BPS States on elliptic Calabi-Yau, Jacobi-forms and 6d theories

Caltech, 24 February 2016

Albrecht Klemm

arXiv:1501.04891 and arXiv:1601.xxxxx, with Minxin Huang and Sheldon Katz

universitätbonn

is Introduction
(1) Topological String Theory on CY 3-folds
(2) The result, interpretation and applications
is Jacobi forms
(1) Definition of Jacobi forms
(2) The ring of weak Jacobi forms
(3) Witten's wave function and weak Jacobi-forms
is Elliptically fibred CY- manifolds
(1) Global fibration over \mathbb{P}^{2}

Conclusions
is A very lively girl:

F - theory $^{* 96} \quad \triangle \quad$ Mirror - Symmetry ${ }^{* 91}$
is Introduction:
$\mathrm{F}-$ theory $^{* 2.96} \infty \quad$ Mirror - Symmetry ${ }^{* 91}$
BPS states of exceptional noncritical strings P. Mayr, C. Vafa, A.K. Jul 1996

F - theory $^{* 2.96} \infty$ Mirror - Symmetry ${ }^{* 91}$

$$
F_{\beta=1}^{(g=0)}(\tau)=\frac{q^{\frac{1}{2}} E_{4}(q)}{\eta(\tau)^{12}}=\frac{\left.q^{\frac{1}{2}} \Theta_{E_{8}}(\tau, \vec{m})\right|_{\vec{m}=\overrightarrow{1}}}{\eta(\tau)^{12}}
$$

Talk today: How did this baby develop ?

Geometry $d_{9} \mathbb{P}^{2}\left(\frac{1}{2} K 3\right)$

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{E} \\
d_{9} \mathbb{P}^{2}= \\
\downarrow \\
\mathbb{P}^{1}
\end{array} \quad \uparrow \sigma(z=0) \\
F_{1}^{(0)}(q) & =\frac{q^{\frac{1}{2}}}{\eta(q)^{12}}\left(1+240 q+2160 q^{2}+\mathcal{O}\left(q^{3}\right)\right) \\
& =1+252 q+5130 q^{2}+\mathcal{O}\left(q^{3}\right) \\
& =\sum_{d_{e}=1}^{\infty} I_{g=0}^{1, d_{e}} q^{d_{e}}
\end{aligned}
$$

$I_{(g=0)}^{1, d_{e}}$ BPS indices that "count" rational curves ($\mathrm{g}=0$) wraped once around the base and arbitratry times d_{e} arround the fibre.

Local $\mathcal{O}(-1) \oplus \mathcal{O}(-1) \rightarrow \mathbb{P}^{1}$ partly compatified by projective bundle $\mathbb{P}^{2}[1,2,3](\mathrm{z}, \mathrm{x}, \mathrm{y})$

$$
\begin{gathered}
y^{2}+x^{3}+b_{6}(\underline{u}) z^{6}+b_{1}(\underline{u}) x y z=0 \\
{[\Delta]=-6 \frac{1}{2} K_{B}=12}
\end{gathered}
$$

Simliar for compactificatins by families of elliptic curves with 2 torsion point deg 4 in $\mathbb{P}^{2}[1,1,2]$ and hence mondromy $\Gamma_{0}(2) \in \Gamma_{0}$ or 3 torsion point deg 3 in $\mathbb{P}^{2}[1,1,1]$ and hence monodromy $\Gamma_{0}(3) \in \Gamma_{0}$. One consider the blow up $d_{1} \mathbb{P}^{2}[1,1,2]$ and a double blow up $d_{2} \mathbb{P}^{2}[1,1,1]$ and finds models with one and two global
sections respectively and the following split of the BPS invariants:

I_{0}^{κ}	$U(1)_{1} \times U(1)_{2} \times E_{6}$	$d_{W_{1}}$	0	1	2	3	4	5	6	$U(1)_{1} \times E_{7}$	\sum
$d_{W_{2}}$											
0			1								1
1				27	27	1					56
2					27	84					138
3							27	27	1		56
4									1		1
				E_{8}						\sum	252

Splitting of the E_{8} invariants at degree $d_{\mathbb{F}_{1}^{F}}=0, \beta=1$ into $U(1)_{1} \times E_{7}$ and $U(1)_{1} \times U(1)_{2} \times E_{6}$.

So we get a very detailed understanding of the splitting of the BPS states after breaking the

$$
E_{8} \rightarrow E_{7} \rightarrow E_{6} \rightarrow D_{4} \rightarrow \ldots
$$

But that is just the tip of the iceberg.
What is with base degree $\beta>1$ fibre degree $d_{e}>1$, genus $g>0$ and other geometries?
(1) Topological String Theory:

String theory is defined by map

$$
x: \Sigma_{g} \rightarrow M \times \mathbb{R}_{3,1}
$$

from a 2 d world-sheet Σ_{g} of genus g into a target space $M \times \mathbb{R}_{3,1} . \Sigma_{g}$ is equipped with a 2 d super diffeomorphism invariant action $S_{B}(x, h, \phi, M)$ of type II. The partition function of the first quantized string is formally

$$
Z(G, B)=\int \mathcal{D} x \mathcal{D} h \mathcal{D} \text { ferm } e^{\frac{i}{\hbar} S(x, h, \phi, \text { ferm }, G, B)}
$$

By super symmetric localisation the integral localizes to
$\delta S_{B}=0$, i.e. in the A model maps with minimal area called (j, J) holomophic maps $x_{\text {hol }}$, so that

$$
\int \mathcal{D} x \mathcal{D} h \rightarrow \sum_{g, \beta \in H_{2}(M, \mathbb{Z})} \int_{\mathcal{M}_{g, \beta}} c_{g, \beta}^{v i r}=\sum_{g, \beta \in H_{2}(M, \mathbb{Z})} r_{g}^{\beta}
$$

becomes a discrete sum

$$
\begin{gathered}
Z(G, B)=\exp (F)=\exp \left(\sum_{g=0}^{\infty} g_{s}^{2 g-2} F_{g}(\underline{z(\underline{t})})\right) \\
F_{g}=\sum_{\beta \in H_{2}(M, \mathbb{Z})} r_{g}^{\beta} Q^{\beta} .
\end{gathered}
$$

Here $Q^{\beta}=\exp \left(2 \pi i \sum_{a} t_{a} \beta^{a}\right)$ with $t_{a}=\int_{\left[\mathcal{C}_{a}\right]}(B+i J)$ depend on the background.

Using ideas of heterotic/Type II duality Gopakumar and Vafa found

$$
F\left(g_{s}, t\right)=\sum_{\substack{g \geq 0 \\ m \geq 1 \beta \in H_{2}}} \frac{I_{g}^{\beta}}{m}\left(2 \sin \frac{m g_{s}}{2}\right)^{2 g-2} Q^{\beta m}
$$

The $I_{g}^{\beta} \in \mathbb{Z}$ are indices of BPS states with charge $\beta \in H_{2}(M, \mathbb{Z})$ and a spin representation $\left(j^{L}, j^{R}\right)$ in the little group $s u_{l}(2) \times s u_{r}(2)$ of the five dimensional

Lorentz group

$$
\operatorname{Tr}_{\mathcal{H}_{\mathrm{BPS}}}(-)^{2 j_{3}^{R}} u^{2 j_{3}^{L}} q^{H}=\sum_{\beta} \sum_{g \in \mathbb{Z}_{\geq 0}} I_{g}^{\beta}\left(u^{\frac{1}{2}}+u^{-\frac{1}{2}}\right)^{2 g} q^{\beta}
$$

In geometries, which admit additional \mathbb{C}^{*} isometries, one can refine the index with

$$
[j]_{x}:=x^{-2 j}+x^{-2 j+2}+\ldots+x^{2 j-2}+x^{2 j} \text { to } N_{j_{L} j_{R}}^{\beta}
$$

$$
\operatorname{Tr}_{\mathcal{H}_{\mathrm{BPS}}} u^{2 j_{3}^{L}} v^{2 j_{3}^{R}} q^{H}=\sum_{\beta} \sum_{j_{L}, j_{R} \in \frac{1}{2} \mathbb{Z}_{\geq 0}} N_{j_{L} j_{R}}^{\beta}\left[j_{L}\right]_{u}\left[j_{R}\right]_{v} q^{\beta},
$$

where $N_{j_{L} j_{R}}^{\beta} \in \mathbb{N}$ are interpreted as dimensions of BPS
representations.
Example 1: Huang, Poretschkin, AK: 1308.0619 local del Pezzo Calabi-Yau space $\mathcal{O}\left(-K_{d_{8} \mathbb{P}^{2}}\right) \rightarrow d_{8} \mathbb{P}^{2}$.

For the BPS states $N_{j_{l}, j_{r}}^{\beta}$ at $\beta=2$ one gets:

$2 j_{l} \backslash 2 j_{r}$	0	1	2	3
0		3876		
1			248	
2				1
$\beta=2$				

It is obvious that the adjoint represention 248 of E_{8} appears as the spin $N_{\frac{1}{2}, \frac{2}{2}}^{1}$, which decomposes into two

Weyl orbits with the weights $w_{1}+8 w_{0}$, further $3876=\mathbf{1}+\mathbf{3 8 7 5}$, where the latter decomposes in the Weyl orbits of $w_{1}+7 w_{8}+35 w_{0}$.

Example 2: Katz, Pandharipande, AK: $1407.3181 S=K 3$ For the BPS states $N_{j_{l}, j_{r}}^{d}$ at $d=3$ one gets:

$2 j_{L} \backslash 2 j_{R}$	0	1	2	3
0	1981		1	
1		252		
2	1		21	
3				1
$d=3$				

Now $1981=2 \cdot \mathbf{9 9 0}+\mathbf{1}$ and $\mathbf{2 5 2}$ seems to representations of the Mathieu group $M_{24} \in S_{24}$, which is
one of sporadic finite groups.
Physics: These geometric invariants determine parts of the spectrum of string, M - and F-theory compactifications. A direct physical motivation is to calculate the BPS saturated correlations functions in the effective 4d (6d) $N=2$ field theory $F:=F_{0}$
\Rightarrow gauge coupl: $g_{I J}^{-2}=\operatorname{Im}\left(\bar{F}_{I J}+\frac{2 i \operatorname{Im} F_{I K} \operatorname{Im} F_{I L} X^{K} X^{L}}{\operatorname{Im} F_{K L} X^{K} X^{L}}\right)$
\Rightarrow BPS masses: $M_{n_{E}, n_{M}}^{2}=e^{K}\left|n_{E} t_{E}+n_{M} F_{M}\right|^{2}$
\Rightarrow grav couplings: $\int_{\mathrm{d}} x^{4} F^{g}(t, \bar{t}) F_{+}^{2 g-2} R_{+}^{2}$.
(2) The result:

Let M be an elliptically fibred 3-fold over a 2d (Fano) surface B

$$
\mathcal{E} \longrightarrow M \longrightarrow B
$$

To make the formulas concrete we consider here the simplest case that \mathcal{E} is an elliptic fibration with one global section and at codim one only singularities of Kodaira type I_{1}. The case with more sections was addressed in the introduction. Singular fibres have been also discussed in certain cases. E.g. Kodaira fibre I_{0}^{*} in Haghighat, Lockhardt, Vafa, A.K. 1412.3152.

By the Leray Serre spectral sequence $H_{4}(M)$ split into

$$
\begin{array}{cc}
\text { divisor } & \text { dual curve } \\
{\left[D_{e}\right]} & {\left[\mathcal{C}^{e}\right]} \\
{\left[D_{k}\right], k=1, \ldots, b_{2}(M)} & {\left[\mathcal{C}^{k}\right]} \\
\text { Kahler cone } & \text { Mori cone }
\end{array}
$$

With the definitions:

$$
a_{k}=K_{B} \cdot \check{D}_{k}, \quad a=K_{B} \cdot \mathcal{C}^{k}, \quad c_{i j}=\check{D}_{i} \cdot \check{D}_{j}
$$

we have

$$
\begin{gathered}
D_{e}^{3}=\int_{B} c_{1}^{2}\left(T_{B}\right), \quad D_{e}^{2} D_{k}=a_{k}, \quad D_{e} D_{i} D_{j}=c_{i j}, \quad D_{i} D_{j} D_{k}=0 \\
c_{2}\left(T_{M}\right) \cdot D_{e}=\int_{B} 11 c_{1}^{2}+c_{2}, \quad c_{2}\left(T_{M}\right) \cdot D_{k}=12 a_{k}, \quad e=-60 \int_{B} c_{1}^{2}\left(T_{B}\right)
\end{gathered}
$$

Note for

$$
\tilde{\mathcal{C}}^{k}=\mathcal{C}^{k}+a^{k} \mathcal{C}^{e}, \quad \tilde{D}_{e}^{2} \tilde{D}_{k}=0
$$

We denote τ and $T_{k}, k=1, \ldots, b_{2}(B)$ be the Kähler parameters of the elliptic fiber \mathcal{E} and the base
respectively. Further $q=\exp (2 \pi i \tau)$ and $Q^{\beta}=\exp \left(2 \pi i \sum_{k} T_{k} \beta_{k}\right)$.

Let us expand Z in terms of the base degrees β as

$$
Z\left(\underline{t}, g_{s}\right)=Z_{0}(\tau, \lambda)\left(1+\sum_{\beta \in H_{2}(B, \mathbb{Z})}^{\infty} Z_{\beta}\left(\tau, g_{s}\right) Q^{\beta}\right) .
$$

Claim 1: The $Z_{\beta}\left(\tau, g_{s}\right)$ are meromorphic Jacobi-forms

$$
\text { of } \text { weight }=0, \quad \text { and } \quad \text { index }=\beta \cdot\left(\beta-K_{B}\right) .
$$

The poles are only at the torsion points of the elliptic
argument

$$
g_{s}=2 \pi i z
$$

which is indentified with the topological string coupling!

Claim 2: The $Z_{\beta>0}\left(\tau, g_{s}\right)$ are quotients of weak Jacobi-forms of the form

$$
Z_{\beta}=\frac{1}{\eta^{12 \beta \cdot K_{B}}} \frac{\varphi_{\beta}(\tau, z)}{\prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \varphi_{-2,1}(\tau, s z)}
$$

where $\varphi_{\beta}(\tau, z)$ is a weak Jacobi form of weight

$$
k_{\beta}=6 \beta \cdot K_{B}-2 \sum_{l=1}^{b_{2}(B)} \beta_{l}
$$

and index

$$
m_{\beta}=\frac{1}{6} \sum_{l=1}^{b_{2}(B)} \beta_{l}\left(1+\beta_{l}\right)\left(1+2 \beta_{l}\right)-\frac{1}{2} \beta \cdot\left(\beta-K_{B}\right)
$$

Inspired from many sources. E.g. Yau-Zaslow type formulas and formulas for the elliptic genus of quiver theories by Haghighat, Lockardt and Vafa.

Claim 3:

Genus zero information and the Castelnovo bounds $I_{g}^{\kappa}=0$ for $g>\mathcal{O}\left(\kappa^{2}\right)$ are sufficient to fix the meromorphic Jacobiforms $\phi_{\beta}(\tau, z)$ if $\beta \cdot\left(\beta-K_{B}\right) \leq 0$.

Application: Hirzebruch surface \mathbb{F}_{1}

Take as B the Hirzebruch surface \mathbb{F}_{1}. This a rational fibration with a (-1) curve as the section. Together with the elliptic fibre M contains the elliptic surface $\frac{1}{2} K 3$ with $12 I_{1}$ fibres, which gives rise to the E-string over the (-1) curve as well as an elliptic K3 over the (0) curve.
$\beta=\left(b_{1}, b_{2}\right) \in H_{2}\left(F_{1}, Z\right), b_{1}$ the degree w.r.t. to the (-1) section b_{2} the degree w.r.t. the fibre.

Figure 1: $\beta\left(\beta-K_{B}\right)$ in the Kähler moduli space of \mathbb{F}_{1}.

This unifies and extends many results. E.g. the heterotic oneloop calculations by Mariño and Moore 9808131 or the calculation of the E-string of Kim, Kim, Lee, Park and Vafa 1411.2324. Especially compared to the latter calculation it is much more efficient. One just need to solve linear equations. E.g. the E-string seven times wrapping the base has BPS states

$g \backslash d_{E} 0$	7	8
0	744530011302420	302179608949887585
1	-2232321201926990	-1227170805326730120
2	3903792161941380	2934388852145677599
3	-5068009339151240	-5282684497596522786
4	5291345197108229	7778874714012336871
5	-4601628396045684	-9724666039599532834
6	3391929155768781	10524550931465032549
7	-2138001602237932	-9971103737159845058
8	1156878805588608	8324325929288612251
9	-537744494290146	-6147084001181117522
10	214351035975405	4023020418703585279
11	-72999559484682	-2334951858562249752
12	21120665875714	1201406036917124067
13	-5151342670818	-547355661903552212
14	1048275845102	220379503469137845
15	-175554017242	-78203056459590866
16	23750162496	24372956004203707
17	-2529356130	-6642133492228324
18	204185633	1574080406463797
19	-11773768	-322162302125714
20	436550	56453421286247
21	-8246	-8376982135660
22	29	1037682979689

is Jacobi forms
(1) Definition of Jacobi forms

Jacobi forms $\varphi: \mathbb{H} \times \mathbb{C} \rightarrow \mathbb{C}$ depend on a modular parameter $\tau \in \mathbb{H}$ and an elliptic parameter $z \in \mathbb{C}$. They transform under the modular group (Eichler \& Zagier)
$\tau \mapsto \tau_{\gamma}=\frac{a \tau+b}{c \tau+d}, z \mapsto z_{\gamma}=\frac{z}{c \tau+d}$ with $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2 ; \mathbb{Z})=: \Gamma_{0}$
as

$$
\varphi\left(\tau_{\gamma}, z_{\gamma}\right)=(c \tau+d)^{k} e^{\frac{2 \pi i m c z^{2}}{c \tau+d}} \varphi(\tau, z)
$$

and under quasi periodicity in the elliptic parameter as
$\varphi(\tau, z+\lambda \tau+\mu)=e^{-2 \pi i m\left(\lambda^{2} \tau+2 \lambda z\right)} \varphi(\tau, z), \quad \forall \quad \lambda, \mu \in \mathbb{Z}$.
Here $k \in \mathbb{Z}$ is called the weight and $B m \in \mathbb{Z}_{>0}$ is called the index of the Jacobi form.

The Jacobi forms have a Fourier expansion
$\phi(\tau, z)=\sum_{n, r} c(n, r) q^{n} y^{r}, \quad$ where $q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$
Because of the quasi peridicity one has
$c(n, r)=: C\left(4 n m-r^{2}, r\right)$, which depends on r only
modulo $2 m$. For a holomorphic Jacobi form $c(n, r)=0$ unless $4 m n \geq r^{2}$, for cusp forms $c(n, r)=0$ unless $4 m n>r^{2}$, while for weak Jacobi forms one has only the condition $c(n, r)=0$ unless $n \geq 0$.
(2) The ring of weak Jacobi forms

A weak Jacobi form of given index m and even modular weight k is freely generated over the ring of modular forms of level one, i.e. polynomials in $Q=E_{4}(\tau)$, $R=E_{6}(\tau)$ and $A=\varphi_{0,1}(\tau, z), B=\varphi_{-2,1}(\tau, z)$ as

$$
J_{k, m}^{w e a k}=\bigoplus_{j=0}^{m} M_{k+2 j}\left(\Gamma_{0}\right) \varphi_{-2,1}^{j} \varphi_{0,1}^{m-j} .
$$

The generators are the Eisenstein series E_{4}, E_{6}

$$
E_{k}(\tau)=\frac{1}{2 \zeta(k)} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m \tau+n)^{k}}=1+\frac{(2 \pi i)^{k}}{(k-1)!\zeta(k)} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n},
$$

as well as

$$
A=-\frac{\theta_{1}(\tau, z)^{2}}{\eta^{6}(\tau)}, \quad B=4\left(\frac{\theta_{2}(\tau, z)^{2}}{\theta_{2}(0, \tau)^{2}}+\frac{\theta_{3}(\tau, z)^{2}}{\theta_{3}(0, \tau)^{2}}+\frac{\theta_{4}(\tau, z)^{2}}{\theta_{4}(0, \tau)^{2}}\right)
$$

To summarize generators and quantitites defining the tpological string partition function

	Q	R	A	B	φ_{b}	$Z_{b}(\tau, z)$
weight k:	4	6	-2	0	$16 b$	0
index m:	0	0	1	1	$\frac{1}{3} b(b-1)(b+4)$	$\frac{b(b-3)}{2}$

Since the numerator in

$$
Z_{b}(\tau, z)=\frac{\varphi_{b}(\tau, z)}{\eta^{36 b}(\tau) \prod_{k=1}^{b} \varphi_{-2,1}(\tau, k z)} .
$$

is finitly generated, we can get for each b the full genus answer based on a finite number of boundary data

- the conifold gap condition and reguarity at the orbifold Huang, Quakenbush, A.K. hep-th/0612125
- the involution symmetry on $\mathcal{M} I: \Omega \mapsto i \Omega \leftrightarrow$ fibre modularity
- the parametrization of Z in terms of weak Jacobi-Forms
we can solve the compact elliptic fibration over \mathbb{P}^{2} to
$b=20$ for all d_{E} and $\forall g$ or to genus $189 \forall b$ and $\forall d_{E}$.
(3) Witten's wave function and weak Jacobi-forms

Witten gave a wave function interpretation the topological string partition function, which implies

$$
\left(\frac{\partial}{\partial\left(t^{\prime}\right)^{\bar{a}}}+\frac{i}{2} g_{s}^{2} C_{\bar{a}}^{b c} \frac{D}{D t^{b}} \frac{D}{D t^{c}}\right) Z\left(g_{s}, \tau, b\right)=0,
$$

and summarizes all holomorphic anomaly equations. We want to study this in limit of large base B. The topological data fix the Kähler K potential the and Weil

Peterssen metric $G^{i \bar{\jmath}}$ via the prepoterntial
$F^{(0)} \sim-\frac{\kappa_{a b c}}{3} t^{a} t^{b} t^{c}+\chi(M) \frac{\zeta(3)}{2(2 \pi i)^{3}}+\sum_{\beta \in H_{2}(M, Z)} n_{0}^{\beta} \operatorname{Li}_{3}\left(q^{\beta}\right)$.

Now analyze $C_{\bar{a}}^{b c}:=e^{2 K} c_{\bar{a} \bar{b} \bar{c}} G^{b \bar{b}} G^{c \bar{c}}$ in the limit $\operatorname{Im}(T)=T_{i} \rightarrow \infty$

$$
e^{2 K}=-\frac{1}{16 \tau_{2}^{2} T_{i}^{4}}+\mathcal{O}\left(\frac{1}{T_{i}^{5}}\right)
$$

$$
C_{\bar{\tau}}^{i j}=\left(\begin{array}{ccc}
-\frac{2 \tau_{2}^{2} h^{4}}{A^{V}}+\mathcal{O}\left(h^{5}\right) & A^{1} h^{3}+\mathcal{O}\left(h^{5}\right) & \cdots \\
A^{3}+\mathcal{O}\left(h^{5}\right) & & A^{r-1} h^{3} \mathcal{O}\left(h^{5}\right) \\
\vdots & -\frac{1}{4 \tau_{2}^{2}} c^{k l}+\mathcal{O}(h) & \\
A^{r-1} h^{3}+\mathcal{O}\left(h^{5}\right) & &
\end{array}\right)
$$

Applied to the wave function equation of Z with $\left(t^{\prime}\right)^{\bar{a}}=\bar{\tau}$ and $Q^{\beta}=e^{2 \pi i b T}$, we get in the large base limit, because of the special from of the intersection matrix of elliptically fibered Calabi-Yau 3 folds only derivatives in the base direction T^{i} for t^{b} and t^{c}.

Identifying g_{s} with $2 \pi i z$ and using the fact that the only
$\bar{\tau}$ dependence is in \hat{E}_{2} this becomes

$$
\left(\partial_{\hat{E}_{2}}+\frac{\beta \cdot\left(\beta-K_{B}\right)}{24} z^{2}\right) Z_{\beta}(\tau, z)=0
$$

which is solved by a weak Jacobi form of index $m=\frac{b(b-3)}{2}$ as we argue below.

Because of modularity and quasiperiodicity given a weak Jacobi form $\varphi_{k, m}(\tau, z)$ one can always define modular form of weight k as follows

$$
\tilde{\varphi}_{k}(\tau, z)=e^{\frac{\pi^{2}}{3} m z^{2} E_{2}(\tau)} \varphi_{k, m}(\tau, z)
$$

It follows that the weak Jacobi forms $\varphi_{k, m}(\tau, z)$ have a Taylor expansion in z with coefficients that are quasi-modular forms as in Eichler and Zagier ${ }^{1}$.
$\varphi_{k, m}=\xi_{0}(\tau)+\left(\frac{\xi_{0}(\tau)}{2}+\frac{m \xi_{0}^{\prime}(\tau)}{k}\right) z^{2}+\left(\frac{\xi_{2}(\tau)}{24}+\frac{m \xi_{1}^{\prime}(\tau)}{2(k+2)}+\frac{m^{2} \xi_{0}^{\prime \prime}(\tau)}{2 k(k+1)}\right) z^{4}+\mathcal{O}\left(z^{6}\right)$.
Moreover one has

$$
\left(\partial_{E_{2}}+\frac{m g_{s}^{2}}{12}\right) \varphi_{k, m}(\tau, z)=0
$$

In particular A and B are quasi-modular forms that

$$
{ }^{1} \text { E.g. } \phi_{-2,1}(\tau, z)=-z^{2}+\frac{E_{2} z^{4}}{12}+\frac{-5 E_{2}^{2}+E_{4}}{1440} z^{6}+\frac{35 E_{2}^{3}-21 E_{2} E_{4}+4 E_{6}}{362880} z^{8}+\mathcal{O}\left(z^{10}\right)
$$

satisfy the modular anomaly equation

$$
\begin{equation*}
\partial_{E_{2}} A=-\frac{g_{s}^{2}}{12} A, \quad \partial_{E_{2}} B=-\frac{g_{s}^{2}}{12} B \tag{1}
\end{equation*}
$$

We can write this as the holomorphic anomaly equation

$$
\begin{equation*}
\left(2 \pi i \operatorname{Im}^{2}(\tau) \bar{\partial}_{\bar{\tau}}-\frac{m g_{s}^{2}}{4}\right) \hat{\varphi}_{k, m}(\tau, z)=0 \tag{2}
\end{equation*}
$$

is Compact elliptically fibred CY- manifolds
(1) Global fibration over \mathbb{P}^{2}

The formalism leads to a series of all genus predictions of BPS invariants for low base degree HKK'15. E.g. for $b=1$ and $b=2$ the numerator is

$$
\varphi_{1}=-\frac{Q\left(31 Q^{3}+113 P^{2}\right)}{48}
$$

which leads to the following prediction of BPS invariants

$g \backslash d_{E}$	$d_{E}=0$	1	2	3	4	5	6
$g=0$	3	-1080	143370	204071184	21772947555	1076518252152	33381348217290
1	0	-6	2142	-280284	-408993990	-44771454090	-2285308753398
2	0	0	9	-3192	412965	614459160	68590330119
3	0	0	0	-12	4230	-541440	-820457286
4	0	0	0	0	15	-5256	665745
5	0	0	0	0	0	-18	6270
6	0	0	0	0	0	0	21

Table 1: Some BPS invariants $n_{\left(d_{E}, 1\right)}^{g}$ for base degree $b=1$ and $g, d_{E} \leq 6$.

$$
\begin{align*}
\varphi_{2}= & \frac{B^{4} Q^{2}\left(31 Q^{3}+113 R^{2}\right)^{2}}{23887872}+\frac{1}{1146617856}\left[2507892 B^{3} A Q^{7} R+9070872 B^{3} A Q^{4} R^{3}\right. \\
& +2355828 B^{3} A Q R^{5}+36469 B^{2} A^{2} Q^{9}+764613 B^{2} A^{2} Q^{6} R^{2}-823017 B^{2} A^{2} Q^{3} R^{4} \\
& +21935 B^{2} A^{2} R^{6}-9004644 B A^{3} Q^{8} R-30250296 B A^{3} Q^{5} R^{3}-6530148 B A^{3} Q^{2} R^{5} \\
& \left.+31 A^{4} Q^{10}+5986623 A^{4} Q^{7} R^{2}+19960101 A^{4} Q^{4} R^{4}+4908413 A^{4} Q R^{6}\right], \tag{3}
\end{align*}
$$

$g \backslash d_{E}$	$d_{E}=0$	1	2	3	4	5	6
$g=0$	6	2700	-574560	74810520	-49933059660	7772494870800	31128163315047072
1	0	15	-8574	2126358	521856996	1122213103092	879831736511916
2	0	0	-36	20826	-5904756	-47646003780	-80065270602672
3	0	0	0	66	-45729	627574428	3776946955338
4	0	0	0	0	-132	-453960	-95306132778
5	0	0	0	0	0	-5031	1028427996
6	0	0	0	0	0	-18	-771642
7	0	0	0	0	0	0	-7224
8	0	0	0	0	0	0	-24

Table 2: Some BPS invariants for $n_{\left(d_{E}, 2\right)}^{g}$
(2) Checks form algebraic geometry:

Using the definition of BPS states as Hodge numbers of the BPS moduli space, we get vanishing conditions, from
the Castelnouvo bounds, as well as explicite results for non singular moduli spaces:

Figure 2: The figure shows the boundary of non-vanishing curves for the values of $b=1,2,3,4,5$.

Computing the Euler characteristic of the BPS moduli space, we obtain for these values on the edges of the figure

$$
\begin{aligned}
n_{d_{E}, b}^{d_{E} b-\left(3 b^{2}-b-2\right) / 2}= & (-1)^{d_{E} b-(1 / 2)\left(3 b^{2}+b-4\right)} \\
& 3\left(d_{E} b-\frac{3 b^{2}+b-6}{2}\right) .
\end{aligned}
$$

which perfectly matches the predction of the weak Jacobi forms.
is Conclusions:

$$
Z_{\beta}=\frac{1}{\eta^{12 \beta \cdot K_{B}}} \frac{\varphi_{\beta}(\tau, z)}{\prod_{l=1}^{b_{2}(B)} \prod_{s=1}^{\beta_{l}} \varphi_{-2,1}(\tau, s z)}
$$

- Since the elliptic argument z of the Jacobi forms is identified with the string coupling

$$
g_{s}=2 \pi i z
$$

this expression captures all genus contributions for a given base class.

- From the transformation properties of weak Jacobiforms it follows that the depence of Z on string the coupling is coupling is quasi periodic.
- Since (1) has poles only at the torsion points of the elliptic argument

$$
Z_{b}(\tau, z)=Z_{b}^{\text {pol }}+Z_{b}^{\text {fin }}
$$

where the finite part

$$
Z_{\beta}^{f i n}(\tau, z)=\sum_{l \in \mathbb{Z} / 2 m \mathbb{Z}} h_{l}(\tau) \theta_{m, l}(\tau, z)
$$

has an expansion in terms of mock modular forms $h_{l}(\tau)$.

- The latter fact can be used to check the microscopic entropy of $5 \mathrm{~d} N=2$ spinning black holes and the wall crossing behaviour of 4d BPS states. Some partial results have been obtained by Vafa et. al. arXiv:1509.00455
or We can make infinitly many checks from algebraic geometry for those curves which have smooth moduli spaces, as seen above. But e.g. for $b=1$ one can confirm the formulas for all classes Jim Bryan et. all work in progress
or We can solve the E-string complety. There are good indications that the more gerenal decoupling criteria for general 6 d theories are similar strong as the condition $\beta \cdot\left(\beta-K_{B}\right) \leq 0$. This might lead to general formulas for the elliptic genera of $6 d$ theories.
- The geometries are the most natural compactification of the local toric geometries that we can solve with very interesting methods: Localization, vertex, matrix model. This begs for an extension of these techniques. E.g. an elliptic vertex which solves the compact Calabi-Yau cases.

