Novel matter structures and extremal transitions

Denis Klevers

arXiv:1602.nnnnn: D.K., W. Taylor (to appear) arXiv:1507.05954: M. Cvetič, D.K., H. Piragua, W. Taylor arXiv:1408.4808: D.K., D. Mayorga Peña, P. Oehlmann, H. Piragua, J. Reuter

Motivation

Importance of extremal transitions in F-theory

Recent theme in F-theory: Study of entire moduli space of F-theory vacua.

1. Classification of F-theory landscape.
2. Study of transition mechanisms.

Apply transition mechanisms to test completeness of mathematics/physics dictionary of F-theory and to discover new physics.
\Rightarrow Recent topics: SCFTs, gauge symmetry change (discrete symmetries, $U(1)$'s)...

Today: Unravel new matter structures in F-theory via extremal transitions.

Goals of this talk

Goal: Extend geometry / physics dictionary by classification of matter structures.

Two explicit classes of models

1. Global F-theory models with $\mathrm{SU}(3)$ and matter in $\mathrm{Sym}^{2} 3=6$,
2. Global F-theory models with $\mathrm{SU}(2)$ and matter in $\mathrm{Sym}^{3} 2=4$.

* Both models arise from unHiggsing of Abelian models with $U(1)^{\prime}$ s.
\therefore Admit further unHiggsing to large gauge groups with conventional matter.
\% Gauge symmetry realized on singular divisors, exotic matter at singularities.
\Rightarrow Inspiration for a still missing classification of Weierstrass models for singular divisors.

Outline

I. Review on matter structures \& singularities
II. Two-index symmetric tensor representations

1) Field theory
2) The Abelian model
3) The unHiggsing
4) Novel matter structures \& non-Tate WS-models
III. Three-index symmetric tensor representations
IV. Conclusions \& Outlook

I. Review on matter structures \& singularities

Conventional matter in F-theory

Normal form Weierstrass models: the UDF case
Tate's algorithm: [Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa] recent refinements: [Katz,Morrison,SchäferNameki,Sully]
Example: Singularity of Kodaira type $I_{n}(S U(n))$ over divisor $D=\{t=0\}$

Algebraic approach: [Morrison,Taylor]

$\%$ start with local expansions around divisor D

$$
f=f_{0}+f_{1} t+\mathcal{O}\left(t^{2}\right) \quad g=g_{0}+g_{1} t+\mathcal{O}\left(t^{2}\right)
$$

\because solve order by order the conditions imposed by $\Delta=4 f^{3}+27 g^{2} \sim t^{n}$
$\%$ for smooth D : (Auslander-Buchsbaum theorem)

$$
\text { Local ring } R=\frac{\text { Ring of fcts. on } U \subset B}{\langle t\rangle} \text { universal factorization domain (UFD) }
$$

\Rightarrow Solutions e.g. $f_{0}=\phi^{2}, g_{0}=\phi^{3}(n=2) ; f_{0}=\phi_{,}^{4} g_{0}=\phi^{6}(n>2$, split condition)
\% Codim. 2 singularities worked out: fundamental, adjoint +anti-sym. tensor matter

Exotic matter \& singular divisors

More exotic matter representations require non-UFD local rings:
\% Divisor is D necessarily singular

Sources of exotic matter:

1. D irreducible, but singular:

Singular point P of D contributes to its arithmetic genus g as

$$
g=p_{g}+\sum_{P} \frac{m_{P}\left(m_{P}-1\right)}{2}
$$

multiplicity m_{P}, geometric genus p_{g}
\Rightarrow a) Smooth D: only adjoints [Witten]

[Kumar,Park,Taylor;
Morrison,Taylor]

Contribution to genus of rep. \mathbf{R} implied by 6D anomalies

$$
g=\sum x_{\mathbf{R}} g_{\mathbf{R}}
$$

with $g_{R}=\frac{1}{12}\left(2 C_{R}+B_{R}-A_{R}\right)$
b) singular D : exotic matter $(\mathbf{R} \neq \mathbf{a d j})$

$$
g_{\mathbf{R}} \equiv \frac{1}{2} m_{P}\left(m_{P}-1\right) \quad x_{\mathbf{R}} \equiv \sharp(P)
$$

2. Tri- or multi-fundamental representations: $D=D_{1}+D_{2}+\ldots$ with more than two intersecting components
\% non-perturbative examples in $\mathrm{U}(1)^{3}$ model [Cvetic,DK,Piragua,Song]

Strategy to find exotic matter models

Lesson: smooth $D \leadsto$ "standard" WSF \rightarrow standard representations

Question: How to systematically obtain exotic matter structures? Math answer: Classify Weierstrass models for all singular divisors $D=\{t=0\}$.

Today: 1) Start with known models already exhibiting exotic matter.
2) Perform extremal transition/unHiggsing.
\Rightarrow Paradigm examples: well-studied Abelian models!

Key result: Interplay of structure of D and the form of the Weierstrass model.
\Rightarrow non-deformability of singularities of D.
\Rightarrow matter content can only change through $(4,6,12)$ singularity (SCFT).
\longrightarrow talk by Lara Anderson
II. Two-index symmetric tensor representations

1) Field Theory

$\mathrm{SU}(3)$ gauge theories with symmetrics

Field theory: 6D anomalies with only $\mathbf{3}^{\prime}$'s and $\mathbf{8}^{\prime} \mathrm{s}$ of $S U(3)$ yield multiplicities

$$
x_{3}=3 b \cdot(-3 a-b) \quad x_{8}=1+\frac{1}{2} b \cdot(b+a)
$$

\Rightarrow Green-Schwarz-coefficients a, b determine spectrum.
F-theory: Maps to threefold with I_{3}-singularity ($\Delta=t^{3} \Delta^{\prime}$) over genus g curve D :

$$
x_{3}=D \cdot\left(\left[\Delta^{\prime}\right]+3 K_{B}\right) \quad x_{8}=g=p_{g}
$$

\Rightarrow standard identification $b=D, a=K_{B}$.
Change of matter: Anomalies allow replacement of adjoints

$$
\begin{array}{ccc}
1 \text { adjoint }=\text { symmetrics+ } \\
g_{\mathbf{8}}=1 & g_{\mathbf{6}}=1 & g_{\mathbf{3}}=0
\end{array} \quad \Rightarrow \begin{aligned}
& \text { Need singularity on } D \\
& \text { with } m_{P}=2: \frac{1}{2} m_{P}\left(m_{P}-1\right)=1
\end{aligned}
$$

$\Rightarrow D$ with non-deformable ordinary double point singularity (ODP)
Claim: $6+3(\operatorname{not} 8+1)$

2) Abelian $\mathrm{U}(1)^{2}$-models with exotic matter

Construction of non-toric model with $\mathrm{U}(1)^{2}$

Any elliptic fibration X with MW -rank two is fibration of special cubics in P^{2}
[Deligne;Borchmann,Mayrhofer,Palti,Weigand; Cvetič,DK,Piragua]

$$
\begin{aligned}
& u f_{2}(u, v, w)+\prod_{i=1}^{3}\left(a_{i} v+b_{i} w\right)=0 \\
& f_{2}=s_{1} u^{2}+s_{2} u v+s_{3} v^{2}+s_{5} u w+s_{6} v w+s_{8} w^{2}
\end{aligned}
$$

$\%$ Three sections have non-toric [u:v:w]-positions in elliptic fiber \mathcal{C}

$$
P=\left[0:-b_{1}: a_{1}\right] \quad Q=\left[0:-b_{2}: a_{2}\right] \quad R=\left[0:-b_{3}: a_{3}\right]
$$

\Rightarrow distance between rational points controlled by

$$
\Delta_{i j}:=a_{i} b_{j}-b_{i} a_{j}
$$

\% Analysis of codimension 2 singularities: novel matter representations.

General low-energy effective theory

Charge	Multiplicity	Locus
$(-2,-2)$	$x_{(-2,-2)}=\left[a_{1}\right] \cdot\left[b_{1}\right]$	$V_{1}=\left\{a_{1}=b_{1}=0\right\}$
$(2,0)$	$x_{(2,0)}=\left[a_{2}\right] \cdot\left[b_{2}\right]$	$V_{2}=\left\{a_{2}=b_{2}=0\right\}$
$(0,2)$	$x_{(0,2)}=\left[a_{3}\right] \cdot\left[b_{3}\right]$	$V_{3}=\left\{a_{3}=b_{3}=0\right\}$
$(-2,-1)$	$x_{(-2,-1)}=\left(2\left[b_{3}\right]+\left[s_{3}\right]\right) \cdot\left(\left[a_{1}\right]+\left[b_{3}\right]\right)-2 x_{(0,2)}$	$V_{4}=\left\{\Delta_{12}=s_{3} b_{1}^{2}-s_{6} a_{1} b_{1}+s_{8} a_{1}^{2}=0\right\}$
$(-1,-2)$	$x_{(-2,-1)}=\left(2\left[b_{1}\right]+\left[s_{3}\right]\right) \cdot\left(\left[a_{1}\right]+\left[b_{2}\right]\right)-2 x_{(-1,1)}$	$V_{5}=\left\{\Delta_{13}=s_{3} b_{1}^{2}-s_{6} a_{1} b_{1}+s_{8} a_{1}^{2}=0\right\}$
$(-1,1)$	$x_{(-1,1)}=\left(2\left[b_{2}\right]+\left[s_{3}\right]\right) \cdot\left(\left[a_{3}\right]+\left[b_{2}\right]\right)-2 x_{(2,0)}$	$V_{6}=\left\{\Delta_{23}=s_{3} b_{2}^{2}-s_{6} a_{2} b_{2}+s_{8} a_{2}^{2}=0\right\}$
$(1,1)$		V_{7}
$(1,0)$		V_{8}
$(0,1)$		V_{9}

$\mathrm{U}(1) \mathrm{xU}(1)$ charge lattice

\% nesting of matter loci: $(2,2)$ matter at V_{1} contained in locus V_{4} of $(-2,-1)$ matter
\Rightarrow crucial for appearance of exotic non-Abelian matter!

3) The unHiggsing

Geometry of unHiggsing U(1)'s

Reduction of Mordell-Weil group of X:
$\%$ tune moduli of X so that rational points in ell. curve degenerate $P=Q=R$
*rk(MW) $=2$

Geometry of unHiggsing U(1)'s

Reduction of Mordell-Weil group of X:
$\%$ tune moduli of X so that rational points in ell. curve degenerate $P=Q=R$

* $r k(M W)=2$
$\because r k(M W)=1: \Delta_{12} \rightarrow 0$

Geometry of unHiggsing U(1)'s

Reduction of Mordell-Weil group of X:
$\%$ tune moduli of X so that rational points in ell. curve degenerate $P=Q=R$
$\because r k(M W)=2$
$\% r k(M W)=1: \Delta_{12} \rightarrow 0$
$\therefore r k(M W)=0: \Delta_{13} \rightarrow 0$

Tuned geometry $X: u f_{2}(u, v, w)+\lambda_{1} \lambda_{2}\left(a_{1} v+b_{1} w\right)^{3}=0$

Gauge group: $G=$ on divisors:

$$
\left.\left.\begin{array}{l|c|c}
U_{1}(1): \\
U_{2}(1): & \lambda_{1} \\
-
\end{array}\right] \begin{array}{l}
- \\
\lambda_{2}
\end{array}\right]\left[\begin{array}{l}
t \\
t \\
\hline
\end{array}\right.
$$

SU(3) divisor singular:
$t=a_{1}^{2} s_{8}-a_{1} b_{1} s_{6}+b_{1}^{2} s_{3}$
= Generalizes to more $\mathrm{U}(1)^{\prime}$'s.

Geometry of unHiggsing U(1)'s

\(\left.\left.$$
\begin{array}{l|c|}\hline G= & \begin{array}{c}S U(2) \\
\lambda_{1} \\
U_{1}(1): \\
U_{2}(1):\end{array} \\
\hline\end{array}
$$\right] \begin{array}{cc}S U(2)

-

\lambda_{2}\end{array}\right] \times\)	$S U(3)$
t	
t	

\% Gauge symmetry from matter:

Charge	Multiplicity	Locus
$\mathbf{(- 2 , - 2)}$	$x_{(-2,-2)}=\left[a_{1}\right] \cdot\left[b_{1}\right]$	$V_{1}=\left\{a_{1}=b_{1}=0\right\}$
$\mathbf{(2 , 0)}$	$x_{(2,0)}=\left[a_{2}\right] \cdot\left[b_{2}\right]$	$V_{2}=\left\{a_{2}=b_{2}=0\right\}$
$\mathbf{(0 , 2)}$	$x_{(0,2)}=\left[a_{3}\right] \cdot\left[b_{3}\right]$	$V_{3}=\left\{a_{3}=b_{3}=0\right\}$
$\mathbf{(- 2 , - \mathbf { 1 })}$	$x_{(-2,-1)}=\left(2\left[b_{1}\right]+\left[s_{3}\right]\right) \cdot\left(\left[a_{\mathbf{1}}\right]+\left[b_{2}\right]\right)-2 x_{(-1,1)}$	$V_{4}=\left\{\Delta_{12}=s_{3} b_{1}^{2}-s_{6} a_{1} b_{1}+s_{8} a_{1}^{2}=0\right\}$

\therefore In tuning $\Delta_{12} \rightarrow 0$:

$$
V_{4} \longrightarrow \mathrm{SU}(3) \text { divisor } D=\left\{t=a_{1}^{2} s_{8}-a_{1} b_{1} s_{6}+b_{1}^{2} s_{3}=0\right\}
$$

$\because(2,2)$ matter at V_{1} remains at its ODP singularity $a_{1}=b_{1}=0$.

Geometry of unHiggsing U(1)'s

\(\left.\left.$$
\begin{array}{l|c|}\hline G= & \begin{array}{c}S U(2) \\
\lambda_{1} \\
U_{1}(1): \\
U_{2}(1):\end{array} \\
\hline\end{array}
$$\right] \begin{array}{cc}\operatorname{SU}(2)

-

\lambda_{2}\end{array}\right] \times\)	$\operatorname{SU(3)}$
t	
t	

\% Gauge symmetry from matter:

Charge	Multiplicity	Locus
$(-2,-\mathbf{2})$	$x_{(-2,-2)}=\left[a_{1}\right] \cdot\left[b_{1}\right]$	$V_{1}=\left\{a_{1}=b_{1}=0\right\}$
$\mathbf{(2 , 0})$	$x_{(2,0)}=\left[a_{2}\right] \cdot\left[b_{2}\right]$	$V_{2}=\left\{a_{2}=b_{2}=0\right\}$
$\mathbf{(0 , 2)}$	$x_{(0,2)}=\left[a_{3}\right] \cdot\left[b_{3}\right]$	$V_{3}=\left\{a_{3}=b_{3}=0\right\}$
$(-2,-\mathbf{1})$	$\left.x_{(-2,-1)}=\left(2\left[b_{1}\right]+\left[s_{3}\right]\right) \cdot\left(\left[a_{1}\right]+\left[b_{2}\right]\right)-2 x_{(-1,1)}\right)$	$V_{4}=\left\{x_{12}=s_{3} b_{1}^{2}-s_{6} a_{1} b_{1}+s_{8} a_{1}^{2}=0\right\}$

\therefore In tuning $\Delta_{12} \rightarrow 0$:

$$
V_{4} \longrightarrow \mathrm{SU}(3) \text { divisor } D=\left\{t=a_{1}^{2} s_{8}-a_{1} b_{1} s_{6}+b_{1}^{2} s_{3}=0\right\}
$$

$\because(2,2)$ matter at V_{1} remains at its ODP singularity $a_{1}=b_{1}=0$.

The unHiggsed model

Non-Abelian matter spectrum by inspection of codim. two singularities

Representation	Multiplicity	
$(\mathbf{1}, \mathbf{1}, \mathbf{6})$	$x_{(\mathbf{1}, \mathbf{1}, \mathbf{6})}=\left[a_{1}\right] \cdot\left([t]+K_{B}-\left[a_{1}\right]\right)$	$V_{\text {sing }}=\left\{a_{1}=b_{1}=0\right\}$
$(\mathbf{2}, \mathbf{2}, \mathbf{1})$	$x_{(\mathbf{2}, \mathbf{2}, \mathbf{1})}=\left[\lambda_{1}\right] \cdot\left[\lambda_{2}\right]$	$V_{b f}^{(1)}=\left\{\lambda_{1}=\lambda_{2}=0\right\}$
$(\mathbf{2}, \mathbf{1}, \mathbf{3})$	$x_{(\mathbf{2}, \mathbf{1}, \mathbf{3})}=\left[\lambda_{1}\right] \cdot[t]$	$V_{b f}^{(2)}=\left\{\lambda_{1}=t=0\right\}$
$(\mathbf{1}, \mathbf{2}, \mathbf{3})$	$x_{(\mathbf{1}, \mathbf{2}, \mathbf{3})}=\left[\lambda_{2}\right] \cdot[t]$	$V_{b f}^{(3)}=\left\{\lambda_{2}=t=0\right\}$
$(\mathbf{2}, \mathbf{1}, \mathbf{1})$	$x_{(\mathbf{2}, \mathbf{1}, \mathbf{1})}=\left[\lambda_{1}\right] \cdot\left(-8 K_{B}-2\left[\lambda_{1}\right]-2\left[\lambda_{2}\right]-3[t]\right)$	$V_{f}^{(1)}$
$(\mathbf{1}, \mathbf{2}, \mathbf{1})$	$x_{(\mathbf{1}, \mathbf{2}, \mathbf{1})}=\left[\lambda_{2}\right] \cdot\left(-8 K_{B}-2\left[\lambda_{1}\right]-2\left[\lambda_{2}\right]-3[t]\right)$	$V_{f}^{(2)}$
$(\mathbf{1}, \mathbf{1}, \mathbf{3})$	$x_{(\mathbf{1}, \mathbf{1}, \mathbf{3})}=[t] \cdot\left(-9 K_{B}-2\left[\lambda_{1}\right]-2\left[\lambda_{2}\right]-3[t]\right)+x_{(\mathbf{1}, \mathbf{1}, \mathbf{6})}$	$V_{f}^{(3)}$
$(\mathbf{3}, \mathbf{1}, \mathbf{1})$	$x_{(\mathbf{3}, \mathbf{1}, \mathbf{1})}=\frac{1}{2}\left[\lambda_{1}\right] \cdot\left(\left[\lambda_{1}\right]+K_{B}\right)+1$	$D_{1}=\left\{\lambda_{1}=0\right\}$
$(\mathbf{1}, \mathbf{3}, \mathbf{1})$	$x_{(\mathbf{1}, \mathbf{3}, \mathbf{1})}=\frac{1}{2}\left[\lambda_{2}\right] \cdot\left(\left[\lambda_{2}\right]+K_{B}\right)+1$	$D_{2}=\left\{\lambda_{2}=0\right\}$
$(\mathbf{1}, \mathbf{1}, \mathbf{8})$	$x_{(\mathbf{1}, \mathbf{1}, \mathbf{8})}=\frac{1}{2}[t] \cdot\left([t]+K_{B}\right)+1-x_{(\mathbf{1}, \mathbf{1}, \mathbf{6})}$	$D_{3}=\{t=0\}$

Claim: Two-index symmetric tensor at ODP of $\operatorname{SU}(3)$ divisor $D_{3}=\{t=0\}$.
\Rightarrow Provide two checks.

Matching of effective field theories

Higgsing back to Abelian theory by bifundamentals:

$$
U(1)^{2} \longleftarrow(\mathbf{2}, \mathbf{1}, \mathbf{2})
$$

Special cases of smaller G: Higgsing by adjoints.

Non-Abelian theory
SU(2)xSU(2)xSU(3)-reps

$$
\begin{gathered}
(3,1,1)+(1,3,1) \\
(1,1,8) \\
(1,3,1)+(1,1,3) \\
(1,1,6)
\end{gathered}
$$

Matching requires 6 of $\mathrm{SU}(3)$.
$=$ Indirect check for presence of $6+3$ instead of $\mathbf{8 + 1}$.

4) Novel matter structures \& non-TateWS-models

Non-Tate Weierstrass models of singular divisors

[Cvetič, DK, Piragua, Taylor]
Get Weierstrass model $y^{2}=x^{3}+f x+g\left(\lambda_{1}=\lambda_{2}=1\right.$ no $S U(2)$'s $)$ of the form

$$
\begin{gathered}
f=f_{0}+f_{1} t, \quad g=g_{0}+g_{1} t+g_{2} t^{2} \\
\text { for } f_{0}=-\frac{1}{48}\left(s_{6}^{2}-4 s_{3} s_{8}\right)^{2}, g_{0}=\frac{1}{864}\left(s_{6}^{2}-4 s_{3} s_{8}\right)^{3}
\end{gathered}
$$

\% Have WS-model with structure of I_{2} singularity if t is formal parameter:

$$
\Delta=t^{2} \Delta^{\prime}
$$

\because Identifying $t=a_{1}^{2} s_{8}-a_{1} b_{1} s_{6}+b_{1}^{2} s_{3}$ we get I_{3} singularity by reducing Δ^{\prime} in the quotient ring

$$
R=\frac{\text { Ring of fcts. on } B}{\langle t\rangle}
$$

* Note: R (or local rings) not UFD as $t=0$ has ODP singularity at $a_{1}=b_{1}=0$
$\therefore I_{3}$ looks non-split: $f_{0} \neq \phi^{4}, g_{0} \neq \phi^{6} \longrightarrow$ only SU(2) gauge group?
\Rightarrow No: evasion of "standard" split condition due to special form of $t=0$.

Subtle split conditions for singular divisors

Intertwined structure of Weierstrass form and $t=a_{1}^{2} s_{8}-a_{1} b_{1} s_{6}+b_{1}^{2} s_{3}$

$$
\begin{array}{ll}
f_{0}=-\frac{1}{48}\left(s_{6}^{2}-4 s_{3} s_{8}\right)^{2} \sim \operatorname{discr}(t)^{2} & \operatorname{discr}(t): \operatorname{discriminant} \text { of } t \\
g_{0}=\frac{1}{864}\left(s_{6}^{2}-4 s_{3} s_{8}\right)^{3} \sim \operatorname{discr}(t)^{3} & \text { as quadratic in }\left(a_{1}, b_{1}\right)
\end{array}
$$

\therefore Monodromy cover $\psi^{2}+\left(9 g_{0} / 2 f_{0}\right)=0: \quad \psi^{2}+\frac{1}{4}\left(s_{6}^{2}-4 s_{3} s_{8}\right)=0$ [Grassi,Morrison]

Generic divisor $t=0$: irreducible monodromy cover \rightarrow non-split?

Here: $t=0$ and $\operatorname{discr}(t)=0$ intersect tangentially
$\Rightarrow \operatorname{discr}(t)=x^{2}$ close to $t=0$
= split cover: $I_{3}{ }^{s}$-fiber $(S U(3)$ gauge group)

\because can not deform or smooth out $t=0$ without reducing gauge symmetry
\Rightarrow matter at $a_{1}=b_{1}=0$ is symmetric + antisymmetric matter.

Completeness \& Generalizations

Completeness?
\therefore Examples on $B=\mathbb{P}^{2}:[t]=5,6$ and $\#(\mathrm{ODP})=1,2$
= SU(3) on quartic with up to two ODP's not covered (although its has adjoint Higgsing to $\left.\mathrm{U}(1)^{2}\right)$.

Further unHiggsings:

* Additional tuning of $\operatorname{SU}(3)$ on $t=0$ with ODP to smooth models

1) $\operatorname{SU}(3) \mathrm{xSU}(3)$

$$
t \rightarrow\left(x a_{1}+y b_{1}\right)\left(a_{1}+z b_{1}\right)
$$

\Rightarrow with bifundamental matter
2) $\mathrm{SU}(6)$

$$
t \rightarrow a_{1}^{2}\left(b^{2} s_{3}-b s_{6}+s_{8}\right)
$$

with conventional matter

Generalization:

* start with $\operatorname{SU}(3)^{2}$ or SU(6) and Higgs: field theory clear
* Geometric description = deformation of Weierstrass form is hard to find.
\longrightarrow talk by Nikhil Raghuram

III. Three-index symmetric tensor representations

1) Field Theory
$\mathrm{SU}(2)$ gauge theories with three index symmetric tensors

6D anomaly-free theories with only 2 's and 8 's covered by F-theory with I_{2}-singularity on genus g divisor D :

$$
x_{2}=D \cdot\left(-4 K_{B}-D\right) \quad x_{3}=1+\frac{1}{2} D \cdot\left(D+K_{B}\right)
$$

Change of matter: anomalies allow replace 6 adjoints by one 4 and two 2

$$
\begin{aligned}
& 6 \text { adjoint }=\text { Sym }^{3} 2+\text { fund. }+ \text { fund. } \\
& g_{8}=1 \quad g_{4}=6 \quad g_{\mathbf{2}}=0
\end{aligned} \quad \therefore \begin{aligned}
& \text { Need singularity on } D \\
& \text { with } m_{P}=3: \frac{1}{2} m_{P}\left(m_{P}-1\right)=1
\end{aligned}
$$

$\%$ note that 4 is real rep: only one half-hyper at each triple point
$\Rightarrow D$ with non-deformable ordinary triple point singularity (OTP)
Claim: $2 \times 2 \times 2=4+2+2$

2) An Abelian U(1)-model with $q=3$

Abelian model with charge $q=3$

Elliptic fibration X with MW-rank by fibration of special cubics in P^{2}

$$
\begin{aligned}
& u f_{2}(u, v, w)+v\left(s_{4} v^{2}+s_{7} v w+s_{8} v w+s_{9} w^{2}\right)=0 \\
& f_{2}=s_{1} u^{2}+s_{2} u v+s_{3} v^{2}+s_{5} u w+s_{6} v w+s_{8} w^{2}
\end{aligned}
$$

* Two sections have the following [u:v:w]-coordinates

$$
P=[0: 0: 1] \quad Q=\left[-s_{9} \overline{P Q}, s_{8} \overline{P Q}, s_{9}\left(s_{3} s_{8}^{2}-s_{2} s_{8} s_{9}+s_{1} s_{9}^{2}\right)\right]
$$

\% distance between rational points controlled by

$$
\overline{P Q}=s_{7} s_{8}^{2}-s_{6} s_{8} s_{9}+s_{5} s_{9}^{2}
$$

General low-energy effective theory

Matter spectrum: analysis of codimension two singularities

Representation	Multiplicity	Fiber	Locus
$\mathbf{1}_{3}$	$\mathcal{S}_{9}\left(\left[K_{B}^{-1}\right]+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$		$V\left(I_{(3)}\right):=\left\{s_{8}=s_{9}=0\right\}$
$\mathbf{1}_{2}$	$\begin{aligned} & 6\left[K_{B}^{-1}\right]^{2}+\left[K_{B}^{-1}\right]\left(4 \mathcal{S}_{9}-5 \mathcal{S}_{7}\right) \\ & \quad+\mathcal{S}_{7}^{2}+2 \mathcal{S}_{7} \mathcal{S}_{9}-2 \mathcal{S}_{9}^{2} \end{aligned}$		$\begin{gathered} V\left(I_{(2)}\right):= \\ \left\{s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}\right. \\ =\overline{P Q}=0\} \end{gathered}$
$\mathbf{1}_{1}$	$\begin{gathered} 12\left[K_{B}^{-1}\right]^{2}+\left[K_{B}^{-1}\right]\left(8 \mathcal{S}_{7}-\mathcal{S}_{9}\right) \\ -4 \mathcal{S}_{7}^{2}+\mathcal{S}_{7} \mathcal{S}_{9}-\mathcal{S}_{9}^{2} \end{gathered}$		$V\left(I_{(1)}\right)$

* nesting structure: charge $q=3$ at singular locus of charge $q=2$ locus

3) The unHiggsing

UnHiggsing: qualitative picture

Tune moduli of X so that $P=Q$

$$
\overline{P Q}=s_{7} s_{8}^{2}-s_{6} s_{8} s_{9}+s_{5} s_{9}^{2} \rightarrow 0
$$

Matter to gauge symmetry:

| $\mathbf{1}_{3}$ | $x_{1_{3}}=$ |
| :---: | :---: | :---: | :---: |
| $\mathcal{S}_{9}\left(\left[K_{B}^{-1}\right]+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$ | |

* Codimension two to codimension one:
$\mathrm{V}\left(I_{2}\right) \longrightarrow S U(2)$ divisor $D=:\left\{t:=s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}=0\right\}$
$\because q=3$ matter at $\mathrm{V}\left(\mathrm{I}_{3}\right)$ becomes ordinary triple point singularity of D.

UnHiggsing: qualitative picture

Tune moduli of X so that $P=Q$

$$
\overline{P Q}=s_{7} s_{8}^{2}-s_{6} s_{8} s_{9}+s_{5} s_{9}^{2} \rightarrow 0
$$

Matter to gauge symmetry:

| $\mathbf{1}_{3}$ |
| :---: | :---: | :---: | :---: |
| $\mathcal{S}_{9}\left(\left[K_{B}^{-1}\right]+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$ |

* Codimension two to codimension one:
$\mathrm{V}\left(I_{2}\right) \longrightarrow S U(2)$ divisor $D=:\left\{t:=s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}=0\right\}$
$\because q=3$ matter at $\mathrm{V}\left(\mathrm{I}_{3}\right)$ becomes ordinary triple point singularity of D.

UnHiggsing: details

1) Tuning :

$$
\overline{P Q}=s_{7} s_{8}^{2}-s_{6} s_{8} s_{9}+s_{5} s_{9}^{2} \rightarrow 0
$$

\because In UFD, solve: $s_{5}=s_{8} \sigma_{5}$,

$$
s_{6}=s_{8} \sigma_{7}+s_{9} \sigma_{5}, \quad s_{7}=s_{9} \sigma_{7}
$$

* Special tuning:

$$
s_{5}=s_{6}=s_{7} \equiv 0
$$

2) Gauge group:

$$
G=S U(2)
$$

on singular divisors: $D=\left\{s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}=0\right\}$
3) Non-Abelian matter

SU(2)-rep	Multiplicity	Fiber	Locus
$\mathbf{4}$	$x_{\mathbf{4}}=\frac{1}{2} \mathcal{S}_{9} \cdot\left(-K_{B}+\mathcal{S}_{9}-\mathcal{S}_{7}\right)$	$I_{0}^{* n s}$	$V_{\text {Sing }}=\left\{s_{8}=s_{9}=0\right\}$
$\mathbf{3}$	$x_{\mathbf{3}}=\frac{1}{2}[t] \cdot\left([t]+K_{B}\right)+1-6 x_{4}$	I_{2}	$D=\{t=0\}$
$\mathbf{2}$	$x_{\mathbf{2}}=2\left(3 K_{B}^{2}-K_{B} \cdot\left(2 \mathcal{S}_{7}-\mathcal{S}_{9}\right)\right.$ $\left.-\mathcal{S}_{7}^{2}+\mathcal{S}_{7} \cdot \mathcal{S}_{9}-\mathcal{S}_{9}^{2}\right)+2 m_{\mathbf{4}}$	I_{3}	$V\left(\mathfrak{p}_{1}\right) \cup V_{\text {Sing }}$

Matching of effective field theories

Higgsing back to Abelian theory by adjoints:

$$
U(1) \longleftarrow \mathbf{3} \longleftarrow G=S U(2)
$$

\therefore Number of adjoints is

$$
x_{3}=p_{g}=1+\frac{1}{2} D \cdot\left(D+K_{B}\right)-3\left[s_{8}\right] \cdot\left[s_{9}\right] \geq 1
$$

\%Full matching of Abelian spectrum through Higgsing

$$
\begin{gathered}
\mathbf{4} \rightarrow \mathbf{1}_{3} \oplus \mathbf{1}_{-3} \oplus \mathbf{1}_{1} \oplus \mathbf{1}_{-1}, \quad \mathbf{3} \rightarrow \mathbf{1}_{2} \oplus \mathbf{1}_{-2} \oplus \mathbf{1}_{0}, \quad \mathbf{2} \rightarrow \mathbf{1}_{1} \oplus \mathbf{1}_{-1} . \\
x_{\mathbf{1}_{3}}=2 x_{\mathbf{4}}, \quad x_{\mathbf{1}_{\mathbf{2}}}=2\left(x_{\mathbf{1}_{3}}-1\right), \quad x_{\mathbf{1}_{1}}=2\left(x_{\mathbf{1}_{4}}+x_{\mathbf{1}_{1}}\right)
\end{gathered}
$$

= Matching requires presence of three-index symmetric matter.

4) Novel matter structures \& non-TateWS-models

Non-Tate Weierstrass model

Get a Weierstrass model $y^{2}=x^{3}+f x+g$ of the form

$$
f=f_{0} \quad g=g_{0}+g_{1} t
$$

Properties:

* Leading terms f_{0}, g_{0} seemingly unrelated,
\therefore No $O(t)$ term in f,
$\%$ If t is formal variable, we have no vanishing of Δ.
* Chosen Weierstrass parametrization exhibits

$$
\left.\Delta\right|_{t=0} \sim s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3} \longmapsto \begin{aligned}
& \left.\Delta\right|_{t=0}=4 f_{0}^{3}+27 g_{0}^{2} \sim t \\
& \text { if } t \equiv s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}
\end{aligned}
$$

\% Get additional cancellation at order one so that

$$
\Delta=t^{2} \Delta^{\prime}
$$

- I_{2}-structure does not allow to change t : OTP non-deformable presence of 4 representation of $\mathrm{SU}(2)$.

Completeness \& Generalizations

Completeness?

* Constructed examples with $B=\mathbb{P}^{2},[t]>8$ and $\#(\mathrm{OTP})=0, \ldots, 18$.
\Rightarrow e.g. SU(2) on quintic with one OTP is missing (although it has adjoints)
Further unHiggsings:
* Tune/unHiggs SU(2) on $t=s_{4} s_{8}^{3}-s_{3} s_{8}^{2} s_{9}+s_{2} s_{8} s_{9}^{2}-s_{1} s_{9}^{3}=0$ with OTP to larger gauge group on smooth divisor

1) $\operatorname{SU}(2) x S U(2) x S U(2)$

$$
t \rightarrow \prod_{i=1}^{3}\left(n_{i} s_{8}+m_{i} s_{9}\right)
$$

\Rightarrow non-standard WS-model with tri-fundamental matter
2) $\operatorname{SU}(2) x G_{2}: s_{8} \rightarrow a s_{9}$

$$
t \rightarrow\left(-s_{1}+a s_{2}-a^{2} s_{3}+a^{3} s_{4}\right) s_{9}^{3}
$$

\Rightarrow standard WS-model with conventional matter

Generalizations:

* start with $\operatorname{SU}(2)^{3}$ or $S U(2) \times G_{2}$ and Higgs / deform WS-model

Deformation of $G_{2 \times} \mathrm{SU}(2)$ singularities

Start with SU(2)-model with three-index symmetric matter (at OTP)
$*$ Set $s_{8}=a s_{9}$: get $I_{0}{ }^{*}$-singularity $\left(G_{2}\right)$ on $s_{9}=0$ and I_{2}-singularity on $\tilde{s}_{1}=0$

$$
f=\left(-\frac{1}{3} \tilde{s}_{2}^{2}+\tilde{s}_{3} \tilde{s}_{1}\right) s_{9}^{2}, \quad g=\left(-\frac{2}{27} \tilde{s}_{2}^{3}+\frac{1}{3} \tilde{s}_{2} \tilde{s}_{3} \tilde{s}_{1}-s_{4} \tilde{s}_{1}^{2}\right) s_{9}^{3}, \quad \Delta=\tilde{s}_{1}^{2} s_{9}^{6} \Delta^{\prime}
$$

\Rightarrow Conventional Weierstrass model with I_{2} - and $I_{0}{ }^{*}$-singularity: conventional matter representations

* Define deformation parameter $\epsilon:=s_{8}-a s_{9}$.
*Rewrite f, g of original SU(2) model in terms of ϵ

$$
\begin{gathered}
f_{\epsilon}=f+\left(\frac{1}{3} \tilde{s}_{2} \tilde{s}_{3}-3 \tilde{s}_{1} \tilde{s}_{4}\right) s_{9} \epsilon+\left(\tilde{s}_{2} \tilde{s}_{4}-\frac{1}{3} \tilde{s}_{3}^{2}\right) \epsilon^{2} \\
g_{\epsilon}=g+\left(\tilde{s}_{1}\left(\tilde{s}_{2} \tilde{s}_{4}-\frac{2}{3} \tilde{s}_{3}^{2}\right)+\frac{1}{9} \tilde{s}_{2}^{2} \tilde{s}_{3}\right) s_{9}^{2} \epsilon+\left(\frac{1}{9} \tilde{s}_{2} \tilde{s}_{3}^{2}-\frac{2}{3} \tilde{s}_{2}^{2} \tilde{s}_{4}+\tilde{s}_{1} \tilde{s}_{3} \tilde{s}_{4}\right) s_{9} \epsilon^{2}+\left(\frac{1}{3} \tilde{s}_{2} \tilde{s}_{3} \tilde{s}_{4}-\frac{2}{27} \tilde{s}_{3}^{3}-\tilde{s}_{1} \tilde{s}_{4}^{2}\right) \epsilon^{3}
\end{gathered}
$$

\Rightarrow Found deformation of Weierstrass model corresponding to Higgsing $\mathrm{G}_{2} \times S U(2) \rightarrow \mathrm{SU}(2)$.

III. Conclusions \& Outlook

Summary

1. Used extremal transitions / unHiggsing to generate exotic non-Abelian matter from exotic Abelian matter.
2. First explicit and concrete realization of
\because SU(3) with two-index symmetric tensor 6: unHiggs $U(1)^{2}$ with $(2,2)$ matter.
$\therefore S U(2)$ with three-index symmetric tensor 4 : unHiggs $U(1)$ with $\mathrm{q}=3$ matter.
3. Further unHiggsing to
\% models with larger gauge group and both conventional and non-conventional matter (tri-fundamentals)
$=$ constructed deformations of Weierstrass models \longrightarrow Higgsing.

Outlook

* Window into new and mainly unexplored field of F-theory with exotic matter
\Rightarrow Generalization? work in progress...
\Rightarrow Systematic classification of Weierstrass models with singular divisors (cusp...)
\% Physical applications to phenomenology, bounding max. U(1)-charge, new TateShafarevich groups?

