = 3, 4, 6 give IIB w/ exotic “OF3” plane ! 4d N = 3 SCFTs.
[Ferrara, Porrati, Zaffaroni ’98] propose a construction of
exotic AdS5 holographic backgrounds preserving N = 6,
similar to the expected form of the holographic dual of the
N = 3 SCFTs we find.
In [Aharony, Evtikhiev ’15] some properties of these theories
were understood, assuming they existed, but no construction
was known.
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EYAWTK about the O3 plane
It will prove very illuminating to revisit the O3 plane (i.e.
(C3 ⇥ T 2

)/Z2) from multiple viewpoints, since it is the simplest
case of a complex codimension four singularity with a F-theory lift,
and is relatively well understood.

Worldsheet CFT.
F/M-theory.
Holographic picture.
Field theory.
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It will prove very illuminating to revisit the O3 plane (i.e.
(C3 ⇥ T 2

)/Z2) from multiple viewpoints, since it is the simplest
case of a complex codimension four singularity with a F-theory lift,
and is relatively well understood.

Worldsheet CFT.
F/M theory.
Holographic picture.
Field theory.

Everything but the CFT approach potentially generalizes to
k = 3, 4, 6.
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Worldsheet description of the O3 plane
We start with IIB string theory on R10

= R4 ⇥ C3, and quotient by
I(�1)

FL
⌦. Here I acts as reflection on the C3:

I : (x, y, z) ! (�x,�y,�z) (1)

while (�1)

FL
⌦ acts on the worlsheet. Its induced effect on the

spacetime fields is easily computed, for instance

(�1)

FL
⌦ :

✓
B2

C2

◆
!

✓�B2

�C2

◆
(2)

If we have a stack of N D3 branes we need to choose an action on
the Chan-Paton factors, which will project U(N) down to an
orthogonal or symplectic group:

O3� fO3
�

O3+ fO3
+

Last three are related by Montonen-Olive duality. [Witten ’98])
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F(M)-theory description of the O3 plane

IIB without orientifold is given by M-theory on T 2 in the
vol(T 2

) ! 0 limit, we wish to quotient this by the lift of
I(�1)

FL
⌦.

The I action on the IIB coordinates lifts trivially to a I action on
six of the M-theory coordinates: (x, y, z) ! (�x,�y,�z).

The (�1)

FL
⌦ action acts as

(�1)

FL
⌦ :

✓
B2

C2

◆
!

✓�B2

�C2

◆
(3)

which when rewritten in terms of C3 implies that

(�1)

FL
⌦ : (p, q) ! (�p,�q) (4)

i.e. an inversion of the T 2: u ! �u. (Denoted by �1 2 SL(2,Z))
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F(M)-theory description of the O3 plane
Writing x, y, z, u for the C3 ⇥ T 2 coordinates
acted upon by the involution, we thus find

I(�1)

FL
⌦ : (x, y, z, u) ! (�x,�y,�z,�u)

and the total geometry is (C3 ⇥ T 2
)/Z2. This has

four fixed points at (x, y, z, u) = (0, 0, 0, p), with
p a fixed point of the T 2 under the Z2.

Various observations:
The involution exists for any value of ⌧ .
Close to each fixed point we have C4/Z2: this cannot be
smoothed out in a CY way [Schlessinger ’71] [Morrison, Plesser
’98]. This agrees with the fact that the O3 has no light modes on it.
M2 branes probing C4/Zk: [Aharony, Bergman, Jafferis, Maldacena
’08].
Different O3 types: different discrete fluxes on the fixed points
[Hanany, Kol ’00].
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F(IIB)-theory description of the O3 plane
A holography appetizer

In IIB string theory the C3/I orbifold is non-supersymmetric, while
the O3 preserves 16 supercharges. I discuss the near horizon
geometry, AdS5 ⇥ (S5/Z2), which naively is non-supersymmetric.

From the M-theory picture, it is clear what is going on: near
horizon what we have is F-theory on AdS5 ⇥ ((S5 ⇥ T 2

)/Z2), i.e. a
non-trivial SL(2,Z) bundle on the S5/Z2 horizon.

So we do not have the vanilla orbifold, but in addition it has a
non-trivial flat SL(2,Z) duality bundle on top, acting with
�1 2 SL(2,Z) as we go round the non-trivial one-cycle in the
S5/Z2 horizon manifold. One can check that the �1 2 SL(2,Z)
acting on the sugra spinors restores susy as expected.

The different kinds of orientifolds in this language are classified by
discrete flux: [H3], [F3] 2 H3

(S5/Z2, eZ) = Z2. [Witten ’98]
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Field theory description of the quotient
A stack of N D3 branes in flat space gives 4d N = 4 U(N) SYM.

Rotations in the transverse R6 manifest themselves as the SU(4)R

R-symmetry group. Implies that I acts as �1 2 SO(6)R in the
field theory.

Similarly, IIB SL(2,Z) descends straightforwardly to the SL(2,Z)
duality group of the field theory. In particular

�1 2 SL(2,Z)IIB ! �1 2 SL(2,Z)N=4 (5)

A generic element of SL(2,Z)N=4 is not a symmetry, but �1 is:
(�1)(⌧) = �1·⌧+0

0·⌧�1 = ⌧ .

So we can understand the orientifold projection as a quotient by a
particular symmetry of N = 4 U(N) SYM: U(N)/(ZR

2 · ZSL(2,Z)
2 ).

(In this language we also have a choice of Chan-Paton factors.)
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Recap and strategy
We have discussed four ways of viewing the action of an O3 plane
on a stack of D3 branes:

Worldsheet CFT: a projection of the CFT by I(�1)

FL
⌦, with

a choice of Chan-Paton factors.
M-theory: M2 branes probing (C3 ⇥ T 2

)/Z2, with a choice of
discrete torsion on the fixed points.
IIB holography: An orbifold AdS5 ⇥ (S5/I) with a nontrivial
flat SL(2,Z) bundle, and choice of discrete [F ], [H] flux.

Field theory: A quotient of U(N) SYM by (ZR
2 · ZSL(2,Z)

2 ),
with a choice of Chan-Paton factors.

Strategy for generalization
Quotient by other possible symmetries of C3 ⇥ T 2, S5 or U(N).

The generalization of the CFT approach seems less obvious.



Introduction Revisiting the O3 plane Generalizing the O3 plane Field theory properties Conclusions

Recap and strategy
We have discussed four ways of viewing the action of an O3 plane
on a stack of D3 branes:

Worldsheet CFT: a projection of the CFT by I(�1)

FL
⌦, with

a choice of Chan-Paton factors.
M-theory: M2 branes probing (C3 ⇥ T 2

)/Z2, with a choice of
discrete torsion on the fixed points.
IIB holography: An orbifold AdS5 ⇥ (S5/I) with a nontrivial
flat SL(2,Z) bundle, and choice of discrete [F ], [H] flux.

Field theory: A quotient of U(N) SYM by (ZR
2 · ZSL(2,Z)

2 ),
with a choice of Chan-Paton factors.

Strategy for generalization
Quotient by other possible symmetries of C3 ⇥ T 2, S5 or U(N).

The generalization of the CFT approach seems less obvious.



Introduction Revisiting the O3 plane Generalizing the O3 plane Field theory properties Conclusions

OF3 planes from M-theory
We start by considering the M-theory picture, given by Zk (k > 2)
quotients of C3 ⇥ T 2 leaving isolated fixed points. It turns out that
maximal supersymmetry (N = 3) is preserved only for k = 3, 4, 6,
with action [Font, López ’04]

(x, y, z, u) ! (!kx,!
�1
k y,!kz,!

�1
k u) (6)

with !k = exp(2⇡i/k). (These are known to be terminal Gorenstein
[Morrison, Stevens ’84].) We focus on these.

This action only maps the torus to itself for specific complex structures:

Z3: ⌧ = e2⇡i/3

Three C/Z3 points.
Z4: ⌧ = i

One Z2 and two Z4

points.

Z6: ⌧ = e2⇡i/3

One Z6, one Z2 and
one Z3 point.
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Holographic perspective

There seems to be no obstruction to taking the F-theory limit, so
we end up with a IIB background of the form C3/Zk. Putting D3
branes on the singularity, and taking the near horizon limit, this
suggests a dual description for the field theories in terms of
AdS5 ⇥ (S5/Zk), with a non-trivial flat SL(2,Z) bundle. (Provides
a microscopic realization of the setup proposed in
[Ferrara,Porrati,Zaffaroni ’98].)

Remarkably, the axio-dilaton ⌧ is frozen to a O(1) value in these
backgrounds. We learn that the theories on the branes no longer have
the marginal deformation associated to changing the Yang-Mills coupling.
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N = 4 quotient perspective
In terms purely of the theory on the probe branes, we start from the
observation that for particular (self-dual) values of ⌧YM , certain Zk

subgroups of the SL(2,Z) become symmetries. For instance, when
⌧ = i we have that S-duality

S =

✓
0 �1

1 0

◆
(7)

becomes a symmetry of the theory. (�i�1
= i.)

We can then construct appropriate quotients

Qk =

N = 4 U(N)

ZR
k · ZSL(2,Z)

k

. (8)

We choose ZR
k to be the R-symmetry generator associated with the

Zk rotation in the transverse R6, in order to preserve susy.
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Supersymmetry
We claim that these theories preserve (just) 12 supercharges for
n > 2. We now show this in the N = 4 SYM quotient perspective
(the computation from the other viewpoints is essentially
isomorphic). (Also in [Nishinaka, Tachikawa ’16].)

The 16 supercharges arrange into four spacetime spinors QA
↵ , a spinor of

SU(4)R. Under the Zk rotation these transform as (!k = exp(2⇡i/k))

(Q1, Q2, Q3, Q4
) ! (!

1
2
k Q

1,!
1
2
k Q

2,!
1
2
k Q

3,!
� 3

2
k Q4

) . (9)

The transformation of the supercharge generators under a SL(2,Z)
transformation is [Kapustin, Witten ’06]

QA ! �
1
2QA with � =

|c⌧ + d|
c⌧ + d

. (10)

For the theories we are constructing, we have � = !�1
k , so only QA with

A = 1, 2, 3 survive the quotient. (For Z4: gSL(2,Z) = S, ⌧ = i, so
� = �i, while !4 = i.) (Notice that for k = 1, 2 we preserve N = 4.)
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Field theory properties

We have constructed new N = 3 theories. What do we know about
them?

During the last couple of months a beautiful set of results have
appeared which (among other things) shed light on the behavior of
N = 3 SCFTs in 4d. [Aharony, Evtikhiev ’15], [Nishinaka, Tachikawa
’16], [Córdova, Dumitrescu, Intriligator ’16], [Argyres, Lotito, Lü,
Martone ’16]

I’ll give a very brief summary of what these works say about N = 3

theories.
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Why is N = 3 not N = 4?

A well known argument (in Weinberg’s book, for example) asserts
that N = 3 supersymmetry in four dimensions, together with CPT
invariance, automatically gives N = 4.

There is a loophole in this result [Aharony, Evtikhiev ’15], [I.G.-E.,
Regalado ’15]: it is based on looking to the field content of the
Lagrangian description, so it assumes that the theory can be given a
weakly coupled description. This is not the case for our theories.

(The enhancement to N = 4 was always somewhat accidental in any
case, purely N = 3 Lagrangian supergravity theories are well known to
exist.)
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Relevant and marginal deformations

In [Aharony, Evtikhiev ’15] and [Córdova,Dumitrescu,Intriligator ’16] it is
shown that truly N = 3 theories cannot have marginal or relevant
deformations preserving N = 3.

(Seems to be in good agreement with our construction: N = 4 theories
have no relevant deformations preserving N = 4, and just one marginal
deformation preserving N = 4: the coupling, which we project out in our
quotient.)
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Rank one N = 3 theories

It was shown in [Nishinaka, Tachikawa ’16] that for rank one N = 3

theories, the form of the moduli space is necessarily C3/Z`, with
` 2 {1, 2, 3, 4, 6}. Furthermore, for ` = 1, 2 one has enhancement to
N = 4, while for ` = 3, 4, 6 the theory is purely N = 3.

The central charge has been computed: a = c = (2`� 1)/4. (For N = 3

it is always the case that a = c. [Aharony, Evtikhiev ’15])

The associated 2d chiral algebras have been constructed.[Beem,
Lemos,Liendo,Peelaers,Rastelli,van Rees ’13], [Nishinaka, Tachikawa ’16]

N = 3 theories are necessarily N = 2. There is a proposed classification
of rank-one N = 2 theories by [Argyres, Lotito, Lü, Martone ’16]. The
possibilities allowed by the classification are very limited, and the N = 3

theories we find seem to fit well in the classification.
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Conclusions

We have constructed the first known examples of N = 3

SCFTs.
We do so by a very natural F-theoretical generalization of the
O3 plane, which freezes out the axio-dilaton, giving
intrinsically strongly coupled backgrounds.
The geometry involves rigid (neither deformable nor resolvable
in a Calabi-Yau way) singularities.
F-theoretical example of branes at singularities.
The SCFTs we find have natural holographic descriptions as
AdS5 ⇥X, where X is a non-trivial smooth F-theory
background with frozen axio-dilaton.
The M-theory picture suggests that upon compactification on
a circle we flow to N � 6 ABJM theories.
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Open questions

Many!
Classify torsion variants:

In the M-theory picture. (Some subtleties with charges induced
by torsion [Aharony, Hashimoto, Hirano, Ouyang ’09].) And
not clear which cases will end up trivial in the F-theory limit.
In the IIB/holographic picture. (Something like [Douglas,
Park, Schnell ’14] perhaps?)

Make concrete the notion of Chan-Patons in the U(N)N=4
symmetry

description. BPS states? SCI?
Other N = 4 starting points, beyond U(N)?
Relating the SCI of the N = 3 theories to N = 6 ABJM
partition functions.
And other geometries, of course. Any case with non-trivial
dynamics without D3 branes?
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