Aspects of SCFTs and their susy deformations

Ken Intriligator (UC San Diego)
20 years of F-theory workshop, Caltech
Thank the organizers, Caltech, and F-theory. Would also like to thank my

Spectacular

Collaborators

Clay
Córdova

Thomas Dumitrescu

I 506.03807: 6d conformal anomaly a from 't Hooft anomalies. 6d a-thm. for $\mathrm{N}=(1,0)$ susy theories.
1602.012 17: Classify susy-preserving deformations for $d>2$ SCFTs.

+ to appear \& work in progress

"What is QFT?"

perturbation theory around free field
 Lagrangian theories
 CFTs + perturbations

F-theory realizations

unexplored... something crucial for the future?

RG flows

UV CFT (+relevant)

 \downarrow RG course graining

IR CFT (+irrelevant)

- " $\delta \mathcal{L}$ " $=\sum_{i} g_{i} \mathcal{O}_{i} \quad$ (OK even if SCFT is non-Lagrangian)
- Move on the moduli space of (susy) vacua.
- Gauge a (e.g. UV or IR free) global symmetry.
- Will here focus on RG flows that preserve supersymmetry.

RG flow constraints

- d=even:'t Hooft anomaly matching for all global symmetries (including NGBs + WZW terms for spont. broken ones + Green-Schwarz contributions for reducible ones). Weaker d=odd analogs, e.g. parity anomaly matching in 3d.
- Reducing \# of d.o.f. intuition. For $d=2,4$ (\& $d=6$?) : a-theorem

$$
\begin{aligned}
a_{\mathrm{UV}} & \geq a_{\mathrm{IR}} \quad a \geq 0 \\
\mathrm{~d}=\text { even: } \quad\left\langle T_{\mu}^{\mu}\right\rangle & \sim a E_{d}+\sum_{i} c_{i} I_{i}
\end{aligned}
$$

(d=odd: conjectured analogs, from sphere partition function / entanglement entropy.)

- Additional power from supersymmetry.

6d a-theorem?

For spontaneous conf'l symm breaking: dilaton has derivative interactions to give Δa anom matching Schwimmer, Theisen; Komargodski, Schwimmer
6d case: $\quad \mathcal{L}_{\text {dilaton }}=\frac{1}{2}(\partial \varphi)^{2}-b \frac{(\partial \varphi)^{4}}{\varphi^{3}}+\Delta a \frac{(\partial \varphi)^{6}}{\varphi^{6}}$
Maxfield, Sethi; Elvang, Freedman, Hung, Kiermaier, Myers, Theisen.
Can show that $b>0$ ($b=0$ iff free) but b's physical interpretation was unclear; no conclusive restriction on sign of Δa.

Clue: observed that, for case of $(2,0)$ on Coulomb branch,

$$
\Delta a \sim b^{2} \quad>0
$$

Cordova, Dumitrescu, KI: this is a general req't of $\mathrm{N}=(\mathrm{I}, 0)$ susy, and b is related to an 't Hooft anomaly matching term.

Longstanding hunch

Susy multiplet of anomalies: should be able to relate a-anomaly to R-symmetry 't Hooft-type anomalies in 6d, as in 2d and 4d.

$$
\begin{array}{ll}
T^{\mu \nu} \leftrightarrow J_{R}^{\mu, a} & \text { Stress-tensor supermultiplet } \\
g_{\mu \nu} \leftrightarrow A_{R, \mu}^{a} & \text { Sources = bkgrd SUGRA supermultiplet }
\end{array}
$$

4-point fn with too many indices. Hard to get a, and hard to compute.

Easier to isolate anomaly term, and enjoys anomaly matching

$(1,0)$ 't Hooft anomalies

$$
\mathcal{I}_{8}^{\text {origin }}=\frac{1}{4!}\left(\alpha c_{2}^{2}(R)+\beta c_{2}(R) p_{1}(T)+\gamma p_{1}^{2}(T)+\delta p_{2}(T)\right)
$$

$c_{2}(R) \equiv \frac{1}{8 \pi^{2}} \operatorname{tr}\left(F_{S U(2)_{R}} \wedge F_{S U(2)_{R}}\right) \quad$ Background gauge fields and metric

$$
p_{1}(T) \equiv \frac{1}{8 \pi^{2}} \operatorname{tr}(R \wedge R)
$$

(~ background SUGRA)

Computed for $(2,0)$ SCFTs + many (1,0) SCFTs

Harvey, Minasian, Moore; KI; Ohmori, Shimizu, Tachikawa; Ohmori, Shimizu, Tachikawa, Yonekura; Del Zotto, Heckman, Tomasiello, Vafa; Heckman, Morrison, Rudelius, Vafa.
E.g. for theory of \mathbf{N} small E8 instantons:

$$
\mathcal{E}_{N}:(\alpha, \beta, \gamma, \delta)=\left(N\left(N^{2}+6 N+3\right),-\frac{N}{2}(6 N+5), \frac{7}{8} N,-\frac{N}{2}\right)
$$

Shimizu, Tachikawa

$$
\text { (Leading } \mathrm{N}^{3} \text { coeff. can be anticipated from } \mathbb{Z}_{2} \text { orbifold of } A_{N-1}(2,0) \text { case.) }
$$

$(1,0)$ on tensor branch

$$
\mathcal{I}_{8}^{\text {origin }}=\frac{1}{4!}\left(\alpha c_{2}^{2}(R)+\beta c_{2}(R) p_{1}(T)+\gamma p_{1}^{2}(T)+\delta p_{2}(T)\right)
$$

't Hooft anomaly matching requires

$$
\Delta \mathcal{I}_{8} \equiv \mathcal{I}_{8}^{\text {origin }}-\mathcal{I}_{8}^{\text {tensor branch }} \sim X_{4} \wedge X_{4} \quad \begin{aligned}
& \text { must be a perfect square, } \\
& \text { match } \mathrm{I}_{8} \text { via } \mathrm{X}_{4} \text { sourcing } \mathrm{B}:
\end{aligned}
$$

$\mathcal{L}_{G S W S}=-i B \wedge X_{4} \quad \mathrm{KI} ;$ Ohmori, Shimizu, Tachikawa, Yonekura $X_{4} \equiv 16 \pi^{2}\left(x c_{2}(R)+y p_{1}(T)\right)$ for some real coefficients \mathbf{x}, \mathbf{y}

Our classification of defs. gives: $\mathcal{L}_{\text {tensor }}=Q^{8}(\mathcal{O}) \supset \mathcal{L}_{\text {dilaton }}+\mathcal{L}_{G S W S}$
Then $b=\frac{1}{2}(y-x) \quad$ Adapting a SUGRA analysis of Bergshoeff, Salam, Sezgin '86 (!).
Upshot:

$$
a^{\text {origin }}=\frac{16}{7}(\alpha-\beta+\gamma)+\frac{6}{7} \delta
$$

Change gears ${ }_{(162020217)}$

Classify susy-preserving deformations of SCFTs

- " $\delta \mathcal{L}$ " $=Q^{N_{Q}} \mathcal{O}_{\text {long }}$ "D-term" e.g. Kaher potential in $4 \mathrm{~d} \mathrm{~N}=$ I.

SCFT unitarity, bound grows with $\operatorname{dim} \mathrm{d}: \quad \Delta(\delta \mathcal{L})>\frac{1}{2} N_{Q}+\Delta_{\text {min }}\left(\mathcal{O}_{\text {long }}\right)$
Irrelevant. E.g. for $6 \mathbf{d} \mathbf{N}=(\mathbf{I}, \mathbf{0})$ such operators have $\Delta>\frac{1}{2} 8+6=10$.

- " $\delta \mathcal{L} "=Q^{n_{\text {top }}} \mathcal{O}_{\text {short }} \quad \Delta(\delta \mathcal{L})=\frac{1}{2} n_{\text {top }}+\Delta\left(\mathcal{O}_{\text {short }}\right) \quad \begin{aligned} & \text { Constrained by } \\ & \text { SCFT unitarity. }\end{aligned}$
e.g. F-terms, W in 4d $N=I$.

Short reps classified, in terms of the superconf'l primary operator at the bottom of the multiplet. Theory independent, just using SCFT rep constraints. We study the Q descendants, looking for Lorentz scalar "top" ops. Some oddball susypreserving ops do exist, including in middle of multiplet(!) We had to be careful it's risky to claim a complete classification (embarrassing if something is overlooked)! Much more subtle and sporadic zoo than we originally expected (especially in 3d).

Some of our results:

- 6d (2,0): all 16 susy preserving deformations are irrel. least irrelevant operator has $\operatorname{dim}=12$.
- 6d (I,0): all 8 susy preserving deformations are irrel. least irrelevant operator has dim $=10$. Also J. Luis, S. Lust.
- 5d: all susy preserving deformations are irrel., except for real mass terms associated with global symmetries.
- 4d, $N=3$: no relevant or marginal deformations. and M. Evtikhiev.
- 3d, N>3: all have universal, relevant, mass deformations from stress-tensor; the only relevant deformations, and no marginal. For $\mathrm{N}=4$, also flavor current masses, no others.

CFTs, first w/o susy

$S O(d, 2) \quad$ Operators form representations

$$
P_{\mu} \uparrow K_{\mu} \downarrow \underbrace{}_{\mathcal{O}_{\mathcal{R}}} \text { primary } K_{\mu}\left(\mathcal{O}_{\mathcal{R}}\right)=0
$$

Unitarity: primary + all descendants must have + norm, e.g.

$$
\begin{array}{ll}
\left.\left|P_{\mu}\right| \mathcal{O}\right\rangle\left.\right|^{2} \sim\langle\mathcal{O}|\left[K_{\mu}, P_{\mu}\right]|\mathcal{O}\rangle \geq 0 & \text { Zero norm, null states = } \\
{\left[P_{\mu}, K_{\nu}\right] \sim \eta_{\mu \nu} D+M_{\mu \nu}} & \text { set to zero. Nulls = both }
\end{array}
$$

SCFT super-algebras
 complete classification

$$
\begin{array}{lll}
& d>6 \quad \text { no SCFTs can exist } \\
d=6 & O S p(6,2 \mid \mathcal{N}) \supset S O(6,2) \times S p(\mathcal{N})_{R} & (\mathcal{N}, 0) \tag{N,0}\\
d=5 & F(4) \supset S O(5,2) \times S p(1)_{R} & 8 \mathrm{Qs} \\
8 \mathcal{N} Q s \\
d=4 & S u(2,2 \mid \mathcal{N} \neq 4) \supset S O(4,2) \times S U(\mathcal{N})_{R} \times U(1)_{R} \\
d=4 & P S U(2,2 \mid \mathcal{N}=4) \supset S O(4,2) \times S U(4)_{R} 4 \mathcal{N} Q s \\
d=3 & O S p(4 \mid \mathcal{N}) \supset S O(3,2) \times S O(\mathcal{N})_{R} & 2 \mathcal{N} Q s \\
d=2 & O S p\left(2 \mid \mathcal{N}_{L}\right) \times O S p\left(2 \mid \mathcal{N}_{R}\right) & \mathcal{N}_{L} Q s+\mathcal{N}_{R} \bar{Q} s
\end{array}
$$

SCFT operator reps

$$
\begin{aligned}
& P_{\mu} \uparrow K_{\mu} \downarrow \\
& \mathrm{Q} \uparrow \quad \mathrm{~S} \downarrow \\
& \{Q, Q\}=2 P_{\mu} \\
& \{S, S\}=2 K_{\mu}
\end{aligned}
$$

$" \delta \mathcal{L} "=\sum_{i} g_{i} \mathcal{O}_{i}$ primary, modulo descendants.
$\{Q, Q\} \sim P_{\mu} \sim 0 \quad$ Clifford algebra.
Level $\quad Q^{\wedge \ell}\left(\mathcal{O}_{\mathcal{R}}\right) \quad \ell=0 \ldots \ell_{\max } \leq N_{Q}$

Typical, long multiplets

$\mathrm{Q} \uparrow \quad \mathrm{S} \downarrow 人^{\mathcal{O}_{\mathcal{R}}^{\text {top }}=Q^{\wedge N_{Q}}\left(\mathcal{O}_{\mathcal{R}}\right), ~}$

$$
Q\left(\mathcal{O}_{\mathcal{R}}^{\text {top }}\right) \sim 0
$$

modulo descendants
conformal primary ops at level I, $2^{N_{Q}} d_{\mathcal{O}_{\mathcal{R}}}$ total

Can generate multiplet from bottom up, via Q ,or from top down, via S. Reflection symmetry. Unique op at bottom, so unique op at the top. Operator at top = susy preserving deformation. No other susy preserving operators in long multiplets. Easy cases. D-terms. Unitarity bounds at bottom of give bounds at top.

Unitary bounds

All Q-descendants must have non-negative norm. E.g. at Q-level one:

$$
\begin{gathered}
0 \leq|Q| \mathcal{O}\rangle\left.\right|^{2} \sim\left\langle\mathcal{O}^{\dagger}\right| S Q|\mathcal{O}\rangle \sim\left\langle\mathcal{O}^{\dagger}\right|\{S, Q\}|\mathcal{O}\rangle \\
\{S, Q\} \sim D-\left(M_{\mu \nu}+R\right)
\end{gathered}
$$

$\longrightarrow \Delta \geq c($ Lorentz $)+c(\mathrm{R}-$ symmetry $)+$ shift
Saturated iff there is a null state: a Q-descendant that is also a superconformal primary:

$$
\mathcal{O}_{\mathcal{V}}=Q\left(\mathcal{O}^{\prime}\right) \quad \text { and } \quad S\left(\mathcal{O}_{\mathcal{V}}\right)=0
$$

Set $\mathcal{O}_{\mathcal{V}}=0$ along with all its Q -descendants.

Long - null = short

Specific operator dimensions, in terms of Lorentz + Rsymmetry + shifts, to get null states. Set null states to zero: a short multiplet. Simplest cases also have the reflection symmetry, unique operator at bottom and top = susy preserving deformation:

Act on bottom op. with all Q's, setting the null linear combinations to zero. But can also act with R -symmetry raising and lowering. Some subtle cases.

Multiple top op. cases

(Unique bottom operator, so no reflection symmetry.)
E.g. $T_{\mu \nu}$ multiplet of $4 \mathrm{~d} \mathrm{~N}=4$, top ops $=T_{\mu \nu}, \mathcal{O}_{\tau}, \mathcal{O}_{\bar{\tau}}$

Conserved $J_{\mu}^{a, \text { global }}$ of $5 \mathrm{~d} \mathrm{~N}=\mathrm{I}$, top ops $=J_{\mu}^{a, \text { global }}, \mathcal{O}_{m^{a}}$ Many examples, especially with conserved currents; in such cases, setting $\{Q, Q\} \sim P_{\mu} \sim 0$ requires care, since current cons. laws are null, both primary and descendant. But also examples of multiple top operators without conserved currents, e.g. in $4 \mathrm{~d} \mathrm{~N}=2$,

$$
\mathcal{O}^{\text {bottom }}=A_{2} \bar{A}_{2}[0 ; 0]_{\Delta=3}^{R=1, r=0} \quad \mathcal{O}^{\text {top }}=Q^{3} \bar{Q}^{2} \mathcal{O}^{\text {bottom }}
$$

No conserved currents
in this multiplet, yet 2 tops:
and $\quad \mathcal{O}^{\text {top }}=\bar{Q}^{3} Q^{2} \mathcal{O}^{\text {bottom }}$

Mid-level susy tops(!)

3d $\mathcal{N} \geq 4 \quad T_{\mu \nu}$ multiplet: the stress-tensor is at top, at level 4.
Another top, at level 2, Lorentz scalar. Gives susy-preserving "universal mass term" relevant deformations. First found in 3d N=8 (KI '98, Bena \& Warner '04; Lin \& Maldacena '05). Seems special to 3d. Indeed, these examples give a deformed susy algebra with a "non-central extension" with R-symm gens R_{ij} playing role of central term (=3d loophole to Haag-Lopuszanski-Sohnius theorem).

Classify susy preserving deformations of SCFTs

Many multiplets have mid-level Lorentz scalars, in all dimensions. We do many cross checks that we're not overlooking any exotic susy deformations (e.g. verify that Q can map to an operator at the next level, check Bose-Fermi degeneracy, recombination rules, etc).

Detailed tables

Give all susy-preserving deformations, relevant, marginal, and all irrelevant deformations, for all $\mathrm{N}, \mathrm{d}>2$

$\begin{aligned} & \text { E.g. } \\ & 3 \mathrm{~d}, \mathrm{~N}=8 \text { : } \end{aligned}$	Primary 0	Deformation 59	$C_{\text {comments }}$	universal mass
			Stus traes (t)	
			Sturs Trase (t)	
L=long, A,B,C,.. =short.			${ }_{F} \mathrm{~F} \mathrm{Tzam}($ (1)	all others irrelev.
			-	
			-	
			-	
			D.tom	

Table 16: Deformations of three-dimensional $\mathcal{N}=8$ SCFTs. The R-charges of the deformation are denoted by the $\mathfrak{s o}(8)_{R}$ Dynkin labels $R_{1}, R_{2}, R_{3}, R_{4} \in \mathbb{Z}_{\geq 0}$.

4d, N=3 (all irrelevant)

Primary \mathcal{O}	Deformation $\delta \mathscr{L}$	Comments
$B_{1} \bar{B}_{1}\left\{\begin{array}{c}\left(R_{1}+4,0 ; 2 R_{1}+8\right) \\ \Delta_{\mathcal{O}}=4+R_{1}\end{array}\right\}$	$Q^{4} \bar{Q}^{2} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, 0 ; 2 R_{1}+6\right) \\ \Delta=7+R_{1}\end{array}\right\}$	$F-\mathrm{Term}(*)$
$B_{1} \bar{B}_{1}\left\{\begin{array}{c}\left(0, R_{2}+4 ;-2 R_{2}-8\right) \\ \Delta_{\mathcal{O}}=4+R_{2}\end{array}\right\}$	$Q^{2} \bar{Q}^{4} \mathcal{O} \in\left\{\begin{array}{c}\left(0, R_{2} ;-2 R_{2}-6\right) \\ \Delta=7+R_{2}\end{array}\right\}$	$F-\operatorname{Term}(*)$
$B_{1} \bar{B}_{1}\left\{\begin{array}{c}\left(R_{1}+2, R_{2}+2 ; 2\left(R_{1}-R_{2}\right)\right) \\ \Delta_{\mathcal{O}}=4+R_{1}+R_{2}\end{array}\right\}$	$Q^{4} \bar{Q}^{4} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, R_{2} ; 2\left(R_{1}-R_{2}\right)\right) \\ \Delta=8+R_{1}+R_{2}\end{array}\right\}$	-
$L \bar{B}_{1}\left\{\begin{array}{c}(0,0 ; r+6), r>0 \\ \Delta_{\mathcal{O}}=1+\frac{1}{6} r\end{array}\right\}$	$Q^{6} \mathcal{O} \in\left\{\begin{array}{l}(0,0 ; r), r>0 \\ \Delta=4+\frac{1}{6} r>4\end{array}\right\}$	F-term ($*$)
$B_{1} \bar{L}\left\{\begin{array}{c}(0,0 ; r-6), r<0 \\ \Delta_{\mathcal{O}}=1-\frac{1}{6} r\end{array}\right\}$	$\bar{Q}^{6} \mathcal{O} \in\left\{\begin{array}{l}(0,0 ; r), r<0 \\ \Delta=4-\frac{1}{6} r>4\end{array}\right\}$	$F-T e r m(*)$
$L \bar{B}_{1}\left\{\begin{array}{c}\left(R_{1}+2,0 ; r+4\right), r>2 R_{1}+6 \\ \Delta_{\mathcal{O}}=2+\frac{2}{3} R_{1}+\frac{1}{6} r\end{array}\right\}$	$Q^{6} \bar{Q}^{2} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, 0 ; r\right), r>2 R_{1}+6 \\ \Delta=6+\frac{2}{3} R_{1}+\frac{1}{6} r>7+R_{1}\end{array}\right\}$	(\dagger)
$B_{1} \bar{L}\left\{\begin{array}{c}\left(0, R_{2}+2 ; r-4\right), r<-2 R_{2}-6 \\ \Delta_{\mathcal{O}}=2+\frac{2}{3} R_{2}-\frac{1}{6} r\end{array}\right\}$	$Q^{2} \bar{Q}^{6} \mathcal{O} \in\left\{\begin{array}{c}\left(0, R_{2} ; r\right), r<-2 R_{2}-6 \\ \Delta=6+\frac{2}{3} R_{2}-\frac{1}{6} r>7+R_{2}\end{array}\right\}$	(\dagger)
$L \bar{B}_{1}\left\{\begin{array}{c}\left(R_{1}, R_{2}+2 ; r+2\right), r>2\left(R_{1}-R_{2}\right) \\ \Delta_{\mathcal{O}}=3+\frac{2}{3}\left(R_{1}+2 R_{2}\right)+\frac{1}{6} r\end{array}\right\}$	$Q^{6} \bar{Q}^{4} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, R_{2} ; r\right), r>2\left(R_{1}-R_{2}\right) \\ \Delta=8+\frac{2}{3}\left(R_{1}+2 R_{2}\right)+\frac{1}{6} r>8+R_{1}+R_{2}\end{array}\right\}$	(\ddagger)
$B_{1} \bar{L}\left\{\begin{array}{c}\left(R_{1}+2, R_{2} ; r-2\right), r<2\left(R_{1}-R_{2}\right) \\ \Delta_{\mathcal{O}}=3+\frac{2}{3}\left(2 R_{1}+R_{2}\right)-\frac{1}{6} r\end{array}\right\}$	$Q^{4} \bar{Q}^{6} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, R_{2} ; r\right), r<2\left(R_{1}-R_{2}\right) \\ \Delta=8+\frac{2}{3}\left(2 R_{1}+R_{2}\right)-\frac{1}{6} r>8+R_{1}+R_{2}\end{array}\right\}$	(\ddagger)
$L \bar{L}\left\{\begin{array}{c}\left(R_{1}, R_{2} ; r\right) \\ \Delta_{\mathcal{O}}>2+\max \left\{\begin{array}{l}\frac{2}{3}\left(2 R_{1}+R_{2}\right)-\frac{1}{6} r \\ \frac{2}{3}\left(R_{1}+2 R_{2}\right)+\frac{1}{6} r\end{array}\right\}\end{array}\right\}$	$Q^{6} \bar{Q}^{6} \mathcal{O} \in\left\{\begin{array}{c}\left(R_{1}, R_{2} ; r\right) \\ \Delta>8+\max \left\{\begin{array}{l}\frac{2}{3}\left(2 R_{1}+R_{2}\right)-\frac{1}{6} r \\ \frac{2}{3}\left(R_{1}+2 R_{2}\right)+\frac{1}{6} r\end{array}\right\}\end{array}\right\}$	D-Term

Table 25: Deformations of four-dimensional $\mathcal{N}=3$ SCFTs. The $\mathfrak{s u}(3)_{R}$ Dynkin labels $R_{1}, R_{2} \in \mathbb{Z}_{\geq 0}$ and the $\mathfrak{u}(1)_{R}$ charge $r \in \mathbb{R}$ denote the R-symmetry representation of the deformation.

$d=5,6=$ simpler

No exotic susy deformations (but not a 100% proof).

$$
5 \mathrm{~d}, \mathrm{~N}=\mathrm{I}: \quad Q^{2} C_{1}[0,0]^{R=2}=[0,0]_{4}^{R=0} \quad \begin{aligned}
& \text { mass terms via } \\
& \text { flavor symms }
\end{aligned}
$$

(E.g.gauge $\quad Q^{4} C_{1}[0,0]^{R+4}=[0,0]_{8+\frac{3}{2} R}^{R} \quad$ irrel. F-terms kinetic terms)

$$
Q^{8} L_{1}[0,0]^{R}=[0,0]_{\Delta>8+\frac{3}{2} R}^{R} \quad \text { irrel. D-terms }
$$

6d, $\mathrm{N}=(1,0)$:

$$
\begin{aligned}
Q^{4} D_{1}[0,0,0]^{R+4}=[0,0,0]_{\Delta=10+2 R}^{R} & \text { irrel. F-terms } \\
Q^{8} L[0,0,0]^{R}=[0,0,0]_{\Delta>10+2 R}^{R} & \text { irrel. D-terms }
\end{aligned}
$$

Conclude

- QFT is vast, expect still much to be found.
- susy QFTs and RG flows are rich, useful testing grounds for exploring QFT. Strongly constrained: unitarity, a-thm., etc. Can rule out some things. Exact results for others.
- Thank you!
- Happy birthdays, F-theory and Dave!

