Fitting fermion masses in F-theory

ernando marchesano

Ift
Instituto de Física
UAM-CSIC

Fitting fermion masses in F-theory

ernando marchesano

Based on:

Carta, F.M., Zoccarato
1512.04846
and
F.M., Regalado, Zoccarato
1503.02683

Key promises of F-theory GUTs

- Gauge coupling unification
- Realistic Yukawa couplings $\left\{\begin{array}{l}\star \text { Tree level top Yukawa (b.t. type II) } \\ \downarrow \text { Local computation (b.t. heterotic) }\end{array}\right.$
- Doublet-triplet splitting via hypercharge flux

Key promises of F-theory GUTs

- Gauge coupling unification
- Realistic Yukawa couplings $\left\{\begin{array}{l}\downarrow \text { Tree level top Yukawa (b.t. type II) } \\ \downarrow \text { Local computation (b.t. heterotic) }\end{array}\right.$
- Doublet-triplet splitting via hypercharge flux

In addition:

* Good control over complex geometry
- Moduli stabilisation well developed

Key features of Yukawa couplings

- Computed via dim. red. of a 8d gauge theory on SGut
- Depend on ultra-local data around some points in Sgut
 (holomorphic Yukawas on fewer data)
- Such local data parametrise our ignorance on the global model

Key features of Yukawa couplings

Questions:

How easy is it to get realistic Yukawas in terms of local parameters?

Key features of Yukawa couplings

Questions:

How easy is it to get realistic Yukawas in terms of local parameters?

How generic are realistic Yukawas in the Landscape?

Key features of Yukawa couplings

Questions:

How easy is it to get realistic Yukawas in terms of local parameters?

How generic are realistic Yukawas in the Landscape?

But generating a wide region of local data with realistic Yukawas is not as easy as it may seem...

First step: robust mechanism for family hierarchies

Rank one Yukawas

- F-theory comes with a mechanism to have one quark/lepton family much heavier than the other two
\uparrow We may host several families of chiral fermions in a single matter curve by means of a worldvolume flux threading it
- Holomorphic Yukawas independent of this flux. Their maximal rank only depends on the curves intersections

Cecotti, Cheng, Heckman, Vafa'09

Single triple intersection

Adding non-perturbative effects

- Non-perturbative effects like E3-brane instantons will increase the rank of the Yukawa matrix while maintaining the family mass hierarchy
- In the case of plain D3-instantons we have
7.M. \& Martucci'09

$$
W_{7}=W_{7}^{\text {tree }}+W^{\mathrm{np}}
$$

Adding non-perturbative effects

- Non-perturbative effects like E3-brane instantons will increase the rank of the Yukawa matrix while maintaining the family mass hierarchy
- In the case of plain D3-instantons we have
7.M. \& Martuci'09

$$
W_{7}=W_{7}^{\text {tree }}+W^{\mathrm{np}}
$$

$$
W_{7}=\int_{S} \operatorname{Tr}(F \wedge \Phi)+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)
$$

$W^{\mathrm{np}}=m_{*}^{4} \epsilon\left[\int_{S} \theta_{0} \operatorname{Tr} F^{2}+\int_{S} \theta_{1} \operatorname{Tr}\left(\Phi^{2}\right)+\int_{S} \theta_{2} \operatorname{STr}\left(\Phi_{x y}^{2} F^{2}\right)+\ldots\right]$

Adding non-perturbative effects

- Non-perturbative effects like E3-brane instantons will increase the rank of the Yukawa matrix while maintaining the family mass hierarchy
- In the case of plain D3-instantons we have
7.M. \& Martuci'09

$$
W_{7}=W_{7}^{\text {tree }}+W^{\mathrm{np}}
$$

$$
W_{7}=\int_{S} \operatorname{Tr}(F \wedge \Phi)+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)
$$

Similar effect not known for fluxed D3/M5-brane instantons

Grimm et al. '11
Martucci \& Weigand'15

Adding non-perturbative effects

- The expression

$$
W_{7}=\int_{S} \operatorname{Tr}(F \wedge \Phi)+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)
$$

allows to carry the computation of np-corrected Yukawas at the local level

- Holomorphic Yukawas can also be computed via a residue formula. They depend on ϵ and θ_{0} but not on worldvolume fluxes.
- Physical Yukawas are computed by solving for the MSSM fields internal wavefunctions and performing local dim. red. in the deformed theory.

↔ SO(12) enhancement (down-type Yukawas)
$\downarrow E_{6}$ enhancement (up-type Yukawas)

Fout. Tbañeg, 7.M., Regalada'12

Font. 7.IM. . Regalada, Zaccarata'13

Down and Up-type Yukawas

Down-type $Y_{D}^{i j}: \overline{\mathbf{5}}_{H} \overline{5}_{M}^{i} 10_{M}^{j}$

Intersecting branes, $[\langle\Phi\rangle,\langle\bar{\Phi}\rangle]=0$
$\langle\Phi\rangle \sim\left(\begin{array}{ccc}-x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & x-y\end{array}\right) d x \wedge d y$
$\omega \wedge F=0$

Up-type

$$
Y_{U}^{i j}: \mathbf{5}_{H} 1_{0}^{i}{ }_{M} 1_{0}^{j}{ }_{M}
$$

T-branes, $[\langle\Phi\rangle,\langle\bar{\Phi}\rangle] \neq .0$

$$
\begin{aligned}
\langle\Phi\rangle & \sim\left(\begin{array}{lll}
0 & 1 & 0 \\
x & 0 & 0 \\
0 & 0 & y
\end{array}\right) d x \wedge d y \\
\omega & \wedge F+\frac{1}{2}[\Phi, \bar{\Phi}]=0
\end{aligned}
$$

Local model data

$\uparrow\langle\Phi\rangle$ contains the 7-brane intersection angles: μ, m

- Non-perturbative effect encoded in ϵ, θ_{0}
($\downarrow\langle F\rangle$ generates chirality and family replication at matter curves, enters via flux densities: $\mathrm{N}_{\mathrm{i}}, \mathrm{M}_{\mathrm{j}}$
$\downarrow\left\langle F_{Y}\right\rangle$ breaks GGUT \rightarrow Gmssm, enters via densities N_{Y}, \tilde{N}_{Y}

$$
\text { Example: SU(5) } \begin{gathered}
5_{H_{u}} \times 10 \times 10 \\
\overline{5}_{H_{d}} \times \overline{5} \times 10
\end{gathered} \longrightarrow \begin{aligned}
& \mathrm{F}_{\mathrm{Y}} \\
& \lambda_{u}^{i j} Q^{i} U^{j} H_{u} \\
& \lambda_{d}^{i j} Q^{i} D^{j} H_{d}+\lambda_{l}^{i j} L^{i} E^{j} H_{d}
\end{aligned}
$$

The presence of $\langle F\rangle$ also localises wavefunctions along matter curves and allows an ultra-local computation of Yukawa couplings

Not all of these parameters will be independent in a global model

General results

- Assuming $\theta_{0}=i\left(\theta_{00}+x \theta_{x}+y \theta_{y}\right)$ one obtains, at the holomorphic level

$$
\frac{Y^{\mathrm{hol}}}{Y_{33}^{\mathrm{hol}}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\mathcal{O}(\epsilon)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

and so a family hierarchy ($1, \epsilon, \epsilon^{2}$), still independent of worldvolume fluxes

- At the physical level the normalisation factors depend on family and hypercharge
- Higher hypercharge \Rightarrow thinner wavefunction
\Rightarrow larger quotients

$$
\begin{gathered}
Y_{\mathrm{phys}}^{i j}=\gamma_{i} \gamma_{j} \gamma_{H} Y_{\mathrm{hol}}^{i j} \\
\gamma_{i}^{-2} \propto \int d y e^{-\pi|F||y|^{2}}\left|f^{i}(y)\right|^{2} \\
\gamma_{i} \propto\left(\frac{\pi}{\sqrt{2}}|F|, \sqrt{\pi}|F|^{1 / 2}, 1\right) \\
F=N+M_{y}
\end{gathered}
$$

$$
\frac{m_{\mu}}{m_{\tau}} \simeq 3.3 \frac{m_{s}}{m_{b}} \quad \text { for } \quad \frac{N_{Y}}{N} \simeq 1.8
$$

Unifying Yukawas

- Remarkably, local data are quite similar in both cases. We obtain realistic Yukawas for the third and second generation (including large Y_{t}) by taking
- Small intersection angles $\mathrm{O}(0.1)$
* Not so small flux densities $\mathrm{O}(0.1)-\mathrm{O}(0.5)$
+ $\epsilon \sim 10^{-4}$
- This suggests that both Yukawa points could be very close to each other (even coincident) within $\mathrm{S}_{\mathrm{GUT}} \rightarrow$ enhancement to E_{7} or E_{8}

Also motivated by CKM matrix, neutrino sector and computability of all relevant GUT couplings

The E8 story

7.M. Regalada, Zoccarato'15

- The goal is to build a local model where all Yukawas arise from a single patch of S_{GU}, described by E_{8} symmetry and assuming
\uparrow SU(5) GUTs: $E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}$
\downarrow Reconstructible T-branes
\uparrow More than two 5-curves
- Rank one Yukawas at tree-level
\uparrow Hierarchy (1, ϵ, ϵ^{2}) for charged fermions after np effects

All these requirements are imposed at the holomorphic level

E8 T-brane models

- We classify local models in terms of the T-brane structure of $\boldsymbol{\Phi} \subset \mathbf{S u (5)} \perp$ We look at its block diagonal decomposition in the fund. representation
$\uparrow 4+1$ or \mathbb{Z}_{4} model \rightarrow only two matter curves
$\uparrow 3+2$ or $\mathbb{Z}_{3} \times \mathbb{Z}_{2}$ models \rightarrow down-type hierarchy $\left(1, \epsilon^{2}, \epsilon^{2}\right)$
$\uparrow 2+2+1$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ models \rightarrow one good option

The options depend on which matter curves host the SM fermions

The E8 model

- We take the following 8d Higgs profile

$$
\begin{aligned}
& \left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right)+\tilde{m}\left(E_{2}^{+}+\tilde{m} y E_{2}^{-}\right) \\
& \Phi_{\mathbf{5}}=\left(\begin{array}{ccccc}
\lambda_{1} & m & 0 & 0 & 0 \\
m^{2} x & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & \tilde{m} & 0 \\
0 & 0 & \tilde{m}^{2} y & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & -2\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right) \quad \lambda_{1}=\mu_{1}^{2}(a x-y) \\
& \lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{aligned}
$$

The E8 model

- We take the following 8d Higgs profile

$$
\begin{aligned}
& \left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right)+\tilde{m}\left(E_{2}^{+}+\tilde{m} y E_{2}^{-}\right) \\
& \Phi_{\mathbf{5}}=\left(\begin{array}{ccccc}
\lambda_{1} & m & 0 & 0 & 0 \\
m^{2} x & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & \tilde{m} & 0 \\
0 & 0 & \tilde{m}^{2} y & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & -2\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right) \quad \begin{array}{c}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}
\end{aligned}
$$

Matter curves:

$$
\begin{aligned}
& 10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0 \quad \quad 10_{\mathrm{b}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{c}}: \lambda_{1}+\lambda_{2}=0 \\
& 5_{\mathrm{a}}: \lambda_{1}=0 . \\
& \mathbf{5}_{\mathrm{d}}:\left(2 \lambda_{1}+\lambda_{2}\right)^{2}-\tilde{\mathbf{m}}^{3} \mathrm{x}=0, \quad 5_{\mathrm{e}}: \lambda_{\mathrm{e}}:\left(\lambda_{1}+\lambda_{2}\right)^{4}-2\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(\mathrm{~m}^{3} \mathrm{x}+\tilde{\mathbf{m}}^{3} \mathrm{y}\right)+\left(\mathrm{m}^{3} \mathrm{x}-\tilde{\mathrm{m}}^{3} \mathrm{y}\right)^{2}=\mathbf{0}
\end{aligned}
$$

The E8 model

- We take the following 8d Higgs profile

$$
\begin{aligned}
& \left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right)+\tilde{m}\left(E_{2}^{+}+\tilde{m} y E_{2}^{-}\right) \\
& \Phi_{\mathbf{5}}=\left(\begin{array}{ccccc}
\lambda_{1} & m & 0 & 0 & 0 \\
m^{2} x & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & \tilde{m} & 0 \\
0 & 0 & \tilde{m}^{2} y & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & -2\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right) \quad \begin{array}{c}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}
\end{aligned}
$$

Matter curves:

$$
\begin{aligned}
& 10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0 \quad 10_{\mathrm{b}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{c}}: \lambda_{1}+\lambda_{2}=0 \\
& 55_{\mathrm{a}:}: \lambda_{1}=0 . \quad 5_{\mathrm{b}}: \lambda_{2}=0.55_{\mathrm{c}}:\left(\lambda_{1}+2 \lambda_{2}\right)^{2}-\mathrm{m}^{3} \mathrm{x}=0 \text {, } \\
& 5_{\mathrm{d}}:\left(2 \lambda_{1}+\lambda_{2}\right)^{2}-\tilde{m}^{3} \mathrm{x}=0, \quad 5_{\mathrm{e}}:\left(\lambda_{1}+\lambda_{2}\right)^{4}-2\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(\mathrm{~m}^{3} \mathrm{x}+\tilde{\mathrm{m}}^{3} \mathrm{y}\right)+\left(\mathrm{m}^{3} \mathrm{x}-\tilde{\mathrm{m}}^{3} \mathrm{y}\right)^{2}=\mathbf{0}
\end{aligned}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$
Model B: $\overline{5}_{M}=\mathbf{5}_{b}$

Model A vs. Model B

Matter curves:

$$
\begin{aligned}
& 10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0 \quad 10_{\mathrm{b}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{c}}: \lambda_{1}+\lambda_{2}=0 \\
& 55_{\mathrm{a}}: \lambda_{1}=0 . \quad 5_{\mathrm{b}}: \lambda_{2}=0 . \quad 5_{\mathrm{c}}:\left(\lambda_{1}+2 \lambda_{2}\right)^{2}-\mathrm{m}^{3} \mathrm{x}=0, \\
& \mathbf{5}_{\mathrm{d}}:\left(\mathbf{2} \lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{2}-\tilde{\mathbf{m}}^{3} \mathrm{x}=\mathbf{0}, \quad \mathbf{5}_{\mathrm{e}}:\left(\lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{4}-\mathbf{2}\left(\lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{2}\left(\mathrm{~m}^{3} \mathrm{x}+\tilde{\mathbf{m}}^{3} \mathbf{y}\right)+\left(\mathbf{m}^{3} \mathrm{x}-\tilde{\mathbf{m}}^{3} \mathbf{y}\right)^{2}=\mathbf{0}
\end{aligned}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$

$W \supset \lambda H_{u} L S$
Dirac neutrino
masses if $S=N_{R}$
coupling with
$W \supset \frac{\tilde{S}^{2}}{\Lambda} H_{u} H_{d}$
effective μ-term

Model B: $\overline{5}_{M}=5_{b}$

$$
W \supset \lambda H_{u} H_{d} S
$$

Model A vs. Model B

Matter curves:

$$
\begin{aligned}
& 10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0 \quad 10_{\mathrm{b}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{c}}: \lambda_{1}+\lambda_{2}=0 \\
& 55_{\mathrm{a}}: \lambda_{1}=0 . \quad 5_{\mathrm{b}}: \lambda_{2}=0 . \quad 5_{\mathrm{c}}:\left(\lambda_{1}+2 \lambda_{2}\right)^{2}-\mathrm{m}^{3} \mathrm{x}=0, \\
& \mathbf{5}_{\mathrm{d}}:\left(\mathbf{2} \lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{2}-\tilde{\mathbf{m}}^{3} \mathrm{x}=\mathbf{0}, \quad \mathbf{5}_{\mathrm{e}}:\left(\lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{4}-\mathbf{2}\left(\lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}\right)^{2}\left(\mathrm{~m}^{3} \mathrm{x}+\tilde{\mathbf{m}}^{3} \mathbf{y}\right)+\left(\mathbf{m}^{3} \mathrm{x}-\tilde{\mathbf{m}}^{3} \mathbf{y}\right)^{2}=\mathbf{0}
\end{aligned}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$

$W \supset \lambda H_{u} L S$
Dirac neutrino masses if $S=N_{R}$
coupling with
vector pairs in $5 e$
$W \supset \frac{\tilde{S}^{2}}{\Lambda} H_{u} H_{d}$
Model B: $\quad \overline{5}_{M}=\mathbf{5}_{b}$

$$
W \supset \lambda H_{u} H_{d} S
$$

Model A

more suggestive
effective μ-term

Computing physical Yukawas

- We take model A and for simplicity set $\mathrm{a}=\mathrm{b}=1$ in $\left\{\begin{array}{l}\lambda_{1}=\mu_{1}^{2}(a x-y) \\ \lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa\end{array}\right.$
- We add worldvolume fluxes to localise wavefunctions around Yukawa point
- The eigenvalues for the physical Yukawas read

$$
\begin{array}{lll}
Y_{t}=\frac{\pi^{2} \gamma_{U} \gamma_{10,3}^{Q} \gamma_{10,3}^{U}}{2 \rho_{m} \rho_{\mu}}, & Y_{c}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{U} \gamma_{10,2}^{Q} \gamma_{10,2}^{U}}{4 \rho_{m} \rho_{\mu}^{2}}, & Y_{u}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right) \\
Y_{b}=\frac{\pi^{2} \gamma_{D} \gamma_{10,3}^{Q} \gamma_{5,3}^{D}}{2 d \rho_{m} \rho_{\mu}}, & Y_{s}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{D} \gamma_{10,2}^{Q} \gamma_{5,2}^{D}}{4 d^{2} \rho_{m} \rho_{\mu}^{2}}, & Y_{d}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right) \\
Y_{\tau}=\frac{\pi^{2} \gamma_{D} \gamma_{10,3}^{E} \gamma_{5,3}^{L}}{2 d \rho_{m} \rho_{\mu}}, & Y_{\mu}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{D} \gamma_{10,2}^{E} \gamma_{5,2}^{L}}{4 d^{2} \rho_{m} \rho_{\mu}^{2}}, & Y_{e}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right)
\end{array}
$$

Computing physical Yukawas

- We take model A and for simplicity set $\mathrm{a}=\mathrm{b}=1$ in $\left\{\begin{array}{l}\lambda_{1}=\mu_{1}^{2}(a x-y) \\ \lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa\end{array}\right.$
- We add worldvolume fluxes to localise wavefunctions around Yukawa point
- The eigenvalues for the physical Yukawas read

$$
\begin{array}{lll}
Y_{t}=\frac{\pi^{2} \gamma_{U} \gamma_{10,3}^{Q} \gamma_{10,3}^{U}}{2 \rho_{m} \rho_{\mu}}, & Y_{c}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{U} \gamma_{10,2}^{Q} \gamma_{10,2}^{U}}{4 \rho_{m} \rho_{\mu}^{2}}, & Y_{u}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right) \\
Y_{b}=\frac{\pi^{2} \gamma_{D} \gamma_{10,3}^{Q} \gamma_{5,3}^{D}}{2 d \rho_{m} \rho_{\mu}}, & Y_{s}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{D} \gamma_{10,2}^{Q} \gamma_{5,2}^{D}}{4 d^{2} \rho_{m} \rho_{\mu}^{2}}, & Y_{d}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right) \\
Y_{\tau}=\frac{\pi^{2} \gamma_{D} \gamma_{10,3}^{E} \gamma_{5,3}^{L}}{2 d \rho_{m} \rho_{\mu}}, & Y_{\mu}=\tilde{\epsilon} \frac{\pi^{2} \gamma_{D} \gamma_{10,2}^{E} \gamma_{5,2}^{L}}{4 d^{2} \rho_{m} \rho_{\mu}^{2}}, & Y_{e}=\mathcal{O}\left(\tilde{\epsilon}^{2}\right)
\end{array}
$$

Holomorphic parameters

$$
\tilde{\epsilon}=\epsilon\left(\theta_{x}+b \theta_{y}\right), \quad \rho_{m}=\frac{m^{2}}{m_{*}^{2}}, \quad \rho_{\mu}=\frac{\mu_{1}^{2}}{m_{*}^{2}}, \quad d=\frac{\mu_{2}^{2}}{\mu_{1}^{2}}
$$

Flux densities enter the norm factors γ 's in a complicated way

$$
c, N_{1}, N_{2}, M_{1}, M_{2}, N_{Y}, \tilde{N}_{Y}
$$

CKM matrix

- Switching on the parameter κ in $\quad\left\{\begin{array}{l}\lambda_{1}=\mu_{1}^{2}(a x-y) \\ \lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa\end{array}\right.$ $p_{\text {up }}$ and $p_{\text {down }}$ and induce a source of family mixing
comparing $\mathrm{V}_{\text {tb }}$ with the experimental value sets the separation of points ~ Rgut/100

Taken from Atparicia et al. '12

Fitting E8 Yukawas

- Putting all together one is able to fit charged fermion masses for the $3^{\text {rd }}$ and $2^{\text {nd }}$ families at the GUT scale assuming an MSSM scheme

$\tan \beta$	10	38	50
m_{d} / m_{s}	$5.1 \pm 0.7 \times 10^{-2}$	$5.1 \pm 0.7 \times 10^{-2}$	$5.1 \pm 0.7 \times 10^{-2}$
m_{s} / m_{b}	$1.9 \pm 0.2 \times 10^{-2}$	$1.7 \pm 0.2 \times 10^{-2}$	$1.6 \pm 0.2 \times 10^{-2}$
m_{e} / m_{μ}	$4.8 \pm 0.2 \times 10^{-3}$	$4.8 \pm 0.2 \times 10^{-3}$	$4.8 \pm 0.2 \times 10^{-3}$
m_{μ} / m_{τ}	$5.9 \pm 0.2 \times 10^{-2}$	$5.4 \pm 0.2 \times 10^{-2}$	$5.0 \pm 0.2 \times 10^{-2}$
m_{b} / m_{τ}	0.73 ± 0.03	0.73 ± 0.03	0.73 ± 0.04
Y_{τ}	0.070 ± 0.003	0.32 ± 0.02	0.51 ± 0.04
Y_{b}	0.051 ± 0.002	0.23 ± 0.01	0.37 ± 0.02
Y_{t}	0.48 ± 0.02	0.49 ± 0.02	0.51 ± 0.04

Rass \& Serma' 07

Fitting E8 Yukawas

- Putting all together one is able to fit charged fermion masses for the $3^{\text {rd }}$ and $2^{\text {nd }}$ families at the GUT scale assuming an MSSM scheme

HOWBVBR

- No large region of parameters reproduces such realistic values for the choices made
- This is partly because local flux densities need to satisfy certain inequalities to induce the appropriate local chirality in matter curves
- In particular these inequalities are incompatible with vanishing local chirality for Higgs triplets when we set $a=b$

The E7 story

- The case of E_{7} has less possibilities since $\mathfrak{g} \perp=\mathfrak{s u}(3) \oplus \mathfrak{u}(1)$
$\uparrow \boldsymbol{\Phi}_{3}$ diagonal \rightarrow no T-brane
$\uparrow \boldsymbol{\Phi}_{3} 2+1$ block diagonal \rightarrow promising (1, ϵ, ϵ^{2}) hierarchy
$\downarrow \boldsymbol{\Phi}_{3}$ single block \rightarrow vanishing up-type Yukawas

Again we have different options when assigning the SM fermions to matter curves

The E7 model

- We take the following 8d Higgs profile

$$
\left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right) \quad\left\{\begin{array}{l}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}\right.
$$

Matter curves:

$$
\begin{gathered}
10_{\mathrm{a}}: \lambda_{\mathbf{1}}^{2}-\mathbf{m}^{3} \mathbf{x}=\mathbf{0}, \quad 10_{\mathrm{b}}: \lambda_{\mathbf{1}}-\lambda_{\mathbf{2}}=\mathbf{0} \\
5_{\mathrm{a}}: \lambda_{\mathbf{1}}=\mathbf{0}, \quad 5_{\mathrm{b}}: \lambda_{\mathbf{1}}+\lambda_{\mathbf{2}}=0, \quad 5_{\mathrm{c}}: \lambda_{2}^{2}-\mathbf{m}^{3} \mathrm{x}=\mathbf{0}
\end{gathered}
$$

The E_{7} model

- We take the following 8d Higgs profile

$$
\left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right) \quad\left\{\begin{array}{l}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}\right.
$$

Matter curves:

$$
\begin{gathered}
10_{\mathrm{a}}: \lambda_{1}^{2}-\mathbf{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{b}}: \lambda_{1}-\lambda_{2}=0 \\
5_{\mathrm{a}}: \lambda_{1}=0,5_{\mathrm{b}}: \lambda_{1}+\lambda_{2}=0,5_{\mathrm{c}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0
\end{gathered}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$
Model B: $\quad \overline{5}_{M}=\mathbf{5}_{b}$

The E8 model

- We take the following 8d Higgs profile

$$
\begin{aligned}
& \left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right)+\tilde{m}\left(E_{2}^{+}+\tilde{m} y E_{2}^{-}\right) \\
& \Phi_{\mathbf{5}}=\left(\begin{array}{ccccc}
\lambda_{1} & m & 0 & 0 & 0 \\
m^{2} x & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & \lambda_{2} & \tilde{m} & 0 \\
0 & 0 & \tilde{m}^{2} y & \lambda_{2} & 0 \\
0 & 0 & 0 & 0 & -2\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right) \quad \begin{array}{c}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}
\end{aligned}
$$

Matter curves:

$$
\begin{aligned}
& 10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0 \quad 10_{\mathrm{b}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{c}}: \lambda_{1}+\lambda_{2}=0 \\
& 55_{\mathrm{a}:}: \lambda_{1}=0 . \quad 5_{\mathrm{b}}: \lambda_{2}=0.55_{\mathrm{c}}:\left(\lambda_{1}+2 \lambda_{2}\right)^{2}-\mathrm{m}^{3} \mathrm{x}=0 \text {, } \\
& 5_{\mathrm{d}}:\left(2 \lambda_{1}+\lambda_{2}\right)^{2}-\tilde{m}^{3} \mathrm{x}=0, \quad 5_{\mathrm{e}}:\left(\lambda_{1}+\lambda_{2}\right)^{4}-2\left(\lambda_{1}+\lambda_{2}\right)^{2}\left(\mathrm{~m}^{3} \mathrm{x}+\tilde{\mathrm{m}}^{3} \mathrm{y}\right)+\left(\mathrm{m}^{3} \mathrm{x}-\tilde{\mathrm{m}}^{3} \mathrm{y}\right)^{2}=\mathbf{0}
\end{aligned}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$
Model B: $\overline{5}_{M}=\mathbf{5}_{b}$

The E_{7} model

- We take the following 8d Higgs profile

$$
\left\langle\Phi_{x y}\right\rangle=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+m\left(E_{1}^{+}+m x E_{1}^{-}\right) \quad\left\{\begin{array}{l}
\lambda_{1}=\mu_{1}^{2}(a x-y) \\
\lambda_{2}=\mu_{2}^{2}(b x-y)+\kappa
\end{array}\right.
$$

Matter curves:

$$
\begin{gathered}
10_{\mathrm{a}}: \lambda_{1}^{2}-\mathrm{m}^{3} \mathrm{x}=0, \quad 10_{\mathrm{b}}: \lambda_{1}-\lambda_{2}=0 \\
5_{\mathrm{a}}: \lambda_{1}=0,5_{\mathrm{b}}: \lambda_{1}+\lambda_{2}=0,5_{\mathrm{c}}: \lambda_{2}^{2}-\mathrm{m}^{3} \mathrm{x}=0
\end{gathered}
$$

Model A: $\quad \overline{5}_{M}=\mathbf{5}_{c}$
Model B: $\quad \overline{5}_{M}=\mathbf{5}_{b}$

But now there is no criterion regarding the neutrino sector.
We analyse both models on equal footing

Fitting E7 Yukawas

- We apply the same analysis made for E_{8} to these E_{7} models, computing the physical Yukawas for the $2^{\text {nd }}$ and $3^{\text {rd }}$ families for models A and B
- We open new regions in parameter space by allowing arbitrary a, b. The latter allows to maintain vanishing local chirality for Higgs triplets (locally we have vector-like triplets)
- Both models have a complicated dependence on worldvolume flux densities through the normalisation factors γ, but:
\uparrow For Model A, ratios of mass ratios have simpler expressions

$$
\frac{m_{\mu} / m_{\tau}}{m_{s} / m_{b}}=\sqrt{\frac{(x-1)\left(y-\frac{1}{2}\right)}{\left(x-\frac{1}{6}\right)\left(y-\frac{1}{3}\right)}}, \quad x=-\frac{M_{1}}{\tilde{N}_{Y}}, \quad y=-\frac{M_{2}}{\tilde{N}_{Y}}
$$

$\begin{aligned} & \text { For Model B this is not true, and we cannot satisfy } \\ & \text { for fluxes that induce the appropriate local chirality }\end{aligned} \frac{m_{\mu} / m_{\tau}}{m_{s} / m_{b}}=3.3 \pm 1$

Fitting E7 Yukawas

- Model A displays large regions in local parameter space where we achieve
\uparrow Appropriate local chirality (vanishing for Higgs triplets)
\downarrow Realistic fermion masses
- Compared to previous E8 analysis

Fitting E_{7} and E_{8} Yukawas

- Model A displays large regions in local parameter space where we achieve
\uparrow Appropriate local chirality (vanishing for Higgs triplets)
\downarrow Realistic fermion masses
- In fact, the structure of Yukawa couplings is identical to the E_{8} model discussed previously, despite the more complicated T-brane structure of the latter \rightarrow we scan over the same Yukawa values
- More precisely Models A and B correspond to each other in both cases. So in the E_{8} case Model A is selected for phenomenological reasons even ignoring the neutrino sector and the generation of a μ-term.

Conclusions

- Precise computation of Yukawa couplings is so far limited to ultra-local computation via dimensional reduction of the 7-brane 8d gauge theory
- Such ultra-local models depend on many parameters which may or may not be independent or even realisable in a global completion
- Even so, reproducing realistic fermion masses and mixing is hard to achieve. Such fitting becomes simpler family hierarchies are naturally generated by some mechanism. We have explored the scenario [(1, $\left.\left.\epsilon, \epsilon^{2}\right)\right]$ of rank one Yukawas + non-perturbative effects, in which T-branes are key ingredient.
- This proposal leads naturally to models of E_{7} or E_{8} enhancement. We have analysed both of them and appropriate fitting of fermion masses have led us to a unique structure of matter curves in both cases.
- How this structure may be embedded in a global completion remains so far a challenge, hopefully to be overcome before F-theory turns 30.

