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Calabi-Yau manifolds realizing symplectically rigid monodromy tuples

(1) Background

(1.1) Calabi-Yau operators

Irreducible Calabi-Yau operators L ∈ C[θ, t]

Irreducible Calabi-Yau operators L ∈ C[θ, t] satisfy:

1 t = 0 point of maximal unipotent monodromy.

2 L is self-dual: ∃ g ∈ Q(t)alg : Lg = gL∗ ⇒ Aut(L/C(t)) ⊂ Spn(C).

3 P has N-integral holomorphic solution at t = 0.

4 Further integrality properties (q-coordinate of mirror-map,
Yukawa-coupling, instanton numbers).

CY-operators of order four intend to axiomatize properties of the
Picard-Fuchs operator and periods for a family π : X → P1 of
Calabi-Yau threefolds, which has a large structure limit and
h2,1 = 1 on its generic fibers.

But families of this type are quite difficult to find!
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Irreducible Calabi-Yau operators L ∈ C[θ, t] satisfy:

1 t = 0 point of maximal unipotent monodromy.

2 L is self-dual: ∃ g ∈ Q(t)alg : Lg = gL∗ ⇒ Aut(L/C(t)) ⊂ Spn(C).

3 P has N-integral holomorphic solution at t = 0.

4 Further integrality properties (q-coordinate of mirror-map,
Yukawa-coupling, instanton numbers).

For rank 4, G. Almkvist et al. have a list of 565 CY-operators
satisfying properties 1), 2), and 3).

Are there corresponding one-parameter families of Calabi-Yau
threefolds with h2,1 = 1 that realize L as Picard-Fuchs operators?
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(1) Background

(1.1) Calabi-Yau operators

Irreducible Calabi-Yau operators L ∈ C[θ, t]

The first 14 entries of the list are hypergeometric functions
of the form (ai certain rational numbers)

4F3

(
a1, a2, 1− a2, 1− a1

1, 1, 1

∣∣∣ t) .

Candelas et al. [’91] computed periods (and much more) for
mirror of quintic family in P4 (⇒ a1 = 1

5 , a2 = 2
5 ):

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5t x0x1x2x3x4 = 0 .

Doran and Morgan [’06] derived all 14 classifying weight-3
VHS with deformation space P1\{0, 1,∞} that resemble
quintic family of Calabi-Yau threefolds; subsequently toric
realizations were found by Doran et al.
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(1) Background

(1.2) Monodromy tupels

What is a rigid mondromy tupel?

Fuchsian differential operator L of rank n with sing. locus S ⊂ P1

⇔ Local system L(U) := {f ∈ OP1\S(U)|L(f ) = 0} of rank n,
⇔ Monodromy representation

ρ : π1(P1\S , x0)→ Gl(Lx0) ∼= Gln(C) ,

⇔ Monodromy tupel of rank n (up to simultaneous conjugation)

T = (T1,T2, . . . ,Tr ) :=
(
ρ(γ1), ρ(γ2), . . . , ρ(γr )

)
∈ Gln(C)r

s.t.
r∏

i=1

Ti = I .

Call a monodromy tupel linearly rigid if T is irreducible and up to
conjugation in GLn(C) uniquely determined by Jordan form of its
elements.
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(1) Background

(1.2) Monodromy tupels

Decomposition of linearly-rigid monodromy tupels

Example of CY-operator with linearly rigid monodromy

L(n+1) for n+1Fn

(
a1, . . . , an+1

1, . . . , 1

∣∣∣ t) = P



0 1 ∞
0 0 a1
...

... t
0 n − 1 an
0 n −

∑
ai an+1


,

with certain aj ∈ Q\Z for all j .

Hadamard product on hypergeometric functions functions:

∞∑
n=0

Ant
n ?H

∞∑
n=0

Bnt
n :=

∞∑
n=0

An Bn t
n ,

n+1Fn

(
a1, a2, . . . , an, α
c1, . . . cn−1, 1

∣∣∣ t) .
= 1F0

(
α;
∣∣∣ t)︸ ︷︷ ︸

=
1

(1− t)α

?H nFn−1

(
a1, a2, . . . , an
c1, . . . cn−1

∣∣∣ t)

(Similar for differential operators: middle Hadamard product.)
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∞∑
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c1, . . . cn−1, 1

∣∣∣ t) .
= 1F0

(
α;
∣∣∣ t)︸ ︷︷ ︸
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∣∣∣ t)

(Similar for differential operators: middle Hadamard product.)



Calabi-Yau manifolds realizing symplectically rigid monodromy tuples

(1) Background

(1.2) Monodromy tupels

Decomposition of linearly-rigid monodromy tupels

Example of CY-operator with linearly rigid monodromy

L(n+1) for n+1Fn

(
a1, . . . , an+1

1, . . . , 1

∣∣∣ t) = P



0 1 ∞
0 0 a1
...

... t
0 n − 1 an
0 n −

∑
ai an+1


,

with aj ∈ Q\Z for all j .

Decomposition into rank-1 tupels:

n+1Fn

(
a1, . . . , an+1

1, . . . , 1

∣∣∣ t) = 1F0(a1; |t)︸ ︷︷ ︸
=

1

(1− t)a1

?H · · · ?H 1F0(an+1; |t) .

A similar procedure always works for any linearly-rigid monodromy.
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(1) Background

(1.2) Monodromy tupels

Decomposition of linearly-rigid monodromy tupels

Decomposition into rank-1 tupels:

n+1Fn

(
a1, . . . , an+1

1, . . . , 1

∣∣∣ t) = 1F0(a1; |t) ?H · · · ?H 1F0(an+1; |t) .

Proposition (N. Katz [’96])

If T is linearly rigid, it can be constructed via tensor- and middle
Hadamard products of 1F0(α; |.)’s.

Deligne, N. Katz gave an arithmetic description of linear rigidity
that generalizes to any reductive complex algebraic group.

Bogner, Reiter [’11] generalized decomposition result to Sp4-rigid
tupels.

But how geometric are these decomposition results?
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(2) Results

Proposition (M.-Doran)

All rank-4 Calabi-Yau operators L of degree ≤ 2 and index ≤ 2 are
the Picard-Fuchs operators of one-parameter families of K3-fibered
(ρ = 18, 19) EFS Calabi-Yau threefolds.

There are 120 examples of this kind.

Proposition (M.-Doran)

All families are obtained through an iterative construction that
produces families of EFS Calabi-Yau n-folds from families of EFS
Calabi-Yau varieties of one dimension lower using a generalized
functional invariant. In particular, all families are iteratively
constructed from a single geometric object, the deformed Fermat
quadric given by

X 2
0 + X 2

1 + 2tX0X1 = 0.

(Lian’s period computations for surfaces of general type/Fano
varieties have the same starting point.)
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(2) Results

(2.1) Twisted Legendre Pencils

Calabi-Yau n-folds related by Hadamard twists

Euler integral transform:

n+1Fn

(
1
2
, 1

2
, . . . , 1

2
1, . . . 1

∣∣∣ t) .
=

ˆ 1

0

dx√
x(1− x)

nFn−1

(
1
2
, . . . , 1

2
1, . . . 1

∣∣∣ t x)

Hirarchy of twisted Legendre pencils:

ECt y2
1 = (1− t x1) x1 (1− x1) ,

K3t y2
2 = (1− t x1 x2) x1 (1− x1) x2(1− x2) ,

CY 3t y2
3 = (1− t x1 x2 x3) x1 (1− x1) x2(1− x2) x3 (1− x3) .

Compute their periods:ˆ
A

dx1

y1
=

ˆ 1

0

dx1√
x1(1− x1)

1
√

1− t x1

.
= 2F1

(
1

2
,

1

2
; 1
∣∣∣ t) ,

¨
S

dx1 ∧ dx2

y2
=

ˆ 1

0

dx2√
x2(1− x2)

ˆ 1

0

dx1

y1

.
= 3F2

(
1
2
, 1

2
, 1

2
1, 1

∣∣∣ t) ,

˚
C

dx1 ∧ dx2 ∧ dx3

y3
=

ˆ 1

0

dx3√
x3(1− x3)

¨
S

dx1 ∧ dx2

y2

.
= 4F3

(
1
2
, 1

2
, 1

2
, 1

2
1, 1, 1

∣∣∣ t) .
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(2) Results

(2.1) Twisted Legendre Pencils

Calabi-Yau n-folds related by Hadamard twists

Hirarchy of twisted Legendre pencils:

ptt y2
0 = 1− t (quadric pencil) ,

Et y2
1 = (1− t x1) x1 (1− x1) (extremal) ,

K3t y2
2 = (1− t x1 x2) x1 (1− x1) x2(1− x2) (ρ = 19) ,

CY 3t y2
3 = (1− t x1 x2 x3) x1 (1− x1) x2(1− x2) x3 (1− x3) (h2,1 = 1) .

Compute their periods:

1

y0
=

1
√

1− t
= 1F0

(
1

2
;
∣∣ t) ,

ˆ
A

dx1

y1
= 1F0

(
1

2
;
∣∣ t) ?H 1F0

(
1

2
;
∣∣ t) = 2F1

(
1

2
,

1

2
; 1
∣∣ t) ,

¨
S

dx1 ∧ dx2

y2
= 1F0

(
1

2
;
∣∣ t) ?H 2F1

(
1

2
,

1

2
; 1
∣∣ t) = 3F2

(
1
2
, 1

2
, 1

2
1, 1

∣∣∣ t) ,

˚
C

dx1 ∧ dx2 ∧ dx3

y3
= 1F0

(
1

2
;
∣∣ t) ?H 3F2

(
1
2
, 1

2
, 1

2
1, 1

∣∣∣ t) = 4F3

(
1
2
, 1

2
, 1

2
, 1

2
1, 1, 1

∣∣∣ t) .
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(2) Results

(2.2) Extremal Families of Elliptic Curves

What about rk-2 rigid systems with 3 sing’s?
Rational elliptic surfaces S

S̄ : y2 = 4 x3−g2(t) x−g3(t) ,
g2 ∈ H0(O(4)),
g3 ∈ H0(O(6)),

[t : 1] ∈ P1.

Consider extremal families of elliptic curves with
rk(MW) = 0, classified by Miranda, Persson [’86].

Extremal rational surfaces (up to ∗-transfer w/ 3 sing.’s):

gen. modular µ G
I4 I1 I ∗1 1/2 Γ0(4)
I3 I1 IV ∗ 1/3 Γ0(3)
I2 I1 III ∗ 1/4 Γ0(2)
I1 I1 II ∗ 1/6 Γ0(1)∗

Picard-Fuchs operators are rank-2 Calabi-Yau operators with
holomorphic solution:

ω =
¸
A

dx
y = 2F1(µ, 1− µ; 1|t)
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Picard-Fuchs operators are rank-2 Calabi-Yau operators with
holomorphic solution:

ω =
¸
A

dx
y = 2F1(µ, 1− µ; 1|t) =

((((((((((((((hhhhhhhhhhhhhh
1F0(µ; |t) ?H 1F0(1− µ; |t)
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(2) Results

(2.2) Extremal Families of Elliptic Curves

What about rk-2 rigid systems with 3 sing’s?
Rational elliptic surfaces S

S̄ : y2 = 4 x3−g2(t) x−g3(t) ,
g2 ∈ H0(O(4)),
g3 ∈ H0(O(6)),

[t : 1] ∈ P1.

Consider extremal families of elliptic curves with
rk(MW) = 0, classified by Miranda, Persson [’86].

Extremal rational surfaces (up to ∗-transfer w/ 3 sing.’s):

gen. modular µ G
I4 I1 I ∗1 1/2 Γ0(4)
I3 I1 IV ∗ 1/3 Γ0(3)
I2 I1 III ∗ 1/4 Γ0(2)
I1 I1 II ∗ 1/6 Γ0(1)∗

Picard-Fuchs operators are rank-2 Calabi-Yau operators with
holomorphic solution:

ω =
¸
A

dx
y = 2F1(µ, 1− µ; 1|t) = 2F1

(
µ, 1− µ

1
2

∣∣∣ t) ?H 1F0

(
1
2 ; |t

)
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(2) Results

(2.2) Extremal Families of Elliptic Curves

Extremal rational surfaces and their periods

generalized functional invariant: specifying integers (i , j , α)
with i ∈ {1, 2}, α ∈ {1

2 , 1}, and 1 ≤ j ≤ 2α such that

2F1

(
µ, 1− µ

1

∣∣∣ t) .
=

˛
|x |=ε

dx

x(x + 1)α
1F0

(
1

2
;
∣∣∣ cij t

x i (x + 1)j

)
.

min. Weierstrass model by twist and base transformation

ptt : y2 = 1− t
↓ (i , j , α)

ECt : y2 =
(

1− cij t

x i (x+1)j

)
x2(x − 1)2α ,

∆
.

= tn(1− t) .

with
(n, µ) (4, 1

2 ) (3, 1
3 ) (2, 1

4 ) (1, 1
6 )

(i , j , α) (1, 1, 1) (1, 2, 1) (1, 1, 1
2 ) (2, 1, 1

2 )
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(2) Results

(2.3) Families of K3 surfaces with high Picard rank

What about rk-3 rigid systems with 3 sing’s?

Twist ECt with generalized functional invariant (i , j , α):

ECt : y2 = 4 x3 − g2(t) x − g3(t)
↓ (i , j , α)

K3t : y2 = 4 x3 − g2(T ) h(u)2x − g3(T ) h(u)3

Base change: double cover T =
cij t

ui (u+1)j
, twist h(u) = u2(u + 1)2α.

Example (µ = 1/4, (i , j , α) = (1, 1, 1)): 1-param. family of K3
surfaces with M2-polarization (Picard rank 19),

Esing I2 I1 III ∗

t 0 1 ∞︸ ︷︷ ︸
srfc. is rational

Esing I4 2 I1 2 III ∗

s ∞ T−1
t (1) 0,−1︸ ︷︷ ︸

srfc. is K3

K3’s are one-parameter families with n = 1, 2, 3, 4 and
Mn = H ⊕ E8 ⊕ E8 ⊕ 〈−2n〉 lattice polarization for µ = 1

6 ,
1
4 ,

1
3 ,

1
2 .
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(2) Results

(2.3) Families of K3 surfaces with high Picard rank

One-parameter families of Mn-polarized K3 surfaces

Twist ECt with generalized functional invariant (i , j , α):

ECt : y2 = 4 x3 − g2(t) x − g3(t)
↓ (i , j , α)

K3t : y2 = 4 x3 − g2(T ) h(u)2x − g3(T ) h(u)3

Base change: double cover T =
cij t

ui (u+1)j
, twist h(u) = u2(u + 1)2α.

Picard-Fuchs operators are rank-3 Calabi-Yau operators with
holomorphic solution for (i , j , α) = (1, 1, 1):

Ω = 3F2

 µ, 1
2
, 1−µ

1, 1

∣∣∣t = 1F0

(
1
2 ; |t

)
?H 2F1 (µ, 1− µ; 1|t)

RHS can be interpreted as modular form for Γ0(n)+ with
n = 1, 2, 3, 4 for µ = 1

6 ,
1
4 ,

1
3 ,

1
2 .
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(2) Results

(2.4) Families of EFS CY threefolds

What about rk-4 rigid systems with 3 sing’s?

Example: iterated quadratic twists of extremal families of EC’s

Twist ECt (g2(t), g3(t) from modular surface for Γ0(n)):

ECt : y2 = 4 x3 − g2(t) x − g3(t)
↓

K3t : y2 = 4 x3 − g2(tu)
(
u(1− u)

)2
x − g3(tu)

(
u(1− u)

)3

↓
CY 3t : y2 = 4 x3 − g2(tuv)

(
uv(1− u)(1− v)

)2
x − g3(tuv)

(
uv(1− u)(1− v)

)3

Homogeneous Weierstrass equation over P1 × P1:

Y 2 Z = 4X 3 − G2(t,U0,U1,V0,V1)X Z 2 − G3(t,U0,U1,V0,V1)Z
3

with (C∗)3-action (satisfying
∑

deg(vari ) = deg(WEq)).

Canonical bundle formula for total space ⇒ total space is CY.

Calabi-Yau threefold:
=
(
(WEq)−{X = Y = Z = 0}−{U1 = U2 = 0}−{V1 = V2 = 0}

)
/(C∗)3
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(2) Results

(2.4) Families of EFS CY threefolds

What about rk-4 rigid systems with 3 sing’s?

Example: iterated quadratic twists of extremal families of EC’s

Twist ECt (g2(t), g3(t) from modular surface for Γ0(n)):

ECt : y2 = 4 x3 − g2(t) x − g3(t)
↓ (1, 1, 1)

K3t : y2 = 4 x3 − g2(tu)
(
u(1− u)

)2
x − g3(tu)

(
u(1− u)

)3

↓ (1, 1, 1)

CY 3t : y2 = 4 x3 − g2(tuv)
(
uv(1− u)(1− v)

)2
x − g3(tuv)

(
uv(1− u)(1− v)

)3

4 examples of Weierstrass models W → S over S = P1 × P1

Picard-Fuchs operators are rank-4 Calabi-Yau operators with
holomorphic solution:

4F3

 µ, 1
2
, 1

2
, 1−µ

1, 1, 1

∣∣∣t = 1F0

(
1
2 ; |t

)
? 1F0

(
1
2 ; |t

)
? 2F1

 µ, 1−µ
1

∣∣∣t
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(2) Results

(2.4) Families of EFS CY threefolds

Smooth models for Weierstrass models

following Miranda [’83] we obtain smooth models from the
Weierstrass models W → S as follows:

blow-up S until discriminant ∆red has simple normal crossings,
continue until only small list of collisions of Kodaira-types left,
obtain birational Weierstrass model W ′ → S ′,
observe: only blowing up (4, 6, 12)-points, so W ′ is still CY,
X ′,S ′ smooth; f : X ′ →W ′ → S ′ flat, relat. minimal,
resolution of collision II + IV must be handled separately.

for t 6= 0, 1:
[
ECt : In, I1, II

∗/III ∗/IV ∗I ∗1

]
n=4⇒

h1,1(S ′) = T + 1 = 2 + 31/21/15/13 for n = 1/2/3/4
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(2) Results

(2.4) Families of EFS CY threefolds

Elliptic fibrations on mirror families

1-parameter family of Fermat hypersurface in Pn,

X n+1
0 + X n+1

1 + · · ·+ X n+1
n + (n + 1)λX0X1 · · ·Xn = 0 ,

divide by (Z/(n + 1)Z)n−1 to construct mirror family:

fn(x1, . . . , xn, t) = x1 · · · xn
(
x1 + · · ·+ xn + 1

)
+

t

(n + 1)n+1
= 0 .

Periods follow from residue computation:

ˆ
. . .

ˆ
Kn︸ ︷︷ ︸

n−1

dx2 ∧ . . . dxn
∂x1 fn(x1, . . . , xn, t)

.
= nFn−1

( 1
n+1 . . . n

n+1

1, . . . , 1

∣∣∣ t ) .

Iterative structure, e.g., mirror-quartic (n = 3) is fibered by
cubics (n = 2), by setting x̃1 =

x1
x3+1

, x̃2 =
x2

x3+1
, t̃ = − 27 t

256 x3 (x3+1)3 .
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(2) Results

(2.4) Families of EFS CY threefolds

Elliptic fibrations on mirror families

families of EFS Calabi-Yau n-folds over P1\{0, 1,∞},
fibrations generated using generalized functional invariant,

CY-operator and holomorphic solution by Hadamard-twist.

n mirror fiber construction period

1 quadric 2 points – 1F0

(
1
2

;
∣∣ t)

WEq.: Y 2 = 1− t

2 cubic
EC’s form rational srfc.
with sing’s I3, I1, IV

∗

and MW = Z/3Z
(2, 1, 1) 2F1

(
1
3
, 2

3
1

∣∣∣ t) .
= 2F1

(
1
3
, 2

3
1
2

∣∣∣t) ? 1F0

(
1
2

; |t
)

WEq.: y2 =
(

1− 22 t
33x2 (x+1)

) (
x(x + 1)

)2 ⇒ Y 2 = 4X 3 − g2(t)X − g3(t)

3 quartic
K3’s with M2-pol.,
with sing’s I12, 4I1, IV

∗

and MW = Z/3Z

{
(3, 1, 1)
(2, 1, 1)

3F2

(
1
4
, 2

4
, 3

4
1, 1

∣∣∣t) .
= 3F2

(
1
4
, 2

4
, 3

4
1
3
, 2

3

∣∣∣t) ? 2F1

(
1
3
, 2

3
1

∣∣∣ t)

WEq.: Y 2 = 4X 3 − g2

(
− 33 t

44 u3 (u+1)

) (
u(u + 1)

)4
X − g3 (. . . )

(
u(u + 1)

)6

4 quintic
CY3’s over P1 × P1

with h2,1 = 1, h1,1 = 101,
fibered by M3-pol. K3’s


(3, 2, 1)
(1, 1, 1)
(2, 1, 1)

4F3

(
1
5
, 2

5
, 3

5
, 4

5
1, 1, 1

∣∣∣t) .
= 4F3

(
1
5
, 2

5
, 3

5
, 4

5
1
3
, 2

3
, 1

2

∣∣∣t) ? 1F0

(
1
2

;

∣∣∣t) ? 2F1

(
1
3
, 2

3
1

∣∣∣ t)

WEq.: Y 2 = 4X 3 − g2

(
33 t

22 55 v3 (v+1)2 u (u+1)

) (
u(u + 1)v(v + 1)

)4
X − g3 (. . . )

(
u(u + 1)v(v + 1)

)6



Calabi-Yau manifolds realizing symplectically rigid monodromy tuples

(3) Summary

Summary

Iterative procedure constructs families of EFS Calabi-Yau
(n+1)-folds with hn,1 = 1, holom. periods, and PF operators:

ptt
(i,j,α)−→ ECt

(1,1,1)−→ K3t
(i′,j′,α′)−→ CY 3t

(1,1,1)−→ CY 4t
↓ ↓ ↓ ↓ ↓

1F0
?−→ 2F1

?−→ 3F2
?−→ 4F3

?−→ 5F4

allows for construction of Miranda elliptic fibrations,

contains all fibrations of the Calabi-Yau threefolds from
Doran, Morgan [’06] by M or Mn polarized K3’s,

produces all know examples of degree-2, rank-4 Calabi-Yau
operators as geometric Picard-Fuchs operators.

Thank your for your attention.
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