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Motivation

I To understand landscape of string vacua need to go away
from the lamppost and look at non-geometric string
compactifications too;

I Because (most probably) amount of such vacua is much larger
than geometric ones;

I Step in this direction is understanding of following 6d
heterotic vacua and dualities among them;
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Heterotic String Theory on T 2 I

I From compactification of het. string on T 2 obtain following
moduli in 8d:

I complexified Kähler modulus: ρ =
∫
T 2 B + ω ∧ ω̄;

I complex structure modulus: τ =
∫
b
ω∫

a
ω

;

a

b

I Wilson line moduli: βi =
∫
a
Ai + i

∫
b
Ai ;

I Moduli space of het. torus compactification is (Narain space):

O(2)× O(2 + nWL)\O(2, 2 + nWL)/O(2, 2 + nWL,Z) ;

[Narain ’86]

Main case of interest: nWL = 1 (and nWL = 0);
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Heterotic String Theory on T 2 II

I For nWL = 1, above Narain space can be mapped to Siegel
upper half plan of genus two

H2 =

{
Ω =

(
τ β
β ρ

) ∣∣∣=(det(Ω)) > 0 ∧ =(ρ) > 0

}
quotient by Sp(4,Z)-action Ω→ (AΩ + B)(CΩ + D)−1 with(

A B
C D

)
∈ Sp(4,Z) ;

I Note, map is not one-to-one, only bijective on
O(2)× O(3)\O(2, 3)/SO+(2, 3,Z); [Vinberg ’13, Malmendier&Morrison ’14]

I Above moduli fields are entries of Ω;

I H2/Sp(4,Z) is (complex structure) moduli space of genus two
curves;
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Genus Two Fibration I
I Interested in vacua with non-trivial moduli field background;

Let torus compactification vary (adiabatically) along two
dimensions;

I Allow for stringy (patching) dualities, i.e. identifications under
Sp(4,Z) action;

I Like in F-theory, geometrify information of varyring fields in
terms of fibration, i.e. genus two fibration;

I That way end up with non-geometric compactification;
Because allow for identifications with inverse of metric, or
even total mixing of three moduli τ , ρ and β;
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Genus Two Fibration II

I To fulfil EOM, fibration has to be holomorphic; Hence,
degenerates at (complex) co-dim one loci;

I Degeneration points are location of quotient singularities,
non-pert. objects like NS5 branes, or more generally T-fects
(see D. Lüst’s talk);

I All degenerations of genus two curves are classified;
[Ogg ’66, Namikawa&Ueno ’73]

I Natural question: can we find identification/interpretation of
physical objects at all these degenerations?
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Duality with F-Theory I

I Het. string on T 2 and F-Theory on elliptically fibered K3 are
dual to each other; [Morrison&Vafa ’96]

I Duality is best understood in large volume/stable
degeneration limit; [Morrison&Vafa ’96] At this point in moduli space,
base P1 of K3 splits in two; The het. data, i.e. τ and βi

(ρ→ i∞), can be read off from intersection of two
components of degenerated K3; [Friedman et al. ’97]

I But for nWL = 0 and nWL = 1, there is even identification in
terms of moduli space; [Cardoso ’96, McOrist et al. ’10, Malmendier&Morrison ’14]
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Duality with F-Theory II

I For both cases (nWL = 0, 1) F-Theory K3 given by

y2 = x3 + (a u4 + c u3) x + (b u6 + d u5 + e u7) = 0 ;

I K3 has II ∗ sing. at u =∞ and III ∗ sing. (or II ∗ in case of
c = 0) at u = 0; Therefore, Picard number of K3 is 17
(nWL = 1) or 18 (nWL = 1), respectively;

I Moduli spaces agree with het. ones and can even be mapped:

I nWL = 1 (e = 1): a = − 1
48ψ4(Ω), b = − 1

864ψ6(Ω),
c = −4χ10(Ω), d = χ12(Ω);
Siegel modular forms ψ4, ψ6, χ10 and χ12 fix Ω uniquely;

I nWL = 0 (c = 0): j(τ)j(ρ) = −17282 a3

27d e ,

(j(τ)− 1728)(j(ρ)− 1728) = 17282 b2

4d e and β = 0;
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Duality with F-Theory III

I Therefore, have identification of E8 × E7 K3 with genus two
curve, and identification of E8 × E8 K3 with two tori glued
together at one point (degenerated hyperelliptic curve);

I Further, if genus two curve is given in terms of sextic, i.e.

y2 = c6x
6 + c5x

5 + . . . ,

then a, b, c , d of K3 are simply given by Igusa-Clebsch
invariants of sectic, i.e. polynomials of coefficients ci ;

I Fortunately, all degenerations of genus two curves are in this
form; Therefore, can easily map them to (singularities of) K3;

I Note, to go from K3 to representation of hyperelliptic curve is
much more involved;

8 / 16



Resolutions of F-Theory Side I
I Degeneration of hyperelliptic curve is parametrised by t, i.e.

ci vary with t, with singular curve at t = 0;

I From ci obatin a, b, c , d , which are then functions (sections)
of t too;

I On K3 (fibre) have already III ∗ singularity at u = 0 which will
enhance at u = t = 0 to non-min./beyond Kodaira type sing.;

I Need to blow up base to resolve such singularities; [Miranda ’83,

Grassi ’93, Aspinwall&Morrison ’97]

I To determine which base blow-ups must be done, take sort of
toric approach; Write down f and g in terms of its (leading)
monomials in u and t,

f =
∑
i

fi u
m1

i tm
2
i , g =

∑
i

gi u
l1i t l

2
i ,

and ask for allowed ‘blow-up direction’ n such that
hypersurface

y2 = x3 + f x + g

is still CY;
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Resolutions of F-Theory Side II

I Condition on vanishing first Chern class translates to:

(m1
i −4)n1+(m2

i −4)n2 ≥ −4 and (l1i −6)n1+(l2i −6)n2 ≥ −6

for all mi , li with n = (n1, n2) direction of blow-up, i.e.
t, u → en1t, en2u;

Ex. het. [II∗ − I0] singular-
ity: Solution set {nj} to in-
equalities

(6,−1)·n ≥ −4 , (1, 0)·n ≥ −4 ,

for f and for g :

(4,−1) · n ≥ −6 , (−1, 0) · n ≥ −6 ,

(−6, 1) · n ≥ −6 ; 0 1 2 3 4 5 6
0

5

10

15

20

25

30

n1

n2

10 / 16



Resolutions of F-Theory Side II

I Condition on vanishing first Chern class translates to:

(m1
i −4)n1+(m2

i −4)n2 ≥ −4 and (l1i −6)n1+(l2i −6)n2 ≥ −6

for all mi , li with n = (n1, n2) direction of blow-up, i.e.
t, u → en1t, en2u;

Ex. het. [II∗ − I0] singular-
ity: Solution set {nj} to in-
equalities

(6,−1)·n ≥ −4 , (1, 0)·n ≥ −4 ,

for f and for g :

(4,−1) · n ≥ −6 , (−1, 0) · n ≥ −6 ,

(−6, 1) · n ≥ −6 ; 0 1 2 3 4 5 6
0

5

10

15

20

25

30

n1

n2

10 / 16



Resolutions of F-Theory Side III

I Not all singularities which obtained from degenerations of
genus two can be resolved on F-Theory side; Can give simple
criterion for when can resolve in above way:

µ(a) < 4 or µ(b) < 6 or µ(c) < 10 or µ(d) < 12 ,

where µ is vanishing order at t = 0;

I If this is fulfilled, solution set {nj} to above inequalities is
finite;

I From {nj} read off self-intersection numbers, because for
adjacent nj one has ajn

j = nj+1 + nj−1 with aj
self-intersection number of nj ;

I Further vanishing orders of f , g and ∆ along ei ’s are
immediately obtained;

I To work out gauge algebras and matter representations
standard techniques have to be applied; [Bershadsky ’96, Katz&Vafa

’96,Grassi&Morrison ’12,. . . ]
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Example: III-III
I The genus two curve is given by

y2 = x(x − 1)(x2 + t)
[
(x − 1)2 + t

]
.

I Note again, degeneration at t → 0;
I Monodromies around t=0 are

τ → ρ

β2 − ρτ
, β → − β

β2 − ρτ
, ρ→ τ

β2 − ρτ
;

I From map, obtain following CY3 singularity (to leading
orders):

y2 = x3 +
[
t6u3 + t2u4

]
x + t4u6 + t6u5 + u7 ;

I Get following resolved geometry:

I0

II

sp(1)
2
×
7

g2

sp(1)

II

E-string e7

1
2(1, 2)

1
2(2, 7)

1
2(7, 2)

1
2(2, 1)
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Dual Theories

I Having mapped all genus two degenerations to F-Theory, can
search for dual theories;

I In subclass of elliptic models, obtain the following dual
theories:
µ(I10) dual models

2 [I0 − II]0112
3 [I0 − III]0113
4 [I0 − IV]0224 , [II− II]0224
5 [III− II]0225
6 [I0 − I∗0]0226 , [III− III]0226 , [IV − II]0336
7 [IV − III]0337
8 [I0 − IV∗]0448 , [IV − IV]0448 , [I∗0 − II]0338
9 [I0 − III∗]0339 , [I∗0 − III]0339

10 [I0 − II∗]0 5 5 10 , [IV∗ − II]0 5 5 10 , [I∗0 − IV]0 4 4 10
11 [II− III∗]0 4 4 11 , [IV∗ − III]0 5 5 11

13 / 16



Dual Theories

I Having mapped all genus two degenerations to F-Theory, can
search for dual theories;

I In subclass of elliptic models, obtain the following dual
theories:
µ(I10) dual models

2 [I0 − II]0112
3 [I0 − III]0113
4 [I0 − IV]0224 , [II− II]0224
5 [III− II]0225
6 [I0 − I∗0]0226 , [III− III]0226 , [IV − II]0336
7 [IV − III]0337
8 [I0 − IV∗]0448 , [IV − IV]0448 , [I∗0 − II]0338
9 [I0 − III∗]0339 , [I∗0 − III]0339

10 [I0 − II∗]0 5 5 10 , [IV∗ − II]0 5 5 10 , [I∗0 − IV]0 4 4 10
11 [II− III∗]0 4 4 11 , [IV∗ − III]0 5 5 11

13 / 16



Interpretation of Dualities
I For these elliptic models can find some insight by looking at

monodromy relations;

I Start from III− III and apply following moves:

[III− III] = A1B1A1A2B2A2

= A1B1A1A1B1A1 (ρ→ τ)

= A1B1A1B1A1B1 (braid)

= (A1B1)3 = [I0 − I∗0] ,

where Ai , Bi are Dehn twists around ai , bi of genus two curve;
I Colliding of IV and II singularity gives also [I0 − I∗0]
I Reason for why ρ→ τ should be valid operation can be seen

from duality map with β = 0:

j(τ)j(ρ) = −17282
a3

27d e
, (j(τ)−1728)(j(ρ)−1728) = 17282

b2

4 d e
;

Can ‘compensate’ for ρ degeneration by enhance τ
degeneration;

I Note, have duality between non-gemetric/geometric vacua, cf.
[Malmendier&Morrison ’14];
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Comment on Compact 6d Non-Geometric Heterotic
Models

I Map to F-Theory side enforces coefficients of sextic to be
sections of anti-canonical bundle of P1;

I Therefore, discriminant (of sextic) is a polynomial of degree
20, i.e. sextic generically degenerates over 20 points (loci of
T-fects);

I As example can extend [III− III] degeneration to global
fibration;

I Obtain in addition to [III− III] a [I2 − 0− 0] singularity at
one point and [I1 − 0− 0] singularities at 12 further points;
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Summary & Outlook

I Analysed all genus two degenerations from F-theory side;

I Identified dual models in this list;

I Interpretation for some of them;

I Compact examples;

I Would be nice to understand map from F-theory to
het. better (away from stable degeneration limit);

I In-depth study of het. EOM and its solution for non-vanishing
Wilson line (for β = 0 see D. Lüst’s talk);
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Thank you for your attention!
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