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Motivation



Importance of extremal transitions in F-theory

Recent theme in F-theory: Study of entire moduli space of F-theory vacua.

1. Classification of F-theory landscape.
2. Study of transition mechanisms.

Apply transition mechanisms to test completeness of mathematics/physics 
dictionary of F-theory and to discover new physics.

➡ Recent topics: SCFTs, gauge symmetry change (discrete symmetries, U(1)’s)… 

Today: Unravel new matter structures in F-theory via extremal transitions.



Goal: Extend geometry/physics dictionary by classification of matter structures.

Two explicit classes of models
1. Global F-theory models with SU(3) and matter in Sym23=6,
2. Global F-theory models with SU(2) and matter in Sym32=4.

✤ Both models arise from unHiggsing of Abelian models with U(1)’s.
✤ Admit further unHiggsing to large gauge groups with conventional matter.
✤ Gauge symmetry realized on singular divisors, exotic matter at singularities.

➡ Inspiration for a still missing classification of Weierstrass models for singular 
divisors. 

Goals of this talk
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I. Review on matter structures & singularities



Normal form Weierstrass models: the UDF case

Example: Singularity of Kodaira type In (SU(n))  
                 over divisor 

Algebraic approach:
✤ start with local expansions around divisor D 

✤ solve order by order the conditions imposed by                                        .
✤ for smooth D: (Auslander-Buchsbaum theorem)  

➡ Solutions e.g.               ,                   (n=2);               ,                   (n>2, split condition)

✤ Codim. 2 singularities worked out: fundamental, adjoint +anti-sym. tensor matter 

Conventional matter in F-theory
Tate’s algorithm: [Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa]  
recent refinements: [Katz,Morrison,SchäferNameki,Sully]

f0 = �2 g0 = �3 g0 = �6f0 = �4

f = f0 + f1t+O(t2) g = g0 + g1t+O(t2)

� = 4f3 + 27g2 ⇠ tn

[Morrison,Taylor]

D = {t = 0} D

R =

Ring of fcts. on U ⇢ B

hti
Local ring                                                     universal factorization domain (UFD)

[Morrison,Taylor]



More exotic matter representations require non-UFD local rings: 
✤ Divisor is D necessarily singular

Sources of exotic matter:
1. D irreducible, but singular:                        

 
                       

                                                                                   
 

➡ a) Smooth D: only adjoints                          b) singular D: exotic matter (R    adj)

2. Tri- or multi-fundamental representations:              
D=D1+D2+… with more than two intersecting components 
✤ non-perturbative examples in U(1)3 model

Singular point P of D contributes to 
its arithmetic genus g as

multiplicity mP, geometric genus pg

Exotic matter & singular divisors

[Kumar,Park,Taylor; 
 Morrison,Taylor] 

[Cvetic,DK,Piragua,Song] 

Contribution to genus of rep. R 
implied by 6D anomalies

g = 1
2

X
xRgR

with 

g = 1
2

X
xRgR

gadj ⌘ 1 xadj ⌘ pg gR ⌘ 1
2mP (mP � 1)

xR ⌘ ](P )

6=[Witten] 



Question: How to systematically obtain exotic matter structures?
Math answer: Classify Weierstrass models for all singular divisors D={t=0}. 

Today: 1) Start with known models already exhibiting exotic matter.  
             2) Perform extremal transition/unHiggsing.

Key result: Interplay of structure of D and the form of the Weierstrass model. 

Strategy to find exotic matter models

Lesson: smooth D           “standard” WSF           standard representations

talk by Lara Anderson

➡ Paradigm examples: well-studied Abelian models!

➡non-deformability of singularities of D.
➡matter content can only change through (4,6,12) singularity (SCFT).



II. Two-index symmetric tensor representations



1) Field Theory



Field theory: 6D anomalies with only 3’s and 8’s of SU(3) yield multiplicities

➡ Green-Schwarz-coefficients a, b determine spectrum.

F-theory: Maps to threefold with I3-singularity (                  ) over genus g curve D:

➡ standard identification            ,              .

Change of matter: Anomalies allow replacement of adjoints

➡ D with non-deformable ordinary  
double point singularity (ODP)  
Claim: 6 + 3 (not 8 + 1)

SU(3) gauge theories with symmetrics

b = D a = KB

� = t3�0

x8 = 1 + 1
2b · (b+ a)

x3 = 3b · (�3a� b)

x8 = g = pgx3 = D · ([�0] + 3KB)

g6 = 1 g3 = 0
1 adjoint = symmetrics+ antisymmetric
g8 = 1

Need singularity on D  
with mP=2:                         =1gR ⌘ 1

2mP (mP � 1)

6



2) Abelian U(1)2-models with exotic matter



Any elliptic fibration X with MW-rank two is fibration of special cubics in P2

✤ Three sections have non-toric [u:v:w]-positions in elliptic fiber  

➡distance between rational points controlled by 

 

✤ Analysis of codimension 2 singularities: novel matter representations.

Construction of non-toric model with U(1)2

uf2(u, v, w) +
3Y

i=1

(aiv + biw) = 0

f2 = s1u
2 + s2uv + s3v

2 + s5uw + s6vw + s8w
2

P = [0 : �b1 : a1] Q = [0 : �b2 : a2] R = [0 : �b3 : a3]

[Deligne;Borchmann,Mayrhofer,Palti,Weigand;
Cvetič,DK,Piragua]

C

[Cvetič, DK, Piragua, Taylor]

C



General low-energy effective theory

U(1)xU(1) 
charge lattice

[Cvetič, DK, Piragua, Taylor]

Charge
s

Multiplicity

(-2,-2)

(2,0)

(0,2)

(-2,-1)

(-1,-2)

(-1,1)

(1,1)

(1,0)

(0,1)

4[b31b
3
2s

3
3] · ([a1b2]� [KB ])

4[b31b
3
3s

3
3] · ([a1b3]� [KB ])

Locus
V1 = {a1 = b1 = 0}

V6 = {�23 = s3b
2
2 � s6a2b2 + s8a

2
2 = 0}

V2 = {a2 = b2 = 0}
V3 = {a3 = b3 = 0}

V5 = {�13 = s3b
2
1 � s6a1b1 + s8a

2
1 = 0}

V4 = {�12 = s3b
2
1 � s6a1b1 + s8a

2
1 = 0}

V7

V8

V9

✤ nesting of matter loci: (2,2) matter at V1 contained in locus V4 of (-2,-1) matter
➡ crucial for appearance of exotic non-Abelian matter!



3) The unHiggsing 



Reduction of Mordell-Weil group of X:
✤ tune moduli of X so that rational points in ell. curve degenerate P=Q=R

Geometry of unHiggsing U(1)’s

✤ rk(MW)=2                  
   �12 ! 0

�13 ! 0

[Cvetič, DK, Piragua, Taylor]



Reduction of Mordell-Weil group of X:
✤ tune moduli of X so that rational points in ell. curve degenerate P=Q=R

Geometry of unHiggsing U(1)’s

✤ rk(MW)=2
✤ rk(MW)=1:                 
   

�12 ! 0
�13 ! 0

[Cvetič, DK, Piragua, Taylor]



Reduction of Mordell-Weil group of X:
✤ tune moduli of X so that rational points in ell. curve degenerate P=Q=R
Reduction of Mordell-Weil group of X:
✤ tune moduli of X so that rational points in ell. curve degenerate P=Q=R

 Tuned geometry X:

           Gauge group:

               on divisors:

➡ Generalizes to more U(1)’s.

✤ rk(MW)=2
✤ rk(MW)=1:                  
✤ rk(MW)=0:                 

Geometry of unHiggsing U(1)’s

uf2(u, v, w) + �1�2(a1v + b1w)
3 = 0

G  =         SU(2) x SU(2) x SU(3)
U1(1):                       -             t      .       

U2(1):           -                         t      .

SU(3) divisor singular:
t = a21s8 � a1b1s6 + b21s3

�1
�2

�12 ! 0
�13 ! 0

[Cvetič, DK, Piragua, Taylor]



✤ Gauge symmetry from matter:

✤ In tuning                 :       

✤ (2,2) matter at V1 remains at its ODP singularity a1=b1=0.

Geometry of unHiggsing U(1)’s
G  =         SU(2) x SU(2) x SU(3)
U1(1):                       -             t      .       

U2(1):           -                         t      .

�1
�2

�12 ! 0

V4 t = a21s8 � a1b1s6 + b21s3SU(3) divisor D3={                                     =0 }

Charge
s

Multiplicity

(-2,-2)

(2,0)

(0,2)

(-2,-1)

Locus

V1 = {a1 = b1 = 0}

V2 = {a2 = b2 = 0}

V3 = {a3 = b3 = 0}

V4 = {�12 = s3b
2
1 � s6a1b1 + s8a

2
1 = 0}

[Cvetič, DK, Piragua, Taylor]

SU(3) divisor D={                                      =0}V4 t = a21s8 � a1b1s6 + b21s3



✤ Gauge symmetry from matter:

✤ In tuning                 :       

✤ (2,2) matter at V1 remains at its ODP singularity a1=b1=0.

Geometry of unHiggsing U(1)’s
G  =         SU(2) x SU(2) x SU(3)
U1(1):                       -             t      .       

U2(1):           -                         t      .

�1
�2

�12 ! 0

Charge
s

Multiplicity

(-2,-2)

(2,0)

(0,2)

(-2,-1)

Locus

V1 = {a1 = b1 = 0}

V2 = {a2 = b2 = 0}

V3 = {a3 = b3 = 0}

V4 = {�12 = s3b
2
1 � s6a1b1 + s8a

2
1 = 0}W-boson

[Cvetič, DK, Piragua, Taylor]

SU(3) divisor D={                                      =0}V4 t = a21s8 � a1b1s6 + b21s3



Non-Abelian matter spectrum by inspection of codim. two singularities

Claim: Two-index symmetric tensor at ODP of SU(3) divisor D3={t=0}.
➡Provide two checks.

The unHiggsed model

Vsing = {a1 = b1 = 0}

D1 = {�1 = 0}
D2 = {�2 = 0}
D3 = {t = 0}

V (1)
bf = {�1 = �2 = 0}

V (2)
bf = {�1 = t = 0}

V (3)
bf = {�2 = t = 0}

V (1)
f

V (2)
f

V (3)
f

[Cvetič, DK, Piragua, Taylor]



Higgsing  back to Abelian theory by bifundamentals:

Special cases of smaller G: Higgsing by adjoints. 

      U(1)2-theory                                             Non-Abelian theory
          Charge spectrum                                         SU(2)xSU(2)xSU(3)-reps

Matching requires 6 of SU(3).
➡ Indirect check for presence of 6 + 3 instead of 8 + 1.

Matching of effective field theories

U(1)2                                     SU(2)xU(1)xSU(2)                        G= SU(2)xSU(2)xSU(3)(1,2,3)(2,1,2)

(3,1,1) + (1,3,1)
(1,1,8)

(1,3,1) + (1,1,3)

(1,1,6)



4) Novel matter structures & non-TateWS-models



Get Weierstrass model                                 (                     no SU(2)’s) of the form

✤ Have WS-model with structure of I2 singularity if t is formal parameter:

✤ Identifying                                          we get I3 singularity by reducing       in the 
quotient ring 

✤ Note: R (or local rings) not UFD as t=0 has ODP singularity at a1=b1=0

✤ I3 looks non-split:              ,                           only SU(2) gauge group?
➡No: evasion of “standard” split condition due to special form of t=0.

Non-Tate Weierstrass models of singular divisors
[Cvetič, DK, Piragua, Taylor]

y

2 = x

3 + fx+ g

t = a21s8 � a1b1s6 + b21s3

� = t2�0

f0 6= �4 g0 6= �6

�1 = �2 = 1

g = g0 + g1t+ g2t
2f = f0 + f1t

g0 = 1
864

�
s26 � 4s3s8

�3
f0 = � 1

48

�
s26 � 4s3s8

�2for                                           ,

,

�0

R =

Ring of fcts. on B

hti



Intertwined structure of Weierstrass form and 

✤ Monodromy cover                                    :  

➡ split cover: I3s-fiber (SU(3) gauge group)

✤ can not deform or smooth out t=0 without reducing gauge symmetry
➡ matter at a1=b1=0 is symmetric + antisymmetric matter.

Generic divisor t=0: irreducible monodromy cover         non-split?   

Here:  t=0 and discr(t)=0 intersect tangentially
➡ discr(t)=x2 close to t=0

Subtle split conditions for singular divisors 
[Cvetič, DK, Piragua, Taylor]

[Grassi,Morrison]
 2 + (9g0/2f0) = 0

t = a21s8 � a1b1s6 + b21s3

f0 = � 1
48

�
s26 � 4s3s8

�2 ⇠ discr(t)2

g0 = 1
864

�
s26 � 4s3s8

�3 ⇠ discr(t)3
discr(t): discriminant of t 

as quadratic in (a1,b1)

consequences of this coincidence are most obvious by contrasting the geometry at hand
with a generic situation. In general, the intersection points of t = 0 and 9g

2f = 0 are the
branch points around which, in a resolution, two nodes in the reducible fiber over t = 0
are exchanged by a Z

2

-monodromy, cf. the left figure in Figure in 8. This reduces the
gauge algebra from su(3) to su(2) [24, ?]. In contrast, for the geometry at hand we have
a non-generic divisor t = 0 with double-points at a

1

= b
1

= 0 and discriminant d = 0,
which agrees with (5.32). Thus, t = 0 intersects d tangentially, i.e. t = d = 0 have only
double zeros, see the right picture in Figure 8. This double zero arises since two zeros of

Figure 8: Generic (left) and non-generic (right) Ins
3

along the divisor t = 0 with normal
and tangential crossing of t = 0 and d = 0, respectively.

multiplicity on have merged. Furthermore, as the zeros of d = 0 along t = 0 are also the
branch points of the monodromy cover we see that its branch points have come together
in pairs. As the monodromy around a pair of branch points is trivial, no nodes in the
resolution are not interchanged, leaving a full su(3) gauge algebra.

We emphasize that it is also this interplay between the structure of f , g and the
divisor t = 0 that does not permit us to deform t so that its ordinary double singularities
disappear. In fact, if we changed the structure of t without changing the Weierstrass form
(5.20), we would only have an order two vanishing of � at t = 0 and just an I

2

-singularity
with an su(2) gauge algebra, as noted above. If we changed only the Weierstrass form,
e.g. by modifying the leading coe�cient of f and g, while keeping t unchanged, we might
get an Ins

3

and again only an su(2) gauge algebra. Thus, the ordinary double points of
t = 0 have to support symmetric plus anti-symmetric matter representations, in contrast
to deformable double points, that generically support adjoints [17].

Let us conclude by showing that the zeros of t = d = 0 are indeed double-points. To
this end, we define the ideal

I := {t, d} = {s
8

a2
1

� s
6

a
1

b
1

+ s
3

b2
1

, s2
6

� 4s
3

s
1

} , (5.33)

Generically, there would be deg(t)·deg(d) = �2KB ·([s8]+2[a
1

]) points of multiplicity one
in the vanishing set V (I). Computing the primary decomposition of I we obtain only
one prime ideal p that is given in (5.26), showing the irreducibility of V (I). However,
the corresponding variety V (p) has multiplicity two inside V (I) as can be seen using the
resultant technique [6]. In other words V (I) consistent only of points of multiplicity two,
i.e. double zeros. Their number is computed by the class

[V (p)] = �KB · ([s
8

] + 2[a
1

]) = 1

2

deg(t) · deg(d) (5.34)

according to (5.28), which is half the product of the degrees of t and d as expected.

40

discr(t)=0

 2 + 1
4 (s

2
6 � 4s3s8) = 0



Completeness?
✤ Examples on              : [t]=5,6 and #(ODP)=1, 2 
➡ SU(3) on quartic with up to two ODP’s not covered (although its has adjoint 

Higgsing to U(1)2 ).

Further unHiggsings:
✤ Additional tuning of SU(3) on t=0 with ODP to smooth models 

Generalization:
✤ start with SU(3)2  or SU(6) and Higgs: field theory clear
✤ Geometric description = deformation of Weierstrass form is hard to find.

Completeness & Generalizations

talk by Nikhil Raghuram

t ! (xa1 + yb1)(a1 + zb1)

➡with bifundamental matter

1) SU(3)xSU(3)
t ! a21(b

2s3 � bs6 + s8)

➡with conventional matter

2) SU(6)

B = P2



III. Three-index symmetric tensor representations
[DK, Taylor]: to appear soon



1) Field Theory



6D anomaly-free theories with only 2’s and 8’s covered by F-theory with 
I2-singularity on genus g divisor D:

Change of matter: anomalies allow replace 6 adjoints by one 4 and two 2

✤ note that 4 is real rep: only one half-hyper at each triple point

➡D with non-deformable ordinary  
triple point singularity (OTP)  
Claim: 2x2x2=4 + 2 + 2

SU(2) gauge theories with three index symmetric tensors

x2 = D · (�4KB �D)
x3 = 1 + 1

2D · (D +KB)

  6 adjoint = Sym32 + fund. + fund.
g8 = 1

Need singularity on D  
with mP=3:                         =1gR ⌘ 1

2mP (mP � 1)g4 = 6 g2 = 0

4+2+2



2) An Abelian U(1)-model with q=3



Elliptic fibration X with MW-rank by fibration of special cubics in P2

✤ Two sections have the following [u:v:w]-coordinates

✤ distance between rational points controlled by

Abelian model with charge q=3

f2 = s1u
2 + s2uv + s3v

2 + s5uw + s6vw + s8w
2

[DK,Mayorga-Pena,Oehlmann,Piragua,Reuter]

C
uf2(u, v, w) + v(s4v

2 + s7vw + s8vw + s9w
2) = 0

P = [0 : 0 : 1] Q = [�s9PQ, s8PQ, s9(s3s
2
8 � s2s8s9 + s1s

2
9)]

PQ = s7s
2
8 � s6s8s9 + s5s

2
9



General low-energy effective theory
Matter spectrum: analysis of codimension two singularities 

✤ nesting structure: charge q=3 at singular locus of charge q=2 locus

[DK, Majorga-Pena,Piragua,Reuter,Oehlmann]

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

x11 =

x12 =

x13 =

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}



3) The unHiggsing 



Tune moduli of X so that P=Q

Matter to gauge symmetry:

✤ Codimension two to codimension one:   

 V(I2)                SU(2) divisor

✤ q=3 matter at V(I3) becomes ordinary triple point singularity of D.

UnHiggsing: qualitative picture
[DK,Taylor]

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

x12 =

x13 =

PQ = s7s
2
8 � s6s8s9 + s5s

2
9 ! 0

D =: {t := s4s
3
8 � s3s

2
8s9 + s2s8s

2
9 � s1s

3
9 = 0}



UnHiggsing: qualitative picture
[DK,Taylor]

PQ = s7s
2
8 � s6s8s9 + s5s

2
9 ! 0

D =: {t := s4s
3
8 � s3s

2
8s9 + s2s8s

2
9 � s1s

3
9 = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

{s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = PQ = 0}

x12 =

x13 =

W-boson

Tune moduli of X so that P=Q

Matter to gauge symmetry:

✤ Codimension two to codimension one:   

 V(I2)                SU(2) divisor

✤ q=3 matter at V(I3) becomes ordinary triple point singularity of D.



1) Tuning :

✤ In UFD, solve: 

✤ Special tuning:  

2) Gauge group:

   on singular divisors:

3) Non-Abelian matter

UnHiggsing: details
PQ = s7s

2
8 � s6s8s9 + s5s

2
9 ! 0

D = {s4s38 � s3s
2
8s9 + s2s8s

2
9 � s1s

3
9 = 0}

G  =  SU(2)

[DK,Taylor]



Higgsing  back to Abelian theory by adjoints:

✤ Number of adjoints is

✤ Full matching of Abelian spectrum through Higgsing

➡ Matching requires presence of three-index symmetric matter.

Matching of effective field theories

pg = 1 + 1
2D · (D +KB)� 3[s8] · [s9] � 1x3 =

U(1)                        G= SU(2)3

see also: [Morrison,Taylor]

[DK,Taylor]



4) Novel matter structures & non-TateWS-models



Get a Weierstrass model                                   of the form

Properties:
✤ Leading terms     ,      seemingly unrelated,
✤ No O(t) term in f,
✤ If t is formal variable, we have no vanishing of     .
✤ Chosen Weierstrass parametrization exhibits

✤ Get additional cancellation at order one so that

➡ I2-structure does not allow to change t: OTP non-deformable  
             presence of 4 representation of SU(2).

Non-Tate Weierstrass model
[DK, Taylor]

y

2 = x

3 + fx+ g

� = t2�0

f = f0 g = g0 + g1t

f0 g0

�

�|t=0 ⇠ s4s
3
8 � s3s

2
8s9 + s2s8s

2
9 � s1s

3
9 t ⌘ s4s

3
8 � s3s

2
8s9 + s2s8s

2
9 � s1s

3
9if 

�|t=0 = 4f3
0 + 27g20 ⇠ t



Completeness? 
✤ Constructed examples with              , [t]>8 and #(OTP)=0,…, 18.
➡ e.g. SU(2) on quintic with one OTP is missing (although it has adjoints)

Further unHiggsings:
✤ Tune/unHiggs SU(2) on                                                         = 0 with OTP to larger 

gauge group on smooth divisor

Generalizations: 
✤ start with SU(2)3  or SU(2)xG2 and Higgs/deform WS-model

Completeness & Generalizations

s8 ! as92) SU(2)xG2:

t ! (�s1 + as2 � a2s3 + a3s4)s
3
9

➡standard WS-model  
with conventional matter

t !
3Y

i=1

(nis8 +mis9)

➡non-standard WS-model  
with tri-fundamental matter

1) SU(2)xSU(2)xSU(2)

t = s4s
3
8 � s3s

2
8s9 + s2s8s

2
9 � s1s

3
9

B = P2

[DK,Taylor]



Start with SU(2)-model with three-index symmetric matter (at OTP) 
✤ Set s8=as9: get I0

*-singularity (G2) on s9=0 and I2-singularity on 

➡Conventional Weierstrass model with I2- and I0
*-singularity:  

conventional matter representations 

✤ Define deformation parameter                          .                            

✤ Rewrite f, g of original SU(2) model in terms of

➡Found deformation of Weierstrass model corresponding to Higgsing 
G2xSU(2)       SU(2).

Deformation of G2xSU(2) singularities

✏ := s8 � as9

[DK,Taylor]

� = s̃21s
6
9�

0,

✏

s̃1 = 0



III. Conclusions & Outlook



Summary
1. Used extremal transitions/unHiggsing to generate exotic non-Abelian matter from 

exotic Abelian matter.
2. First explicit and concrete realization of 

✤ SU(3) with two-index symmetric tensor 6: unHiggs U(1)2 with (2,2) matter.
✤ SU(2) with three-index symmetric tensor 4: unHiggs U(1) with q=3 matter.

3. Further unHiggsing to
✤ models with larger gauge group and both conventional and non-conventional 

matter (tri-fundamentals) 
➡ constructed deformations of Weierstrass models              Higgsing.

Outlook

✤ Window into new and mainly unexplored field of F-theory with exotic matter 

➡Generalization?

➡Systematic classification of Weierstrass models with singular divisors (cusp…)

✤ Physical applications to phenomenology, bounding max. U(1)-charge, new Tate-
Shafarevich groups?

work in progress…
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Thank you  
for your attention!


