Calabi-Yau manifolds realizing symplectically rigid monodromy tuples

Andreas Malmendier
Utah State University

F-theory at 20
Burke Institute, Caltech
February 22, 2016

(joint work with Chuck Doran, arXiv:1503.07500 + work in progress)

Irreducible Calabi-Yau operators $L \in \mathbb{C}[\theta, t]$

Irreducible Calabi-Yau operators $L \in \mathbb{C}[\theta, t]$ satisfy:
(1) $t=0$ point of maximal unipotent monodromy.
(2) L is self-dual: $\exists g \in \mathbb{Q}(t)^{\text {alg }}: L g=g L^{*} \Rightarrow \operatorname{Aut}(L / \mathbb{C}(t)) \subset \operatorname{Sp}_{n}(\mathbb{C})$.
(3) P has N-integral holomorphic solution at $t=0$.
(9) Further integrality properties (q-coordinate of mirror-map, Yukawa-coupling, instanton numbers).

CY-operators of order four intend to axiomatize properties of the Picard-Fuchs operator and periods for a family $\pi: X \rightarrow \mathbb{P}^{1}$ of Calabi-Yau threefolds, which has a large structure limit and $h^{2,1}=1$ on its generic fibers.

But families of this type are quite difficult to find!

Irreducible Calabi-Yau operators $L \in \mathbb{C}[\theta, t]$

Irreducible Calabi-Yau operators $L \in \mathbb{C}[\theta, t]$ satisfy:
(1) $t=0$ point of maximal unipotent monodromy.
(2) L is self-dual: $\exists g \in \mathbb{Q}(t)^{\text {alg }}: L g=g L^{*} \Rightarrow \operatorname{Aut}(L / \mathbb{C}(t)) \subset S p_{n}(\mathbb{C})$.
(3) P has N-integral holomorphic solution at $t=0$.
(9) Further integrality properties (q-coordinate of mirror-map, Yukawa-coupling, instanton numbers).
For rank 4, G. Almkvist et al. have a list of 565 CY-operators satisfying properties 1), 2), and 3).

Are there corresponding one-parameter families of Calabi-Yau threefolds with $h^{2,1}=1$ that realize L as Picard-Fuchs operators?

Irreducible Calabi-Yau operators $L \in \mathbb{C}[\theta, t]$

- The first 14 entries of the list are hypergeometric functions of the form (a_{i} certain rational numbers)

$$
{ }_{4} F_{3}\left(\begin{array}{c|c}
a_{1}, a_{2}, 1-a_{2}, 1-a_{1} & t \\
1,1,1
\end{array}\right)
$$

- Candelas et al. ['91] computed periods (and much more) for mirror of quintic family in $\mathbb{P}^{4}\left(\Rightarrow a_{1}=\frac{1}{5}, a_{2}=\frac{2}{5}\right)$:

$$
x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}-5 t x_{0} x_{1} x_{2} x_{3} x_{4}=0 .
$$

- Doran and Morgan ['06] derived all 14 classifying weight-3 VHS with deformation space $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ that resemble quintic family of Calabi-Yau threefolds; subsequently toric realizations were found by Doran et al.

What is a rigid mondromy tupel?

Fuchsian differential operator L of rank n with sing. locus $S \subset \mathbb{P}^{1}$ \Leftrightarrow Local system $\mathbb{L}(U):=\left\{f \in \mathcal{O}_{\mathbb{P}^{1} \backslash S}(U) \mid L(f)=0\right\}$ of rank n, \Leftrightarrow Monodromy representation

$$
\rho: \pi_{1}\left(\mathbb{P}^{1} \backslash S, x_{0}\right) \rightarrow \mathrm{GI}\left(\mathbb{L}_{x_{0}}\right) \cong \mathrm{GI}_{n}(\mathbb{C})
$$

\Leftrightarrow Monodromy tupel of rank n (up to simultaneous conjugation)

$$
\begin{aligned}
& T=\left(T_{1}, T_{2}, \ldots, T_{r}\right):=\left(\rho\left(\gamma_{1}\right), \rho\left(\gamma_{2}\right), \ldots, \rho\left(\gamma_{r}\right)\right) \in \mathrm{Gl}_{n}(\mathbb{C})^{r} \\
& \text { s.t. } \prod_{i=1}^{r} T_{i}=\mathbb{I} .
\end{aligned}
$$

Call a monodromy tupel linearly rigid if T is irreducible and up to conjugation in $G L_{n}(\mathbb{C})$ uniquely determined by Jordan form of its elements.
(1) Background
(1.2) Monodromy tupels

Decomposition of linearly-rigid monodromy tupels

Example of CY-operator with linearly rigid monodromy $L^{(n+1)}$ for ${ }_{n+1} F_{n}\left(\left.\begin{array}{c}a_{1}, \ldots, a_{n+1} \\ 1, \ldots, 1\end{array} \right\rvert\, t\right)=P\left\{\left.\begin{array}{ccc}0 & 1 & \infty \\ 0 & 0 & a_{1} \\ \vdots & & \vdots \\ 0 & n-1 & a_{n} \\ 0 & n-\sum a_{i} & a_{n+1}\end{array} \right\rvert\, t\right.$,
with certain $a_{j} \in \mathbb{Q} \backslash \mathbb{Z}$ for all j.

Decomposition of linearly-rigid monodromy tupels

Example of CY-operator with linearly rigid monodromy
$L^{(n+1)}$ for ${ }_{n+1} F_{n}\left(\left.\begin{array}{c}a_{1}, \ldots, a_{n+1} \\ 1, \ldots, 1\end{array} \right\rvert\, t\right)=P\left\{\left.\begin{array}{ccc}0 & 1 & \infty \\ \hline 0 & 0 & a_{1} \\ \vdots & & \vdots \\ 0 & n-1 & a_{n} \\ 0 & n-\sum a_{i} & a_{n+1}\end{array} \right\rvert\, t\right.$,
with certain $a_{j} \in \mathbb{Q} \backslash \mathbb{Z}$ for all j.
Hadamard product on hypergeometric functions functions:

$$
\begin{aligned}
\sum_{n=0}^{\infty} A_{n} t^{n} \star H \sum_{n=0}^{\infty} B_{n} t^{n}: & =\sum_{n=0}^{\infty} A_{n} B_{n} t^{n}, \\
{ }_{n+1} F_{n}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{n}, \alpha \\
c_{1}, \ldots c_{n-1}, 1
\end{array} \right\rvert\, t\right) & \doteq \underbrace{{ }^{2}+H}_{{ }_{1} F_{0}(\alpha ; \mid t)}{ }_{n} F_{n-1}\left(\left.\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{n} \\
c_{1}, \ldots c_{n-1}
\end{array} \right\rvert\, t\right) \\
& =\frac{1}{(1-t)^{\alpha}}
\end{aligned}
$$

(Similar for differential operators: middle Hadamard product.)

Decomposition of linearly-rigid monodromy tupels

Example of CY-operator with linearly rigid monodromy

$$
L^{(n+1)} \text { for }{ }_{n+1} F_{n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{n+1} \\
1, \ldots, 1
\end{array} \right\rvert\, t\right)=P\left\{\left.\begin{array}{ccc}
0 & 1 & \infty \\
\hline 0 & 0 & a_{1} \\
\vdots & & \vdots \\
0 & n-1 & a_{n} \\
0 & n-\sum a_{i} & a_{n+1}
\end{array} \right\rvert\, t,\right.
$$

with $a_{j} \in \mathbb{Q} \backslash \mathbb{Z}$ for all j.
Decomposition into rank-1 tupels:

$$
\begin{aligned}
{ }_{n+1} F_{n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{n+1} \\
1, \ldots, 1
\end{array} \right\rvert\, t\right)= & \underbrace{{ }_{1} F_{0}\left(a_{1} ; \mid t\right)} \star_{H} \cdots \star_{H}{ }_{1} F_{0}\left(a_{n+1} ; \mid t\right) . \\
& =\frac{1}{(1-t)^{a_{1}}}
\end{aligned}
$$

A similar procedure always works for any linearly-rigid monodromy.

Decomposition of linearly-rigid monodromy tupels

Decomposition into rank-1 tupels:

$$
{ }_{n+1} F_{n}\left(\left.\begin{array}{c}
a_{1}, \ldots, a_{n+1} \\
1, \ldots, 1
\end{array} \right\rvert\, t\right)={ }_{1} F_{0}\left(a_{1} ; \mid t\right) \star_{H} \cdots \star_{H}{ }_{1} F_{0}\left(a_{n+1} ; \mid t\right) .
$$

Proposition (N. Katz ['96])

If T is linearly rigid, it can be constructed via tensor- and middle Hadamard products of ${ }_{1} F_{0}(\alpha ; \mid$.$) 's.$

Deligne, N. Katz gave an arithmetic description of linear rigidity that generalizes to any reductive complex algebraic group.
Bogner, Reiter ['11] generalized decomposition result to Sp_{4}-rigid tupels.

But how geometric are these decomposition results?

Proposition (M.-Doran)

All rank-4 Calabi-Yau operators L of degree ≤ 2 and index ≤ 2 are the Picard-Fuchs operators of one-parameter families of K3-fibered ($\rho=18,19$) EFS Calabi-Yau threefolds.

There are 120 examples of this kind.

Proposition (M.-Doran)

All families are obtained through an iterative construction that produces families of EFS Calabi-Yau n-folds from families of EFS Calabi-Yau varieties of one dimension lower using a generalized functional invariant. In particular, all families are iteratively constructed from a single geometric object, the deformed Fermat quadric given by

$$
X_{0}^{2}+X_{1}^{2}+2 t X_{0} X_{1}=0
$$

(Lian's period computations for surfaces of general type/Fano varieties have the same starting point.)

Calabi-Yau n-folds related by Hadamard twists

- Euler integral transform:

$$
{ }_{n+1} F_{n}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2} \\
1, \ldots 1
\end{array} \right\rvert\, t\right) \doteq \int_{0}^{1} \frac{d x}{\sqrt{x(1-x)}}{ }_{n} F_{n-1}\left(\begin{array}{c}
\frac{1}{2}, \ldots, \frac{1}{2} \\
1, \ldots 1
\end{array} t x\right)
$$

- Hirarchy of twisted Legendre pencils:

$$
\begin{aligned}
E C_{t} & y_{1}^{2}=\left(1-t x_{1}\right) x_{1}\left(1-x_{1}\right), \\
K 3_{t} & y_{2}^{2}=\left(1-t x_{1} x_{2}\right) x_{1}\left(1-x_{1}\right) x_{2}\left(1-x_{2}\right), \\
C Y 3_{t} & y_{3}^{2}=\left(1-t x_{1} x_{2} x_{3}\right) x_{1}\left(1-x_{1}\right) x_{2}\left(1-x_{2}\right) x_{3}\left(1-x_{3}\right) .
\end{aligned}
$$

- Compute their periods:

$$
\begin{gathered}
\int_{A} \frac{d x_{1}}{y_{1}}=\int_{0}^{1} \frac{d x_{1}}{\sqrt{x_{1}\left(1-x_{1}\right)}} \frac{1}{\sqrt{1-t x_{1}}} \doteq{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid t\right), \\
\iint_{S} \frac{d x_{1} \wedge d x_{2}}{y_{2}}=\int_{0}^{1} \frac{d x_{2}}{\sqrt{x_{2}\left(1-x_{2}\right)}} \int_{0}^{1} \frac{d x_{1}}{y_{1}} \doteq{ }_{3} F_{2}\left(\left.\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1
\end{array} \right\rvert\, t\right), \\
\iiint_{C} \frac{d x_{1} \wedge d x_{2} \wedge d x_{3}}{y_{3}}=\int_{0}^{1} \frac{d x_{3}}{\sqrt{x_{3}\left(1-x_{3}\right)}} \iint_{S} \frac{d x_{1} \wedge d x_{2}}{y_{2}}={ }_{4} F_{3}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, t\right) .
\end{gathered}
$$

Calabi-Yau n-folds related by Hadamard twists

- Hirarchy of twisted Legendre pencils:

$$
\begin{array}{rlll}
p t_{t} & y_{0}^{2} & =1-t & \\
E_{t} & y_{1}^{2} & =\left(1-t x_{1}\right) x_{1}\left(1-x_{1}\right) & \\
K 3_{t} & y_{2}^{2} & =\left(1-t x_{1} x_{2}\right) x_{1}\left(1-x_{1}\right) x_{2}\left(1-x_{2}\right) & \\
C Y 3_{t} & y_{3}^{2} & =\left(1-t x_{1} x_{2} x_{3}\right) x_{1}\left(1-x_{1}\right) x_{2}\left(1-x_{2}\right) x_{3}\left(1-x_{3}\right) & \\
(\rho=19), \\
\left.h^{2,1}=1\right) .
\end{array}
$$

- Compute their periods:

$$
\begin{aligned}
\frac{1}{y_{0}} & =\frac{1}{\sqrt{1-t}}={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right), \\
\iint_{A} \frac{d x_{1}}{y_{1}} & ={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star_{H}{ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right)={ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid t\right), \\
\iint_{S} \frac{d x_{1} \wedge d x_{2}}{y_{2}} & ={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star_{H}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 \mid t\right)={ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, t\right), \\
\iiint_{C} \frac{d x_{1} \wedge d x_{2} \wedge d x_{3}}{y_{3}} & ={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star_{H}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, t\right)={ }_{4} F_{3}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, t\right) .
\end{aligned}
$$

(2.2) Extremal Families of Elliptic Curves

What about rk-2 rigid systems with 3 sing's?

- Rational elliptic surfaces \mathbf{S}

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2}(t) x-g_{3}(t), \quad \begin{aligned}
& g_{2} \in H^{0}(\mathcal{O}(4)), \\
& g_{3} \in H^{0}(\mathcal{O}(6)),
\end{aligned}[t: 1] \in \mathbb{P}^{1}
$$

- Consider extremal families of elliptic curves with $r k(\mathrm{MW})=0$, classified by Miranda, Persson ['86].
- Extremal rational surfaces (up to $*$-transfer w/ 3 sing.'s):

gen.			modular	μ
I_{4}	I_{1}	I_{1}^{*}	$1 / 2$	$\Gamma_{0}(4)$
I_{3}	I_{1}	I^{*}	$1 / 3$	$\Gamma_{0}(3)$
I_{2}	I_{1}	$I I I^{*}$	$1 / 4$	$\Gamma_{0}(2)$
I_{1}	I_{1}	$I I^{*}$	$1 / 6$	$\Gamma_{0}(1)^{*}$

Picard-Fuchs operators are rank-2 Calabi-Yau operators with holomorphic solution:

$$
\omega=\oint_{A} \frac{d x}{y}={ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid t)
$$

(2.2) Extremal Families of Elliptic Curves

What about rk-2 rigid systems with 3 sing's?

- Rational elliptic surfaces \mathbf{S}

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2}(t) x-g_{3}(t), \quad \begin{array}{ll}
g_{2} \in H^{0}(\mathcal{O}(4)), \\
g_{3} \in H^{0}(\mathcal{O}(6)),
\end{array} \quad[t: 1] \in \mathbb{P}^{1}
$$

- Consider extremal families of elliptic curves with rk $(\mathrm{MW})=0$, classified by Miranda, Persson ['86].
- Extremal rational surfaces (up to $*$-transfer w/ 3 sing.'s):

gen.				modular
I_{4}	I_{1}	I_{1}^{*}	$1 / 2$	G
$I_{3}(4)$				
I_{1}	I^{*}	$1 / 3$	$\Gamma_{0}(3)$	
I_{2}	I_{1}	$I I I^{*}$	$1 / 4$	$\Gamma_{0}(2)$
I_{1}	I_{1}	$I I^{*}$	$1 / 6$	$\Gamma_{0}(1)^{*}$

Picard-Fuchs operators are rank-2 Calabi-Yau operators with holomorphic solution:

$$
\omega=\oint_{A} \frac{d x}{y}={ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid t)=\overline{{ }_{1} F_{0}(\mu ; \mid t)} F_{0}(1-\mu ; \mid t)
$$

(2.2) Extremal Families of Elliptic Curves

What about rk-2 rigid systems with 3 sing's?

- Rational elliptic surfaces \mathbf{S}

$$
\overline{\mathbf{S}}: y^{2}=4 x^{3}-g_{2}(t) x-g_{3}(t), \quad \begin{array}{ll}
g_{2} \in H^{0}(\mathcal{O}(4)), \\
g_{3} \in H^{0}(\mathcal{O}(6)),
\end{array} \quad[t: 1] \in \mathbb{P}^{1} .
$$

- Consider extremal families of elliptic curves with rk $(\mathrm{MW})=0$, classified by Miranda, Persson ['86].
- Extremal rational surfaces (up to $*$-transfer w/ 3 sing.'s):

gen.			modular	μ
I_{4}	I_{1}	I_{1}^{*}	$1 / 2$	$\Gamma_{0}(4)$
I_{3}	I_{1}	$I V^{*}$	$1 / 3$	$\Gamma_{0}(3)$
I_{2}	I_{1}	$I I I^{*}$	$1 / 4$	$\Gamma_{0}(2)$
I_{1}	I_{1}	$I I^{*}$	$1 / 6$	$\Gamma_{0}(1)^{*}$

Picard-Fuchs operators are rank-2 Calabi-Yau operators with holomorphic solution:
$\omega=\oint_{A} \frac{d x}{y}={ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid t)={ }_{2} F_{1}\left(\left.{ }_{\frac{1}{2}}^{\mu, 1-\mu} \right\rvert\, t\right){ }^{\star} H{ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right)$

Extremal rational surfaces and their periods

- generalized functional invariant: specifying integers (i, j, α) with $i \in\{1,2\}, \alpha \in\left\{\frac{1}{2}, 1\right\}$, and $1 \leq j \leq 2 \alpha$ such that

$$
{ }_{2} F_{1}\left(\left.\begin{array}{c}
\mu, 1-\mu \\
1
\end{array} \right\rvert\, t\right) \doteq \oint_{|x|=\epsilon} \frac{d x}{x(x+1)^{\alpha}}{ }_{1} F_{0}\left(\frac{1}{2} ; \left\lvert\, \frac{c_{i j} t}{x^{i}(x+1)^{j}}\right.\right) .
$$

- min. Weierstrass model by twist and base transformation

$$
\begin{aligned}
p t_{t}: & y^{2}= \\
& =1-t \\
E C_{t}: \quad y^{2} \quad \stackrel{\downarrow_{(i, j, \alpha)}}{=} & \left(1-\frac{c_{i j} t}{x^{i}(x+1)^{j}}\right) x^{2}(x-1)^{2 \alpha} \\
& \\
& \Delta \doteq t^{n}(1-t)
\end{aligned}
$$

with | (n, μ) | $\left(4, \frac{1}{2}\right)$ | $\left(3, \frac{1}{3}\right)$ | $\left(2, \frac{1}{4}\right)$ | $\left(1, \frac{1}{6}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| (i, j, α) | $(1,1,1)$ | $(1,2,1)$ | $\left(1,1, \frac{1}{2}\right)$ | $\left(2,1, \frac{1}{2}\right)$ |

(2.3) Families of K3 surfaces with high Picard rank

What about rk-3 rigid systems with 3 sing's?

- Twist $E C_{t}$ with generalized functional invariant (i, j, α) :

$$
\begin{aligned}
E C_{t}: y^{2} & =4 x^{3}-g_{2}(t) x-g_{3}(t) \\
K 3_{t}: y^{2} & \downarrow(i, j, a) \\
= & 4 x^{3}-g_{2}(T) h(u)^{2} x-g_{3}(T) h(u)^{3}
\end{aligned}
$$

- Base change: double cover $T=\frac{c_{i j} t}{u^{\prime}(u+1)}$, twist $h(u)=u^{2}(u+1)^{2 \alpha}$.
- Example ($\mu=1 / 4,(i, j, \alpha)=(1,1,1)$): 1-param. family of K3 surfaces with M_{2}-polarization (Picard rank 19),

$\underbrace{$| $E_{\text {sing }}$ | I_{2} | I_{1} | $I I I^{*}$ |
| :--- | :--- | :--- | :--- |
| t | 0 | 1 | ∞ |$|}_{\text {srfc. is rational }}$

$E_{\text {sing }}$	I_{4}	$2 I_{1}$	$2 I I I^{*}$
s	∞	$T_{t}^{-1}(1)$	$0,-1$
srfc. is K3			

- K3's are one-parameter families with $n=1,2,3,4$ and $M_{n}=H \oplus E_{8} \oplus E_{8} \oplus\langle-2 n\rangle$ lattice polarization for $\mu=\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$.

(2.3) Families of K3 surfaces with high Picard rank

One-parameter families of M_{n}-polarized K3 surfaces

- Twist $E C_{t}$ with generalized functional invariant (i, j, α) :

$$
\begin{aligned}
E C_{t}: y^{2} & =4 x^{3}-g_{2}(t) x-g_{3}(t) \\
K 3_{t}: y^{2} & \downarrow(i, j, a) \\
= & 4 x^{3}-g_{2}(T) h(u)^{2} x-g_{3}(T) h(u)^{3}
\end{aligned}
$$

- Base change: double cover $T=\frac{c_{i j} t}{u^{(}(u+1)}$, twist $h(u)=u^{2}(u+1)^{2 \alpha}$.

Picard-Fuchs operators are rank-3 Calabi-Yau operators with holomorphic solution for $(i, j, \alpha)=(1,1,1)$:

$$
\Omega={ }_{3} F_{2}\left(\left.\begin{array}{c}
\mu, \frac{1}{2}, 1-\mu \\
1,1
\end{array} \right\rvert\, t\right)={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star{ }_{2} F_{1}(\mu, 1-\mu ; 1 \mid t)
$$

- RHS can be interpreted as modular form for $\Gamma_{0}(n)^{+}$with $n=1,2,3,4$ for $\mu=\frac{1}{6}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}$.

(2.4) Families of EFS CY threefolds

What about rk- 4 rigid systems with 3 sing's?

Example: iterated quadratic twists of extremal families of EC's

- Twist $E C_{t}\left(g_{2}(t), g_{3}(t)\right.$ from modular surface for $\left.\Gamma_{0}(n)\right)$:

$$
\begin{aligned}
E C_{t}: y^{2} & =4 x^{3}-g_{2}(t) x-g_{3}(t) \\
& \downarrow \\
K 3_{t}: y^{2} & =4 x^{3}-g_{2}(t u)(u(1-u))^{2} x-g_{3}(t u)(u(1-u))^{3} \\
& \downarrow \\
C Y 3_{t}: y^{2} & =4 x^{3}-g_{2}(t u v)(u v(1-u)(1-v))^{2} x-g_{3}(t u v)(u v(1-u)(1-v))^{3}
\end{aligned}
$$

- Homogeneous Weierstrass equation over $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
Y^{2} Z=4 X^{3}-G_{2}\left(t, U_{0}, U_{1}, V_{0}, V_{1}\right) X Z^{2}-G_{3}\left(t, U_{0}, U_{1}, V_{0}, V_{1}\right) Z^{3}
$$

with $\left(\mathbb{C}^{*}\right)^{3}$-action (satisfying $\sum \operatorname{deg}\left(\right.$ var $\left._{i}\right)=\operatorname{deg}(\mathrm{WEq})$).

- Canonical bundle formula for total space \Rightarrow total space is CY.
- Calabi-Yau threefold:

$$
=\left((\text { WEq })-\{X=Y=Z=0\}-\left\{U_{1}=U_{2}=0\right\}-\left\{V_{1}=V_{2}=0\right\}\right) /\left(\mathbb{C}^{*}\right)^{3}
$$

(2.4) Families of EFS CY threefolds

What about rk- 4 rigid systems with 3 sing's?

Example: iterated quadratic twists of extremal families of EC's

- Twist $E C_{t}\left(g_{2}(t), g_{3}(t)\right.$ from modular surface for $\left.\Gamma_{0}(n)\right)$:

$$
\begin{aligned}
& E C_{t}: y^{2}= \\
& \downarrow_{(1,1,1)} \\
& K 3_{t}: y^{2}-g_{2}(t) x-g_{3}(t) \\
&=4 x^{3}-g_{2}(t u)(u(1-u))^{2} x-g_{3}(t u)(u(1-u))^{3} \\
& C Y 3_{t}: y^{2} \stackrel{t^{(1,1, t)}}{=} 4 x^{3}-g_{2}(t u v)(u v(1-u)(1-v))^{2} x-g_{3}(t u v)(u v(1-u)(1-v))^{3}
\end{aligned}
$$

- 4 examples of Weierstrass models $W \rightarrow S$ over $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$

Picard-Fuchs operators are rank-4 Calabi-Yau operators with holomorphic solution:

$$
{ }_{4} F_{3}\left(\left.\begin{array}{c}
\mu, \frac{1}{2}, \frac{1}{2}, 1-\mu \\
1,1,1
\end{array} \right\rvert\, t\right)={ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star{ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right) \star{ }_{2} F_{1}\left(\left.\begin{array}{c}
\mu, 1-\mu \\
1
\end{array} \right\rvert\, t\right)
$$

Smooth models for Weierstrass models

- following Miranda ['83] we obtain smooth models from the Weierstrass models $W \rightarrow S$ as follows:
- blow-up S until discriminant $\Delta_{\text {red }}$ has simple normal crossings,
- continue until only small list of collisions of Kodaira-types left,
- obtain birational Weierstrass model $W^{\prime} \rightarrow S^{\prime}$,
- observe: only blowing up $(4,6,12)$-points, so W^{\prime} is still $C Y$,
- X^{\prime}, S^{\prime} smooth; $f: X^{\prime} \rightarrow W^{\prime} \rightarrow S^{\prime}$ flat, relat. minimal,
- resolution of collision II + IV must be handled separately.
- for $t \neq 0,1:\left\lceil E C_{t}: I_{n}, I_{1}, I I^{*} / I I I^{*} / I V^{*} I_{1}^{*}\right\rceil$

$\stackrel{n=4}{\Rightarrow}$

- $h^{1,1}\left(S^{\prime}\right)=T+1=2+31 / 21 / 15 / 13$ for $n=1 / 2 / 3 / 4$

Elliptic fibrations on mirror families

- 1-parameter family of Fermat hypersurface in \mathbb{P}^{n},

$$
X_{0}^{n+1}+X_{1}^{n+1}+\cdots+X_{n}^{n+1}+(n+1) \lambda X_{0} X_{1} \cdots X_{n}=0
$$

divide by $(\mathbb{Z} /(n+1) \mathbb{Z})^{n-1}$ to construct mirror family:

$$
f_{n}\left(x_{1}, \ldots, x_{n}, t\right)=x_{1} \cdots x_{n}\left(x_{1}+\cdots+x_{n}+1\right)+\frac{t}{(n+1)^{n+1}}=0 .
$$

- Periods follow from residue computation:

$$
\underbrace{\int \ldots \int_{K_{n}}}_{n-1} \frac{d x_{2} \wedge \ldots d x_{n}}{\partial_{x_{1}} f_{n}\left(x_{1}, \ldots, x_{n}, t\right)} \doteq{ }_{n} F_{n-1}\left(\begin{array}{ccc}
\frac{1}{n+1} & \ldots & \frac{n}{n+1} \\
1, \ldots, 1 & t \\
& \ldots,
\end{array}\right.
$$

- Iterative structure, e.g., mirror-quartic $(n=3)$ is fibered by cubics $(n=2)$, by setting $\tilde{x}_{1}=\frac{x_{1}}{x_{3}+1}, \tilde{x}_{2}=\frac{x_{2}}{x_{3}+1}, \tilde{\varepsilon}=-\frac{27 t}{256 x_{3}\left(x_{3}+1\right)^{3}}$.
(2) Results
(2.4) Families of EFS CY threefolds

Elliptic fibrations on mirror families

- families of EFS Calabi-Yau n-folds over $\mathbb{P}^{1} \backslash\{0,1, \infty\}$,
- fibrations generated using generalized functional invariant,
- CY-operator and holomorphic solution by Hadamard-twist.

n	mirror	fiber	construction	period
1	quadric WEq.:	$\begin{gathered} 2 \text { points } \\ =1-t \end{gathered}$		${ }_{1} F_{0}\left(\frac{1}{2} ; \mid t\right)$
2	cubic WEq.: y^{2}	$\begin{aligned} & \text { EC's form rational srfc. } \\ & \text { with sing's } I_{3}, I_{1}, I V^{*} \\ & \text { and } M W=\mathbb{Z} / 3 \mathbb{Z} \\ &=\left(1-\frac{2^{2} t}{3^{3} x^{2}(x+1)}\right) \end{aligned}$	$\begin{array}{r} (2,1,1) \\ +1))^{2} \Rightarrow \end{array}$	$\begin{aligned} & { }_{2} F_{1}\left(\frac{1}{3}, \frac{2}{3}\right. \\ & Y^{2}=4 X \end{aligned}$
3	quartic WEq.:		$\begin{aligned} & \left\{\begin{array}{l} (3,1,1) \\ (2,1,1) \end{array}\right. \\ & -1) \\ & (u(u+1) \end{aligned}$	$\begin{aligned} & { }_{3}{ }_{3} F_{2}\left(\frac{1}{4}, \frac{2}{4}, \frac{1}{4}\right. \\ & X-g_{3}(\end{aligned}$
4	quintic WEq.:	$\begin{aligned} & C Y 3^{\prime} \text { sover } \mathbb{P}^{1} \times \mathbb{P}^{1} \\ & \text { with } h^{2,1}=1, h^{1,1}=101, \\ & \text { fibered by } M_{3} \text {-pol. } K 3^{\prime} \mathrm{s} \end{aligned}, \begin{aligned} & =4 X^{3}-g_{2}\left(\frac{2^{2} 5^{5} v^{3}}{}\right. \end{aligned}$	$\left\{\begin{array}{l} (3,2,1) \\ (1,1,1) \\ (2,1,1) \end{array}\right.$	$\begin{aligned} & { }_{4} F_{3}\left(\frac{1}{5}, \frac{2}{5},\right. \\ & 1, \\ & +1) v(v \end{aligned}$

Summary

- Iterative procedure constructs families of EFS Calabi-Yau ($\mathrm{n}+1$)-folds with $h^{n, 1}=1$, holom. periods, and PF operators:

- allows for construction of Miranda elliptic fibrations,
- contains all fibrations of the Calabi-Yau threefolds from Doran, Morgan ['06] by M or M_{n} polarized K3's,
- produces all know examples of degree-2, rank-4 Calabi-Yau operators as geometric Picard-Fuchs operators.

Summary

- Iterative procedure constructs families of EFS Calabi-Yau ($\mathrm{n}+1$)-folds with $h^{n, 1}=1$, holom. periods, and PF operators:

- allows for construction of Miranda elliptic fibrations,
- contains all fibrations of the Calabi-Yau threefolds from Doran, Morgan ['06] by M or M_{n} polarized K3's,
- produces all know examples of degree-2, rank-4 Calabi-Yau operators as geometric Picard-Fuchs operators.

Thank your for your attention.

