Extremal transitions of Calabi-Yau fourfolds in M-theory

Sheldon Katz

University of Illinois at Urbana-Champaign

F-Theory at 20: Dave Day February 25, 2016
H. Jockers, SK, D.R. Morrison, M.R. Plesser
arXiv:1602.xxxxx

Outline

(1) Extremal Transitions in M-Theory

2 Field Theory Analysis
(3) Toric Case

Outline

(2) Field Theory Analysis

(3) Toric Case

- X CY3, $M[X]$
- 3-form gauge field $C_{3}, G=d C_{3}$
- G is quantized:

- Tadpole cancellation

$$
M=\frac{\chi(X)}{24}-\frac{1}{2} \int_{X} \frac{G}{2 \pi} \wedge \frac{G}{2 \pi} \in \mathbb{Z}
$$

number of M 2 branes

- X CY3, $M[X]$
- 3-form gauge field $C_{3}, G=d C_{3}$
- G is quantized:

- Tadpole cancellation

$$
M=\frac{\chi(X)}{24}-\frac{1}{2} \int_{X} \frac{G}{2 \pi} \wedge \frac{G}{2 \pi} \in Z .
$$

number of M 2 branes

- X CY3, $M[X]$
- 3-form gauge field $C_{3}, G=d C_{3}$
- G is quantized:

$$
\frac{G}{2 \pi}-\frac{c_{2}(X)}{2} \in H^{4}(M, \mathbf{Z})
$$

- Tadpole cancellation

number of M 2 branes

- X CY3, $M[X]$
- 3-form gauge field $C_{3}, G=d C_{3}$
- G is quantized:

$$
\frac{G}{2 \pi}-\frac{c_{2}(X)}{2} \in H^{4}(M, \mathbf{Z})
$$

- Tadpole cancellation

$$
M=\frac{\chi(X)}{24}-\frac{1}{2} \int_{X} \frac{G}{2 \pi} \wedge \frac{G}{2 \pi} \in \mathbf{Z}
$$

number of M2 branes

- Ginduces superpotential

$$
W=\int_{X} \Omega \wedge \frac{G}{2 \pi}
$$

and twisted superpotential

$$
\tilde{W}=\int_{X} J \wedge J \wedge \frac{G}{2 \pi}
$$

- Flat directions: $G \in H^{2,2}(X), G$ primitive
- Ginduces superpotential

$$
W=\int_{X} \Omega \wedge \frac{G}{2 \pi}
$$

and twisted superpotential

$$
\tilde{W}=\int_{X} J \wedge J \wedge \frac{G}{2 \pi}
$$

- Flat directions: $G \in H^{2,2}(X), G$ primitive

Extremal Transitions in M-Theory

- From singular X_{0}, can blow up to X^{\sharp} or deform to X^{b}

$$
\begin{array}{ccc}
& & X^{\sharp} \\
& & \downarrow \\
X^{b} \rightsquigarrow & X_{0}
\end{array}
$$

- In M-theory, need G^{\sharp} and G^{b}
- M^{\sharp} and $M^{b} \mathrm{M} 2$-branes for tadpole cancellation
- Look for transitions for which the M2 branes are spectators-M2-branes kept away from $S=\operatorname{Sing}\left(X_{0}\right)$

Extremal Transitions in M-Theory

- From singular X_{0}, can blow up to X^{\sharp} or deform to X^{b}

$$
\begin{array}{lll}
& & X^{\sharp} \\
& & \downarrow \\
X^{\natural} & \rightsquigarrow & X_{0}
\end{array}
$$

- In M-theory, need G^{\sharp} and G^{b}
- M^{\sharp} and M^{p} M2-branes for tadpole cancellation
- Look for transitions for which the M2 branes are spectators-M2-branes kept away from $S=\operatorname{Sing}\left(X_{0}\right)$
- $M^{\sharp}=M^{p}$, or

Extremal Transitions in M-Theory

- From singular X_{0}, can blow up to X^{\sharp} or deform to X^{b}

$$
\begin{array}{ccc}
& & X^{\sharp} \\
& & \downarrow \\
X^{\natural} & \rightsquigarrow & X_{0}
\end{array}
$$

- In M-theory, need G^{\sharp} and G^{b}
- M^{\sharp} and M^{b} M2-branes for tadpole cancellation
- Look for transitions for which the M2 branes are spectators-M2-branes kept away from $S=\operatorname{Sing}\left(X_{0}\right)$ - $M^{\sharp}=M^{p}$, or

Extremal Transitions in M-Theory

- From singular X_{0}, can blow up to X^{\sharp} or deform to X^{b}

$$
\begin{array}{ccc}
& & X^{\sharp} \\
& & \downarrow \\
X^{\natural} \rightsquigarrow & X_{0}
\end{array}
$$

- In M-theory, need G^{\sharp} and G^{b}
- M^{\sharp} and $M^{b} \mathrm{M} 2$-branes for tadpole cancellation
- Look for transitions for which the M2 branes are spectators-M2-branes kept away from $S=\operatorname{Sing}\left(X_{0}\right)$

Extremal Transitions in M-Theory

- From singular X_{0}, can blow up to X^{\sharp} or deform to X^{b}

$$
\begin{array}{lll}
& & \\
& & \\
& \\
x^{\natural} & \\
X^{\sharp} & \stackrel{\downarrow}{0}
\end{array}
$$

- In M-theory, need G^{\sharp} and G^{b}
- M^{\sharp} and $M^{b} \mathrm{M} 2$-branes for tadpole cancellation
- Look for transitions for which the M2 branes are spectators-M2-branes kept away from $S=\operatorname{Sing}\left(X_{0}\right)$
- $M^{\sharp}=M^{b}$, or

$$
\frac{\chi\left(X^{b}\right)}{24}-\frac{\chi\left(X^{\sharp}\right)}{24}=\frac{1}{2} \int_{X} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}-\frac{1}{2} \int_{X} \frac{G^{\sharp}}{2 \pi} \wedge \frac{G^{\sharp}}{2 \pi}
$$

- Extremal transition where $S \subset X_{0}$ is a smooth surface of transverse A_{n-1} singularities
- Local equation $x y=z^{n}, z \in K_{S}$
- If $c_{2}\left(X^{\sharp}\right)$ is even, then $G^{\sharp}=0$ satisfies quantization and tadpole cancellation for suitable M^{\sharp}
- The main result in this talk: given any toric hypersurface X_{0} such that $c_{2}\left(X^{\sharp}\right)$ is the restriction of an even class on the toric variety, we can always find a transition in M theory from $\left(X^{\sharp}, G^{\sharp}=0\right)$ to an $\left(X^{j}, G^{b}\right)$ which satisfies quantization and tadpole cancellation.
- Furthermore, the geometric moduli of $\left(X^{b}, G^{b}\right)$ perfectly match the predictions of the low energy theory
- Extremal transition where $S \subset X_{0}$ is a smooth surface of transverse A_{n-1} singularities
- Local equation $x y=z^{n}, z \in K_{S}$
- If $c_{2}\left(X^{\sharp}\right)$ is even, then $G^{\sharp}=0$ satisfies quantization and tadpole cancellation for suitable M^{\sharp}
- The main result in this talk: given any toric hypersurface X_{0} such that $c_{2}\left(X^{\sharp}\right)$ is the restriction of an even class on the toric variety, we can always find a transition in M theory from $\left(X^{\sharp}, G^{\sharp}=0\right)$ to an $\left(X^{b}, G^{b}\right)$ which satisfies quantization and tadpole cancellation.
- Furthermore, the geometric moduli of $\left(X^{b}, G^{b}\right)$ perfectly match the predictions of the low energy theory
- Extremal transition where $S \subset X_{0}$ is a smooth surface of transverse A_{n-1} singularities
- Local equation $x y=z^{n}, z \in K_{S}$
- If $c_{2}\left(X^{\sharp}\right)$ is even, then $G^{\sharp}=0$ satisfies quantization and tadpole cancellation for suitable M^{\sharp}
- The main result in this talk: given any toric hypersurface X_{0} such that $c_{2}\left(X^{\sharp}\right)$ is the restriction of an even class on the toric variety, we can always find a transition in M theory from $\left(X^{\sharp}, G^{\sharp}=0\right)$ to an $\left(X^{j}, G^{j}\right)$ which satisfies quantization and tadpole cancellation.
- Furthermore, the geometric moduli of $\left(X^{b}, G^{b}\right)$ perfectly match the predictions of the low energy theory
- Extremal transition where $S \subset X_{0}$ is a smooth surface of transverse A_{n-1} singularities
- Local equation $x y=z^{n}, z \in K_{S}$
- If $c_{2}\left(X^{\sharp}\right)$ is even, then $G^{\sharp}=0$ satisfies quantization and tadpole cancellation for suitable M^{\sharp}
- The main result in this talk: given any toric hypersurface X_{0} such that $c_{2}\left(X^{\sharp}\right)$ is the restriction of an even class on the toric variety , we can always find a transition in M theory from ($X^{\sharp}, G^{\sharp}=0$) to an (X^{b}, G^{b}) which satisfies quantization and tadpole cancellation.
- Furthermore, the geometric moduli of $\left(X^{b}, G^{b}\right)$ perfectly match the predictions of the low energy theory
- Extremal transition where $S \subset X_{0}$ is a smooth surface of transverse A_{n-1} singularities
- Local equation $x y=z^{n}, z \in K_{S}$
- If $c_{2}\left(X^{\sharp}\right)$ is even, then $G^{\sharp}=0$ satisfies quantization and tadpole cancellation for suitable M^{\sharp}
- The main result in this talk: given any toric hypersurface X_{0} such that $c_{2}\left(X^{\sharp}\right)$ is the restriction of an even class on the toric variety , we can always find a transition in M theory from ($X^{\sharp}, G^{\sharp}=0$) to an (X^{b}, G^{b}) which satisfies quantization and tadpole cancellation.
- Furthermore, the geometric moduli of $\left(X^{b}, G^{b}\right)$ perfectly match the predictions of the low energy theory

Constraints from M theory

- Constraints from M theory on transition $\left(X^{\sharp}, 0\right) \rightarrow\left(X^{b}, G^{b}\right)$:
- Quantization:

- Tadpole cancellation

using

$$
\chi\left(X^{b}\right)-\chi\left(X^{\sharp}\right)=(n+1) n(n-1) K_{S}^{2}
$$

(cf Ronen's talk)

Constraints from M theory

- Constraints from M theory on transition $\left(X^{\sharp}, 0\right) \rightarrow\left(X^{b}, G^{b}\right)$:
- Quantization:

$$
\frac{G^{b}}{2 \pi}-\frac{c_{2}\left(X^{b}\right)}{2} \in H^{4}(M, \mathbf{Z})
$$

- Tadpole cancellation

using

$$
\chi\left(X^{b}\right)-\chi\left(X^{\sharp}\right)=(n+1) n(n-1) K_{S}^{2}
$$

(cf Ronen's talk)

Constraints from M theory

- Constraints from M theory on transition $\left(X^{\sharp}, 0\right) \rightarrow\left(X^{b}, G^{b}\right)$:
- Quantization:

$$
\frac{G^{b}}{2 \pi}-\frac{c_{2}\left(X^{b}\right)}{2} \in H^{4}(M, \mathbf{Z})
$$

- Tadpole cancellation

$$
\frac{1}{2} \int_{X} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}=\frac{(n+1) n(n-1) K_{S}^{2}}{24}
$$

using

$$
\chi\left(X^{b}\right)-\chi\left(X^{\sharp}\right)=(n+1) n(n-1) K_{S}^{2}
$$

(cf Ronen's talk)

Outline

(1) Extremal Transitions in M-Theory

(2) Field Theory Analysis
(3) Toric Case

Low Energy Theory

- Low energy 3D dynamics is given by a twisted dimensional reduction of $N=17 \mathrm{D} S U(n)$ SYM on S
- $S U(n)$ gauge theory with $p_{g}+q$ adjoint chirals

$$
p_{g}=h^{2,0}(S)=h^{0}\left(S, K_{S}\right), \quad q=h^{1,0}(S)
$$

- Coulomb branch of dimension $(n-1)\left(p_{g}+q+1\right)$, parametrized by vevs of gauge bosons in Cartan

and the vevs of the $n-1 U(1)^{n-1}$-neutral scalars in each
of the $p_{g}+q$ chirals
- Residual $S_{n}=W\left(A_{n-1}\right)$ action on Coulomb branch
- Higgs branch dimension $\left(n^{2}-1\right)\left(p_{g}+q-1\right)$

Low Energy Theory

- Low energy 3D dynamics is given by a twisted dimensional reduction of $N=17 \mathrm{D} S U(n)$ SYM on S
- $S U(n)$ gauge theory with $p_{g}+q$ adjoint chirals

$$
p_{g}=h^{2,0}(S)=h^{0}\left(S, K_{S}\right), \quad q=h^{1,0}(S)
$$

- Coulomb branch of dimension $(n-1)\left(p_{g}+q+1\right)$, parametrized by vevs of gauge bosons in Cartan
and the vevs of the $n-1 U(1)^{n-1}$-neutral scalars in each of the $p_{g}+q$ chirals
- Residual $S_{n}=W\left(A_{n-1}\right)$ action on Coulomb branch
- Higgs branch dimension $\left(n^{2}-1\right)\left(p_{g}+q-1\right)$

Low Energy Theory

- Low energy 3D dynamics is given by a twisted dimensional reduction of $N=1$ 7D $S U(n)$ SYM on S
- $S U(n)$ gauge theory with $p_{g}+q$ adjoint chirals

$$
p_{g}=h^{2,0}(S)=h^{0}\left(S, K_{S}\right), \quad q=h^{1,0}(S)
$$

- Coulomb branch of dimension $(n-1)\left(p_{g}+q+1\right)$, parametrized by vevs of gauge bosons in Cartan

$$
\left(\phi_{1}, \ldots, \phi_{n}\right), \quad \sum \phi_{i}=0
$$

and the vevs of the $n-1 U(1)^{n-1}$-neutral scalars in each of the $p_{g}+q$ chirals

- Low energy 3D dynamics is given by a twisted dimensional reduction of $N=1$ 7D $S U(n)$ SYM on S
- $S U(n)$ gauge theory with $p_{g}+q$ adjoint chirals

$$
p_{g}=h^{2,0}(S)=h^{0}\left(S, K_{S}\right), \quad q=h^{1,0}(S)
$$

- Coulomb branch of dimension $(n-1)\left(p_{g}+q+1\right)$, parametrized by vevs of gauge bosons in Cartan

$$
\left(\phi_{1}, \ldots, \phi_{n}\right), \quad \sum \phi_{i}=0
$$

and the vevs of the $n-1 U(1)^{n-1}$-neutral scalars in each of the $p_{g}+q$ chirals

- Residual $S_{n}=W\left(A_{n-1}\right)$ action on Coulomb branch
- Low energy 3D dynamics is given by a twisted dimensional reduction of $N=1$ 7D $S U(n)$ SYM on S
- $S U(n)$ gauge theory with $p_{g}+q$ adjoint chirals

$$
p_{g}=h^{2,0}(S)=h^{0}\left(S, K_{S}\right), \quad q=h^{1,0}(S)
$$

- Coulomb branch of dimension $(n-1)\left(p_{g}+q+1\right)$, parametrized by vevs of gauge bosons in Cartan

$$
\left(\phi_{1}, \ldots, \phi_{n}\right), \quad \sum \phi_{i}=0
$$

and the vevs of the $n-1 U(1)^{n-1}$-neutral scalars in each of the $p_{g}+q$ chirals

- Residual $S_{n}=W\left(A_{n-1}\right)$ action on Coulomb branch
- Higgs branch dimension $\left(n^{2}-1\right)\left(p_{g}+q-1\right)$

Checks against gauge theory predictions

- $(n-1)\left(p_{g}+1\right)$ Columb branch moduli $(q=0)$: blowup modes in Kähler moduli and

$$
x y+\prod_{i=1}^{n}\left(z+\eta_{i}\right), \quad \eta_{i} \in H^{0}\left(S, K_{S}\right), \sum \eta_{i}=0
$$

- $\left(n^{2}-1\right)\left(p_{g}-1\right)$ flat directions for G^{b}
- Have S_{n} action on Coulomb branch
- S_{n} action extends to Higgs branch

Checks against gauge theory predictions

- $(n-1)\left(p_{g}+1\right)$ Columb branch moduli $(q=0)$: blowup modes in Kähler moduli and

$$
x y+\prod_{i=1}^{n}\left(z+\eta_{i}\right), \quad \eta_{i} \in H^{0}\left(S, K_{S}\right), \sum \eta_{i}=0
$$

- $\left(n^{2}-1\right)\left(p_{g}-1\right)$ flat directions for G^{b}
- Have S_{n} action on Coulomb branch
- S_{n} action extends to Higgs branch

Checks against gauge theory predictions

- $(n-1)\left(p_{g}+1\right)$ Columb branch moduli $(q=0)$: blowup modes in Kähler moduli and

$$
x y+\prod_{i=1}^{n}\left(z+\eta_{i}\right), \quad \eta_{i} \in H^{0}\left(S, K_{S}\right), \sum \eta_{i}=0
$$

- $\left(n^{2}-1\right)\left(p_{g}-1\right)$ flat directions for G^{b}
- Have S_{n} action on Coulomb branch
- S_{n} action extends to Higgs branch

Checks against gauge theory predictions

- $(n-1)\left(p_{g}+1\right)$ Columb branch moduli $(q=0)$: blowup modes in Kähler moduli and

$$
x y+\prod_{i=1}^{n}\left(z+\eta_{i}\right), \quad \eta_{i} \in H^{0}\left(S, K_{S}\right), \sum \eta_{i}=0
$$

- $\left(n^{2}-1\right)\left(p_{g}-1\right)$ flat directions for G^{b}
- Have S_{n} action on Coulomb branch
- S_{n} action extends to Higgs branch

Outline

(1) Extremal Transitions in M-Theory

(2) Field Theory Analysis
(3) Toric Case

Toric CY 4folds with A_{n-1} singularities

- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan $\Sigma \sharp$ of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ
- Highly singular, so we choose a maximal projective crepant subdivision of that fan
- A_{n-1} case: Δ° has a one-dimensional edge Γ containing $n-1$ interior lattice points
- $X^{\sharp} \subset X_{\Sigma \sharp}$ anticanonical hypersurface - CY 4fold
- Removing the interior lattice points of Γ blows down $X_{\Sigma^{\sharp}}$ to $X_{\Sigma_{0}}$, and X^{\sharp} to X_{0}

Toric CY 4folds with A_{n-1} singularities

- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan Σ^{\sharp} of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ°
- Highly singular, so we choose a maximal projective crepant subdivision of that fan
- A_{n-1} case: Δ° has a one-dimensional edge 「 containing $n-1$ interior lattice points
- $X^{\sharp} \subset X_{\Sigma \sharp}$ anticanonical hypersurface - CY 4fold
- Removing the interior lattice points of Γ blows down X_{Σ} to $X_{\Sigma_{0}}$, and X^{\sharp} to X_{0}
- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan Σ^{\sharp} of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ°
- Highly singular, so we choose a maximal projective crepant subdivision of that fan

- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan Σ^{\sharp} of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ°
- Highly singular, so we choose a maximal projective crepant subdivision of that fan
- A_{n-1} case: Δ° has a one-dimensional edge 「 containing $n-1$ interior lattice points

- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan Σ^{\sharp} of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ°
- Highly singular, so we choose a maximal projective crepant subdivision of that fan
- A_{n-1} case: Δ° has a one-dimensional edge 「 containing $n-1$ interior lattice points
- $X^{\sharp} \subset X_{\Sigma \sharp}$ anticanonical hypersurface - CY 4fold
- Removing the interior lattice points of 「 blows down $X_{\Sigma \sharp}$ to
- N, M dual lattices of rank 5
- $\left(\Delta, \Delta^{\circ}\right)$ polar 5-dimensional reflexive polytopes
- $\Delta \subset M_{\mathbb{R}}, \Delta^{\circ} \subset N_{\mathbb{R}}$
- 0 unique interior point of $\Delta \cap M$ and of $\Delta^{\circ} \cap N$
- Fan Σ^{\sharp} of toric variety \mathbb{P}_{Δ} : cones over the faces of Δ°
- Highly singular, so we choose a maximal projective crepant subdivision of that fan
- A_{n-1} case: Δ° has a one-dimensional edge Γ containing $n-1$ interior lattice points
- $X^{\sharp} \subset X_{\Sigma}$ anticanonical hypersurface - CY 4fold
- Removing the interior lattice points of Γ blows down $X_{\Sigma \sharp}$ to $X_{\Sigma_{0}}$, and X^{\sharp} to X_{0}

Example

- Describe $\mathbf{P}(1,1,2,2,2,2)$ (cf. Ronen's talk) torically
- Take edges of Σ_{0} as rows of

- Have unique interior point $(0,-1,-1,-1,-1)$ of edge joining first two vertices
- SU(2) gauge theory
- Describe $\mathbf{P}(1,1,2,2,2,2)$ (cf. Ronen's talk) torically
- Take edges of Σ_{0} as rows of

$$
\left(\begin{array}{ccccc}
-1 & -2 & -2 & -2 & -2 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Have unique interior point $(0,-1,-1,-1,-1)$ of edge joining first two vertices
- $S U(2)$ gauge theory
- Describe $\mathbf{P}(1,1,2,2,2,2)$ (cf. Ronen's talk) torically
- Take edges of Σ_{0} as rows of

$$
\left(\begin{array}{ccccc}
-1 & -2 & -2 & -2 & -2 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Have unique interior point $(0,-1,-1,-1,-1)$ of edge joining first two vertices
- SU(2) gauge theory
- Describe $\mathbf{P}(1,1,2,2,2,2)$ (cf. Ronen's talk) torically
- Take edges of Σ_{0} as rows of

$$
\left(\begin{array}{ccccc}
-1 & -2 & -2 & -2 & -2 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

- Have unique interior point $(0,-1,-1,-1,-1)$ of edge joining first two vertices
- SU(2) gauge theory
- Label vertices of Σ_{0} as $v_{1}, \ldots, v_{k} ; v_{1}, v_{2}$ endpoints of Γ
- For each v_{j} we have homogeneous coordinate x_{j} and divisor $D_{j} \subset X_{\Sigma_{0}}$ given by $x_{j}=0$
- Interior points $v_{0}, v_{-1}, \ldots, v_{2-n}$ in order
- For the vertices v_{2-n}, \ldots, v_{k} we similarly have toric divisors $D_{j}^{\sharp} \subset X^{\Sigma^{\sharp}}$
- Label vertices of Σ_{0} as $v_{1}, \ldots, v_{k} ; v_{1}, v_{2}$ endpoints of Γ
- For each v_{j} we have homogeneous coordinate x_{j} and divisor $D_{j} \subset X_{\Sigma_{0}}$ given by $x_{j}=0$
- Interior points $v_{0}, v_{-1}, \ldots, v_{2-n}$ in order
- For the vertices v_{2-n}, \ldots, v_{k} we similarly have toric divisors
- Label vertices of Σ_{0} as $v_{1}, \ldots, v_{k} ; v_{1}, v_{2}$ endpoints of Γ
- For each v_{j} we have homogeneous coordinate x_{j} and divisor $D_{j} \subset X_{\Sigma_{0}}$ given by $x_{j}=0$
- Interior points $v_{0}, v_{-1}, \ldots, v_{2-n}$ in order
- For the vertices v_{2-n}, \ldots, v_{k} we similarly have toric divisors
- Label vertices of Σ_{0} as $v_{1}, \ldots, v_{k} ; v_{1}, v_{2}$ endpoints of Γ
- For each v_{j} we have homogeneous coordinate x_{j} and divisor $D_{j} \subset X_{\Sigma_{0}}$ given by $x_{j}=0$
- Interior points $v_{0}, v_{-1}, \ldots, v_{2-n}$ in order
- For the vertices v_{2-n}, \ldots, v_{k} we similarly have toric divisors $D_{j}^{\sharp} \subset X^{\Sigma^{\sharp}}$
- Embed $\iota: X_{\Sigma} \hookrightarrow X_{\Sigma^{b}}$ for suitable fan Σ^{b} : $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \mapsto\left(x_{1}^{n}, x_{2}^{n}, x_{1} x_{2}, x_{3}, \ldots, x_{k}\right)=:$ $\left(y_{0}, \ldots, y_{k}\right)$
- The A_{n-1} is visible from $q_{0}(y):=y_{0} y_{1}-y_{2}^{n}=0$
- Convenient choice for Σ^{b} : choose $m_{\Gamma} \in M$

$$
\left\langle m_{\Gamma}, v_{1}\right\rangle=n-1,\left\langle m_{\Gamma}, v_{2}\right\rangle=-1
$$

- Take as edges of Σ^{b}, with appropriate higher-dimensional cones

$$
\begin{aligned}
& w_{0}=\left(\frac{v_{1}-v_{2}}{n},-(n-1)\right), \\
& w_{1}=(0,1) \\
& w_{2}=\left(v_{2}, 0\right), \\
& w_{i}=\left(v_{i},-n\left\langle m_{\Gamma}, v_{i}\right\rangle\right), i \geq 3
\end{aligned}
$$

- Embed $\iota: X_{\Sigma} \hookrightarrow X_{\Sigma^{b}}$ for suitable fan Σ^{b} : $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \mapsto\left(x_{1}^{n}, x_{2}^{n}, x_{1} x_{2}, x_{3}, \ldots, x_{k}\right)=:$ $\left(y_{0}, \ldots, y_{k}\right)$
- The A_{n-1} is visible from $q_{0}(y):=y_{0} y_{1}-y_{2}^{n}=0$

- Convenient choice for \sum^{\bullet} : choose $m_{\Gamma} \in M$

$$
\left\langle m_{\Gamma}, v_{1}\right\rangle=n-1,\left\langle m_{\Gamma}, v_{2}\right\rangle=-1
$$

- Take as edges of Σ^{b}, with appropriate higher-dimensional cones

- Embed $\iota: X_{\Sigma} \hookrightarrow X_{\Sigma^{b}}$ for suitable fan Σ^{b} : $\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \mapsto\left(x_{1}^{n}, x_{2}^{n}, x_{1} x_{2}, x_{3}, \ldots, x_{k}\right)=:$ $\left(y_{0}, \ldots, y_{k}\right)$
- The A_{n-1} is visible from $q_{0}(y):=y_{0} y_{1}-y_{2}^{n}=0$
- Convenient choice for Σ^{b} : choose $m_{\Gamma} \in M$

$$
\left\langle m_{\Gamma}, v_{1}\right\rangle=n-1,\left\langle m_{\Gamma}, v_{2}\right\rangle=-1
$$

- Take as edges of Σ^{b}, with appropriate higher-dimensional cones

- Embed $\iota: X_{\Sigma} \hookrightarrow X_{\Sigma^{b}}$ for suitable fan Σ^{b} :

$$
\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right) \mapsto\left(x_{1}^{n}, x_{2}^{n}, x_{1} x_{2}, x_{3}, \ldots, x_{k}\right)=:
$$

$$
\left(y_{0}, \ldots, y_{k}\right)
$$

- The A_{n-1} is visible from $q_{0}(y):=y_{0} y_{1}-y_{2}^{n}=0$
- Convenient choice for Σ^{b} : choose $m_{\Gamma} \in M$

$$
\left\langle m_{\Gamma}, v_{1}\right\rangle=n-1,\left\langle m_{\Gamma}, v_{2}\right\rangle=-1
$$

- Take as edges of Σ^{b}, with appropriate higher-dimensional cones

$$
\begin{aligned}
w_{0} & =\left(\frac{v_{1}-v_{2}}{n},-(n-1)\right) \\
w_{1} & =(0,1) \\
w_{2} & =\left(v_{2}, 0\right) \\
w_{i} & =\left(v_{i},-n\left\langle m_{\Gamma}, v_{i}\right\rangle\right), i \geq 3
\end{aligned}
$$

- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{3}+D_{1}^{p} \sim N D_{2}^{p}$

- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- X^{b} (w/o flux constraint) obtained by smoothing $\tilde{q}(y)$ of $q(y)$
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- X^{b} (w/o flux constraint) obtained by smoothing $\tilde{q}(y)$ of $q(y)$
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- X^{b} (w/o flux constraint) obtained by smoothing $\tilde{q}(y)$ of $q(y)$
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- X^{b} (w/o flux constraint) obtained by smoothing $\tilde{q}(y)$ of $q(y)$
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- Have toric divisors $D_{j}^{b} \subset X_{\Sigma^{b}}$ associated with edges w_{j}
- $D_{0}^{b}+D_{1}^{b} \sim N D_{2}^{b}$
- $\iota^{*}\left(D_{2}^{b}\right)=D_{1}+D_{2}$
- $\iota^{*}\left(D^{\prime}\right)=D_{1}+\ldots+D_{k}, D^{\prime}:=D_{2}+D_{3}+\ldots+D_{k}$
- Choose section $g(y)$ of D^{\prime} which pulls back by ι to an equation for X_{0}
- $\iota\left(X_{0}\right)$ is the complete intersection of $q(y)$ and $g(y)$
- X^{b} (w/o flux constraint) obtained by smoothing $\tilde{q}(y)$ of $q(y)$

Example

- Return to $\mathbf{P}(1,1,2,2,2,2)$. Take $m_{\Gamma}=(1,0,0,0,0)$
- Edges of $\sum^{\text {b }}$ are rows of

[^0]
Example

- Return to $\mathbf{P}(1,1,2,2,2,2)$. Take $m_{\Gamma}=(1,0,0,0,0)$
- Edges of Σ^{b} are rows of

$$
\left(\begin{array}{cccccc}
-1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- Fan for \mathbf{P}^{6}

- X_{0} is a (2.5) complete intersection in P^{6}

Example

- Return to $\mathbf{P}(1,1,2,2,2,2)$. Take $m_{\Gamma}=(1,0,0,0,0)$
- Edges of Σ^{b} are rows of

$$
\left(\begin{array}{cccccc}
-1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- Fan for \mathbf{P}^{6}
- X_{0} is a $(2,5)$ complete intersection in P^{6}

Example

- Return to $\mathbf{P}(1,1,2,2,2,2)$. Take $m_{\Gamma}=(1,0,0,0,0)$
- Edges of Σ^{b} are rows of

$$
\left(\begin{array}{cccccc}
-1 & -1 & -1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- Fan for \mathbf{P}^{6}
- X_{0} is a $(2,5)$ complete intersection in \mathbf{P}^{6}
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma} b}\left(D_{0}^{b}+D_{1}^{p}+D_{2}^{b}+D^{\prime}\right)\right|_{S}=\mathcal{O}_{S}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $\tilde{a}=y_{0} y_{1}-y_{2}^{n}-\sum_{j=0}^{n-2} h_{n-j}\left(y_{3}, \ldots, y_{p_{g}+2}\right) y_{2}^{j}$, deg $h_{j}=j$
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma^{b}}}\left(D_{0}^{b}+D_{1}^{b}+D_{2}^{b}+D^{\prime}\right)\right|_{S}=\mathcal{O}_{S}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $\tilde{q}=y_{0} y_{1}-y_{2}^{n}-\sum_{j=0}^{n-2} h_{n-j}\left(y_{3}, \ldots, y_{p_{g}+2}\right) y_{2}^{j}, \operatorname{deg} h_{j}=j$
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma b}}\left(D_{0}^{b}+D_{1}^{b}+D_{2}^{b}+D^{\prime}\right)\right|_{s}=\mathcal{O}_{s}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $\tilde{a}=y_{0} y_{1}-y_{2}^{n}-\sum_{j=0}^{n-2} h_{n-j}\left(y_{3}\right.$.
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma b}}\left(D_{0}^{b}+D_{1}^{b}+D_{2}^{b}+D^{\prime}\right)\right|_{s}=\mathcal{O}_{s}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma b}}\left(D_{0}^{b}+D_{1}^{b}+D_{2}^{b}+D^{\prime}\right)\right|_{s}=\mathcal{O}_{S}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $S \subset X_{\Sigma^{b}}$ is the complete intersection of $y_{0}, y_{1}, y_{2}, g(y)$
- $K_{S}=\left.K_{X_{\Sigma^{b}}}\left(D_{0}^{b}+D_{1}^{b}+D_{2}^{b}+D^{\prime}\right)\right|_{S}=\mathcal{O}_{S}\left(D_{2}\right)$
- Basis for sections of K_{S} correspond to interior lattice points of dual face Γ°
- p_{g} is the number of these points.
- Relabel coordinates so these correspond to $y_{3}, \ldots, y_{p_{g}+2}$
- $\tilde{q}=y_{0} y_{1}-y_{2}^{n}-\sum_{j=0}^{n-2} h_{n-j}\left(y_{3}, \ldots, y_{p_{g}+2}\right) y_{2}^{j}, \operatorname{deg} h_{j}=j$
- Will exhibit G^{b} with the following smoothings of X_{0} as flat directions

$$
\tilde{q}=y_{0} y_{1}-\operatorname{det}\left(y_{2} I_{n}+M\left(y_{3}, \ldots, y_{p_{g}+2}\right)\right)
$$

with $M(y)$ a traceless $n \times n$ matrix of linear forms

- $\left(p_{g}-1\right)\left(n^{2}-1\right)$ moduli for $\tilde{q}:$
- $p_{g}\left(n^{2}-1\right)$ for entries of $M(y)$
- $n^{2}-1$ similarity transformations of $M(y)$ leave \tilde{q} unchanged
- Matches Higgs branch moduli perfectly!
- Will exhibit G^{b} with the following smoothings of X_{0} as flat directions

$$
\tilde{q}=y_{0} y_{1}-\operatorname{det}\left(y_{2} I_{n}+M\left(y_{3}, \ldots, y_{p_{g}+2}\right)\right)
$$

with $M(y)$ a traceless $n \times n$ matrix of linear forms

- $\left(p_{g}-1\right)\left(n^{2}-1\right)$ moduli for $\tilde{q}:$
- $p_{g}\left(n^{2}-1\right)$ for entries of $M(y)$
- n^{2} - 1 similarity transformations of $M(y)$ leave \tilde{q} unchanged
- Matches Higgs branch moduli perfecily!
- Will exhibit G^{b} with the following smoothings of X_{0} as flat directions

$$
\tilde{q}=y_{0} y_{1}-\operatorname{det}\left(y_{2} I_{n}+M\left(y_{3}, \ldots, y_{p_{g}+2}\right)\right)
$$

with $M(y)$ a traceless $n \times n$ matrix of linear forms

- $\left(p_{g}-1\right)\left(n^{2}-1\right)$ moduli for \tilde{q} :
- $p_{g}\left(n^{2}-1\right)$ for entries of $M(y)$
- $n^{2}-1$ similarity transformations of $M(y)$ leave \tilde{q} unchanged
- Matches Higgs branch moduli perfectly!
- Will exhibit G^{b} with the following smoothings of X_{0} as flat directions

$$
\tilde{q}=y_{0} y_{1}-\operatorname{det}\left(y_{2} I_{n}+M\left(y_{3}, \ldots, y_{p_{g}+2}\right)\right)
$$

with $M(y)$ a traceless $n \times n$ matrix of linear forms

- $\left(p_{g}-1\right)\left(n^{2}-1\right)$ moduli for \tilde{q} :
- $p_{g}\left(n^{2}-1\right)$ for entries of $M(y)$
- $n^{2}-1$ similarity transformations of $M(y)$ leave \tilde{q} unchanged
- Matches Higgs branch moduli perfectly!
- Will exhibit G^{b} with the following smoothings of X_{0} as flat directions

$$
\tilde{q}=y_{0} y_{1}-\operatorname{det}\left(y_{2} I_{n}+M\left(y_{3}, \ldots, y_{p_{g}+2}\right)\right)
$$

with $M(y)$ a traceless $n \times n$ matrix of linear forms

- $\left(p_{g}-1\right)\left(n^{2}-1\right)$ moduli for \tilde{q} :
- $p_{g}\left(n^{2}-1\right)$ for entries of $M(y)$
- $n^{2}-1$ similarity transformations of $M(y)$ leave \tilde{q} unchanged
- Matches Higgs branch moduli perfectly!

- Specialize to $n=2$ for simplicity

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{\prime}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ defined by
$y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0$

$$
\frac{G^{b}}{2 \pi}:=\frac{1}{2}\left(T_{1}-T_{2}\right) \in H^{4}\left(X^{b}, \mathbf{R}\right)
$$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, Z\right)$

- Specialize to $n=2$ for simplicity

$$
M(y)=\left(\begin{array}{cc}
\ell_{11}(y) & \ell_{12}(y) \\
\ell_{21}(y) & -\ell_{11}(y)
\end{array}\right)
$$

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{b}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ defined by
$y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0$

$$
\frac{G^{b}}{2 \pi}:=\frac{1}{2}\left(T_{1}-T_{2}\right) \in H^{4}\left(X^{b}, \mathbf{R}\right)
$$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, \mathbf{Z}\right)$

- Specialize to $n=2$ for simplicity

$$
M(y)=\left(\begin{array}{cc}
\ell_{11}(y) & \ell_{12}(y) \\
\ell_{21}(y) & -\ell_{11}(y)
\end{array}\right)
$$

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{\prime}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ definec by
$y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0$

$$
\frac{G^{b}}{2 \pi}:=\frac{1}{2}\left(T_{1}-T_{2}\right) \in H^{4}\left(X^{b}, \mathbf{R}\right)
$$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, \mathbf{Z}\right)$

- Specialize to $n=2$ for simplicity

$$
M(y)=\left(\begin{array}{cc}
\ell_{11}(y) & \ell_{12}(y) \\
\ell_{21}(y) & -\ell_{11}(y)
\end{array}\right)
$$

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{b}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ defined by
$y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0$

$$
\frac{G}{2 \pi}:=\frac{1}{2}\left(T_{1}-T_{2}\right) \in H^{4}\left(X^{b}, R\right)
$$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, \mathbf{Z}\right)$

- Specialize to $n=2$ for simplicity

$$
M(y)=\left(\begin{array}{cc}
\ell_{11}(y) & \ell_{12}(y) \\
\ell_{21}(y) & -\ell_{11}(y)
\end{array}\right)
$$

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{b}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ defined by
$y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, \mathbf{Z}\right)$
- Specialize to $n=2$ for simplicity

$$
M(y)=\left(\begin{array}{cc}
\ell_{11}(y) & \ell_{12}(y) \\
\ell_{21}(y) & -\ell_{11}(y)
\end{array}\right)
$$

- $T_{1} \subset X_{\Sigma^{b}}$ defined by $y_{0}=y_{2}+\ell_{11}(y)=\ell_{12}(y)=g(y)=0$
- By construction, $T_{1} \subset X^{b}$ since the first row of $y_{2} l_{2}+M(y)$ is $\left(y_{2}+\ell_{11}(y), \ell_{12}(y)\right)$
- Similarly $T_{2} \subset X^{b}$ defined by

$$
y_{0}=y_{2}+\ell_{11}(y)=\ell_{21}(y)=g(y)=0
$$

$$
\frac{G^{b}}{2 \pi}:=\frac{1}{2}\left(T_{1}-T_{2}\right) \in H^{4}\left(X^{b}, \mathbf{R}\right)
$$

with $2 \frac{G^{b}}{2 \pi} \in H^{4}\left(X^{b}, \mathbf{Z}\right)$

- G^{b} is an algebraic class, hence of type $(2,2)$
- Let $F \subset X_{\Sigma}$ be the hypersurface $g(y)=0$ - T_{1}, T_{2} complete intersections in F of same degrees - Therefore image of G^{b} in $H^{6}(F)$ vanishes - G^{b} primitive
- G^{b} is an algebraic class, hence of type $(2,2)$
- Let $F \subset X_{\Sigma^{b}}$ be the hypersurface $g(y)=0$
- T_{1}, T_{2} complete intersections in F of same degrees - Therefore image of G^{b} in $H^{6}(F)$ vanishes - G^{b} primitive
- G^{b} is an algebraic class, hence of type $(2,2)$
- Let $F \subset X_{\Sigma^{\triangleright}}$ be the hypersurface $g(y)=0$
- T_{1}, T_{2} complete intersections in F of same degrees
- Therefore image of G^{\prime} in $H^{6}(F)$ vanishes
- G' primitive
- G^{b} is an algebraic class, hence of type $(2,2)$
- Let $F \subset X_{\Sigma^{\triangleright}}$ be the hypersurface $g(y)=0$
- T_{1}, T_{2} complete intersections in F of same degrees
- Therefore image of G^{b} in $H^{6}(F)$ vanishes
- G^{b} is an algebraic class, hence of type $(2,2)$
- Let $F \subset X_{\Sigma^{\triangleright}}$ be the hypersurface $g(y)=0$
- T_{1}, T_{2} complete intersections in F of same degrees
- Therefore image of G^{b} in $H^{6}(F)$ vanishes
- G^{b} primitive
- Tadpole: computing in $X_{\Sigma^{b}}$

$$
\int_{X^{b}} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}=\frac{(n+1) n(n-1)}{12} \int_{X_{\Sigma}^{b}} D_{0}^{b} D_{1}^{b}\left(D_{2}^{b}\right)^{3} D^{\prime}
$$

- Recall: S is the complete of divisors in the classes $D_{0}^{b}, D_{1}^{b}, D_{2}^{p}, D^{\prime}$
- K_{S} is the restriction of D_{2}
- Integral on the right is just K_{S}^{2}
- Divide by two to verify tadpole cancellation

Tadpole

- Tadpole: computing in $X_{\Sigma^{b}}$

$$
\int_{X^{b}} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}=\frac{(n+1) n(n-1)}{12} \int_{X_{\Sigma}^{b}} D_{0}^{b} D_{1}^{b}\left(D_{2}^{b}\right)^{3} D^{\prime}
$$

- Recall: S is the complete of divisors in the classes
$D_{0}^{b}, D_{1}^{b}, D_{2}^{b}, D^{\prime}$
- K_{S} is the restriction of D_{2}
- Integral on the right is just K_{S}^{2}
- Divide by two to verify tadpole cancellation

Tadpole

- Tadpole: computing in $X_{\Sigma^{b}}$

$$
\int_{X^{b}} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}=\frac{(n+1) n(n-1)}{12} \int_{X_{\Sigma}^{b}} D_{0}^{b} D_{1}^{b}\left(D_{2}^{b}\right)^{3} D^{\prime}
$$

- Recall: S is the complete of divisors in the classes
$D_{0}^{b}, D_{1}^{b}, D_{2}^{b}, D^{\prime}$
- K_{S} is the restriction of D_{2}
- Integral on the right is just K_{S}^{2}
- Divide by two to verify tadpole cancellation

Tadpole

- Tadpole: computing in $X_{\Sigma^{b}}$

$$
\int_{X^{b}} \frac{G^{b}}{2 \pi} \wedge \frac{G^{b}}{2 \pi}=\frac{(n+1) n(n-1)}{12} \int_{X_{\Sigma}^{b}} D_{0}^{b} D_{1}^{b}\left(D_{2}^{b}\right)^{3} D^{\prime}
$$

- Recall: S is the complete of divisors in the classes
$D_{0}^{b}, D_{1}^{b}, D_{2}^{b}, D^{\prime}$
- K_{S} is the restriction of D_{2}
- Integral on the right is just K_{S}^{2}
- Divide by two to verify tadpole cancellation

Quantization

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma^{\sharp}}^{k+n-6}}^{k+6} \rightarrow \bigoplus_{i=2-n}^{k} \mathcal{O}_{x_{\Sigma^{\sharp}}}\left(D_{i}^{\sharp}\right) \rightarrow T_{X_{\Sigma^{\sharp}}} \rightarrow 0
$$

- Leading to $c_{2}\left(X^{\sharp}\right)=\sum_{i<j} D_{i}^{\sharp} D_{j}^{\sharp}$
- Similarly $c_{2}\left(X^{b}\right)=\sum_{i<j} D_{i}^{b} D_{j}^{b}$

$$
\frac{G^{b}}{2 \pi}=\frac{1}{2}\left(T_{1}-T_{2}\right) \equiv \frac{1}{2}\left(T_{1}+T_{2}\right)(\bmod \mathbf{Z})
$$

- But $T_{1}+T_{2}$ is the complete intersection $y_{2}+\ell_{11}(y)=\tilde{q}(y)$ in F, cohomology class $\left(D_{2}^{b}\right)^{2}$
- We can replace $G^{j} /(2 \pi)$ with $\left(D_{2}^{j}\right)^{2} / 2$
- Everything is now explicitly computable and we verify quantization

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma^{\sharp}}^{k+6}}^{k+n-6} \rightarrow \bigoplus_{i=2-n}^{k} \mathcal{O}_{X_{\Sigma^{\sharp}}}\left(D_{i}^{\sharp}\right) \rightarrow T_{\Sigma_{\Sigma^{\sharp}}} \rightarrow 0
$$

- Leading to $c_{2}\left(X^{\sharp}\right)=\sum_{i<j} D_{i}^{\sharp} D_{j}^{\sharp}$
- Similarly $c_{2}\left(X^{b}\right)=\sum_{i<j} D_{i}^{b} D_{j}^{b}$

$$
\frac{G^{b}}{2 \pi}=\frac{1}{2}\left(T_{1}-T_{2}\right) \equiv \frac{1}{2}\left(T_{1}+T_{2}\right)(\bmod \mathbf{Z})
$$

- But $T_{1}+T_{2}$ is the complete intersection $y_{2}+\ell_{11}(y)=\tilde{q}(y)$ in F, cohomology class $\left(D_{2}^{b}\right)^{2}$
- We can replace $G^{j} /(2 \pi)$ with $\left(D_{2}^{b}\right)^{2} / 2$
- Everything is now explicitly computable and we verify quantization

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma^{\sharp}}}^{k+n-6} \rightarrow \bigoplus_{i=2-n}^{k} \mathcal{O}_{X_{\Sigma^{\sharp}}}\left(D_{i}^{\sharp}\right) \rightarrow T_{X_{\Sigma \sharp}^{\sharp}} \rightarrow 0
$$

- Leading to $c_{2}\left(X^{\sharp}\right)=\sum_{i<j} D_{i}^{\sharp} D_{j}^{\sharp}$
- Similarly $c_{2}\left(X^{b}\right)=\sum_{i<j} D_{i}^{b} D_{j}^{b}$

0

$$
\frac{G^{b}}{2 \pi}=\frac{1}{2}\left(T_{1}-T_{2}\right) \equiv \frac{1}{2}\left(T_{1}+T_{2}\right)(\bmod \mathbf{Z})
$$

- But $T_{1}+T_{2}$ is the complete intersection $y_{2}+\ell_{11}(y)=\tilde{q}(y)$ in F, cohomology class $\left(D_{2}^{b}\right)^{2}$
- We can replace $G^{b} /(2 \pi)$ with $\left(D_{2}^{b}\right)^{2} / 2$
- Everything is now explicitly computable and we verify quantization

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma^{\sharp}}}^{k+n-6} \rightarrow \bigoplus_{i=2-n}^{k} \mathcal{O}_{X_{\Sigma^{\sharp}}}\left(D_{i}^{\sharp}\right) \rightarrow T_{X_{\Sigma \sharp}^{\sharp}} \rightarrow 0
$$

- Leading to $c_{2}\left(X^{\sharp}\right)=\sum_{i<j} D_{i}^{\sharp} D_{j}^{\sharp}$
- Similarly $c_{2}\left(X^{b}\right)=\sum_{i<j} D_{i}^{b} D_{j}^{b}$

$$
\frac{G^{b}}{2 \pi}=\frac{1}{2}\left(T_{1}-T_{2}\right) \equiv \frac{1}{2}\left(T_{1}+T_{2}\right)(\bmod \mathbf{Z})
$$

- But $T_{1}+T_{2}$ is the complete intersection $y_{2}+\ell_{11}(y)=\tilde{q}(y)$ in F, cohomology class $\left(D_{2}^{b}\right)^{2}$
- We can replace $G^{b} /(2 \pi)$ with $\left(D_{2}^{b}\right)^{2} / 2$
- Everything is now explicitly computable and we verify quantization

$$
0 \rightarrow \mathcal{O}_{X_{\Sigma^{\sharp}}}^{k+n-6} \rightarrow \bigoplus_{i=2-n}^{k} \mathcal{O}_{X_{\Sigma^{\sharp}}}\left(D_{i}^{\sharp}\right) \rightarrow T_{\Sigma_{\Sigma^{\sharp}}} \rightarrow 0
$$

- Leading to $c_{2}\left(X^{\sharp}\right)=\sum_{i<j} D_{i}^{\sharp} D_{j}^{\sharp}$
- Similarly $c_{2}\left(X^{b}\right)=\sum_{i<j} D_{i}^{b} D_{j}^{b}$
-

$$
\frac{G^{b}}{2 \pi}=\frac{1}{2}\left(T_{1}-T_{2}\right) \equiv \frac{1}{2}\left(T_{1}+T_{2}\right)(\bmod \mathbf{Z})
$$

- But $T_{1}+T_{2}$ is the complete intersection $y_{2}+\ell_{11}(y)=\tilde{q}(y)$ in F, cohomology class $\left(D_{2}^{b}\right)^{2}$
- We can replace $G^{b} /(2 \pi)$ with $\left(D_{2}^{b}\right)^{2} / 2$
- Everything is now explicitly computable and we verify quantization
- The Weyl group action permutes the ordering of the rows and columns of $M(y), T_{1} \leftrightarrow T_{2}$
- Coulomb branch: $M(y)=\operatorname{diag}(\eta(y),-\eta(y))$, permuting ordering of rows and columns
- Agrees with Weyl group action on Coulomb branch
- The Weyl group action permutes the ordering of the rows and columns of $M(y), T_{1} \leftrightarrow T_{2}$
- $G^{b} \mapsto-G^{b}$
- Coulomb branch: $M(y)=\operatorname{diag}(\eta(y),-\eta(y))$, permuting ordering of rows and columns
- Agrees with Weyl group action on Coulomb branch
- The Weyl group action permutes the ordering of the rows and columns of $M(y), T_{1} \leftrightarrow T_{2}$
- $G^{b} \mapsto-G^{b}$
- Coulomb branch: $M(y)=\operatorname{diag}(\eta(y),-\eta(y))$, permuting ordering of rows and columns
- Agrees with Weyl group action on Coulomb branch
- The Weyl group action permutes the ordering of the rows and columns of $M(y), T_{1} \leftrightarrow T_{2}$
- $G^{b} \mapsto-G^{b}$
- Coulomb branch: $M(y)=\operatorname{diag}(\eta(y),-\eta(y))$, permuting ordering of rows and columns
- $\eta \mapsto-\eta$
- Agrees with Weyl group action on Coulomb branch
- The Weyl group action permutes the ordering of the rows and columns of $M(y), T_{1} \leftrightarrow T_{2}$
- $G^{b} \mapsto-G^{b}$
- Coulomb branch: $M(y)=\operatorname{diag}(\eta(y),-\eta(y))$, permuting ordering of rows and columns
- $\eta \mapsto-\eta$
- Agrees with Weyl group action on Coulomb branch

HAPPY BIRTHDAY DAVE!

[^0]: - Fan for \mathbf{P}^{6}
 - X_{0} is a $(2,5)$ complete intersection in P^{6}

