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M-Theory Background

X CY3, M[X ]

3-form gauge field C3, G = dC3

G is quantized:

G
2π
− c2(X )

2
∈ H4(M,Z)

Tadpole cancellation

M =
χ(X )

24
− 1

2

∫
X

G
2π
∧ G

2π
∈ Z,

number of M2 branes
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Superpotentials

G induces superpotential

W =

∫
X

Ω ∧ G
2π

and twisted superpotential

W̃ =

∫
X

J ∧ J ∧ G
2π

Flat directions: G ∈ H2,2(X ), G primitive
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Extremal Transitions in M-Theory

From singular X0, can blow up to X ] or deform to X [

X ]

↓
X [  X0

In M-theory, need G] and G[

M] and M[ M2-branes for tadpole cancellation
Look for transitions for which the M2 branes are
spectators—M2-branes kept away from S = Sing(X0)

M] = M[, or

χ(X [)

24
− χ(X ])

24
=

1
2

∫
X

G[

2π
∧ G[

2π
− 1

2

∫
X

G]

2π
∧ G]

2π
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Surfaces of An−1 Singularities

Extremal transition where S ⊂ X0 is a smooth surface of
transverse An−1 singularities
Local equation xy = zn, z ∈ KS

If c2(X ]) is even, then G] = 0 satisfies quantization and
tadpole cancellation for suitable M]

The main result in this talk: given any toric hypersurface
X0 such that c2(X ]) is the restriction of an even class on
the toric variety , we can always find a transition in M
theory from (X ],G] = 0) to an (X [,G[) which satisfies
quantization and tadpole cancellation.
Furthermore, the geometric moduli of (X [,G[) perfectly
match the predictions of the low energy theory
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Constraints from M theory

Constraints from M theory on transition (X ],0)→ (X [,G[):
Quantization:

G[

2π
− c2(X [)

2
∈ H4(M,Z)

Tadpole cancellation

1
2

∫
X

G[

2π
∧ G[

2π
=

(n + 1)n(n − 1)K 2
S

24

using
χ(X [)− χ(X ]) = (n + 1)n(n − 1)K 2

S

(cf Ronen’s talk)
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Low Energy Theory

Low energy 3D dynamics is given by a twisted dimensional
reduction of N = 1 7D SU(n) SYM on S
SU(n) gauge theory with pg + q adjoint chirals

pg = h2,0(S) = h0(S,KS), q = h1,0(S)

Coulomb branch of dimension (n − 1)(pg + q + 1),
parametrized by vevs of gauge bosons in Cartan

(φ1, . . . , φn),
∑

φi = 0

and the vevs of the n − 1 U(1)n−1-neutral scalars in each
of the pg + q chirals
Residual Sn = W (An−1) action on Coulomb branch
Higgs branch dimension (n2 − 1)(pg + q − 1)
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Checks against gauge theory predictions

(n − 1)(pg + 1) Columb branch moduli (q = 0): blowup
modes in Kähler moduli and

xy +
n∏

i=1

(z + ηi), ηi ∈ H0(S,KS),
∑

ηi = 0

(n2 − 1)(pg − 1) flat directions for G[

Have Sn action on Coulomb branch
Sn action extends to Higgs branch
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Toric CY 4folds with An−1 singularities

N,M dual lattices of rank 5
(∆,∆◦) polar 5-dimensional reflexive polytopes
∆ ⊂ MR,∆

◦ ⊂ NR

0 unique interior point of ∆ ∩M and of ∆◦ ∩ N
Fan Σ] of toric variety P∆: cones over the faces of ∆◦

Highly singular, so we choose a maximal projective crepant
subdivision of that fan
An−1 case: ∆◦ has a one-dimensional edge Γ containing
n − 1 interior lattice points
X ] ⊂ XΣ] anticanonical hypersurface — CY 4fold
Removing the interior lattice points of Γ blows down XΣ] to
XΣ0 , and X ] to X0
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Example

Describe P(1,1,2,2,2,2) (cf. Ronen’s talk) torically
Take edges of Σ0 as rows of

−1 −2 −2 −2 −2
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Have unique interior point (0,−1,−1,−1,−1) of edge
joining first two vertices
SU(2) gauge theory
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Labeling Conventions

Label vertices of Σ0 as v1, . . . , vk ; v1, v2 endpoints of Γ

For each vj we have homogeneous coordinate xj and
divisor Dj ⊂ XΣ0 given by xj = 0
Interior points v0, v−1, . . . , v2−n in order
For the vertices v2−n, . . . , vk we similarly have toric divisors
D]

j ⊂ X Σ]
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XΣ[

Embed ι : XΣ ↪→ XΣ[ for suitable fan Σ[:
(x1, x2, x3, . . . , xk ) 7→ (xn

1 , x
n
2 , x1x2, x3, . . . , xk ) =:

(y0, . . . , yk )

The An−1 is visible from q0(y) := y0y1 − yn
2 = 0

Convenient choice for Σ[: choose mΓ ∈ M

〈mΓ, v1〉 = n − 1, 〈mΓ, v2〉 = −1

Take as edges of Σ[, with appropriate higher-dimensional
cones

w0 =

(
v1 − v2

n
,−(n − 1)

)
,

w1 = (0,1) ,

w2 = (v2,0) ,

wi = (vi ,−n〈mΓ, vi〉) , i ≥ 3 .
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X [

Have toric divisors D[
j ⊂ XΣ[ associated with edges wj

D[
0 + D[

1 ∼ ND[
2

ι∗(D[
2) = D1 + D2

ι∗(D′) = D1 + . . .+ Dk , D′ := D2 + D3 + . . .+ Dk

Choose section g(y) of D′ which pulls back by ι to an
equation for X0

ι(X0) is the complete intersection of q(y) and g(y)

X [ (w/o flux constraint) obtained by smoothing q̃(y) of q(y)
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Example

Return to P(1,1,2,2,2,2). Take mΓ = (1,0,0,0,0)

Edges of Σ[ are rows of

−1 −1 −1 −1 −1 −1
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Fan for P6

X0 is a (2,5) complete intersection in P6
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KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



KS

S ⊂ XΣ[ is the complete intersection of y0, y1, y2,g(y)

KS = KX
Σ[

(D[
0 + D[

1 + D[
2 + D′)|S = OS(D2)

Basis for sections of KS correspond to interior lattice points
of dual face Γ◦

pg is the number of these points.
Relabel coordinates so these correspond to y3, . . . , ypg+2

q̃ = y0y1 − yn
2 −

∑n−2
j=0 hn−j(y3, . . . , ypg+2)y j

2, deg hj = j

Sheldon Katz Extremal transitions of Calabi-Yau fourfolds in M-theory



Flat Directions

Will exhibit G[ with the following smoothings of X0 as flat
directions

q̃ = y0y1 − det
(
y2In + M(y3, . . . , ypg+2)

)
with M(y) a traceless n × n matrix of linear forms
(pg − 1)(n2 − 1) moduli for q̃:
pg(n2 − 1) for entries of M(y)

n2 − 1 similarity transformations of M(y) leave q̃
unchanged
Matches Higgs branch moduli perfectly!
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G[

Specialize to n = 2 for simplicity

M(y) =

(
`11(y) `12(y)
`21(y) −`11(y)

)

T1 ⊂ XΣ[ defined by y0 = y2 + `11(y) = `12(y) = g(y) = 0
By construction, T1 ⊂ X [ since the first row of y2I2 + M(y)
is (y2 + `11(y), `12(y))

Similarly T2 ⊂ X [ defined by
y0 = y2 + `11(y) = `21(y) = g(y) = 0

G[

2π
:=

1
2

(T1 − T2) ∈ H4(X [,R)

with 2G[

2π ∈ H4(X [,Z)
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Verifications

G[ is an algebraic class, hence of type (2,2)

Let F ⊂ XΣ[ be the hypersurface g(y) = 0
T1,T2 complete intersections in F of same degrees
Therefore image of G[ in H6(F ) vanishes
G[ primitive
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Tadpole

Tadpole: computing in XΣ[∫
X [

G[

2π
∧ G[

2π
=

(n + 1)n(n − 1)

12

∫
X [

Σ

D[
0D[

1(D[
2)3D′

Recall: S is the complete of divisors in the classes
D[

0,D
[
1,D

[
2,D

′

KS is the restriction of D2

Integral on the right is just K 2
S

Divide by two to verify tadpole cancellation
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Quantization

0→ Ok+n−6
X

Σ]
→

k⊕
i=2−n

OX
Σ]

(D]
i )→ TX

Σ]
→ 0

Leading to c2(X ]) =
∑

i<j D]
i D

]
j

Similarly c2(X [) =
∑

i<j D[
i D

[
j

G[

2π
=

1
2

(T1 − T2) ≡ 1
2

(T1 + T2) (mod Z)

But T1 + T2 is the complete intersection y2 + `11(y) = q̃(y)
in F , cohomology class (D[

2)2

We can replace G[/(2π) with (D[
2)2/2

Everything is now explicitly computable and we verify
quantization
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Weyl Group

The Weyl group action permutes the ordering of the rows
and columns of M(y), T1 ↔ T2

G[ 7→ −G[

Coulomb branch: M(y) = diag(η(y),−η(y)), permuting
ordering of rows and columns
η 7→ −η
Agrees with Weyl group action on Coulomb branch
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Summary

HAPPY BIRTHDAY DAVE!
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