Dualities between (Non-)Geometric Heterotic String Vacua via F-Theory

joint work with A. Font, I. García-Etxebarria, D. Lüst and S. Massai: arXiv:1602.xxxxx

Christoph Mayrhofer

Arnold Sommerfeld Center, LMU München

22nd February, 2016 at F-Theory @ 20 (Caltech)

Motivation

➤ To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;

Motivation

- ➤ To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;
- Because (most probably) amount of such vacua is much larger than geometric ones;

Motivation

- To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;
- Because (most probably) amount of such vacua is much larger than geometric ones;
- Step in this direction is understanding of following 6d heterotic vacua and dualities among them;

- ► From compactification of het. string on T^2 obtain following moduli in 8d:
 - complexified Kähler modulus: $\rho = \int_{\mathcal{T}^2} B + \omega \wedge \bar{\omega}$;

- ► From compactification of het. string on T² obtain following moduli in 8d:
 - ▶ complexified Kähler modulus: $\rho = \int_{T^2} B + \omega \wedge \bar{\omega}$;
 - complex structure modulus: $\tau = \frac{\int_b \omega}{\int_a \omega}$;

- ► From compactification of het. string on *T*² obtain following moduli in 8d:
 - ▶ complexified Kähler modulus: $\rho = \int_{T^2} B + \omega \wedge \bar{\omega}$;
 - complex structure modulus: $\tau = \frac{\int_b \omega}{\int_a \omega}$;

• Wilson line moduli: $\beta^i = \int_a A^i + i \int_b A^i$;

- ► From compactification of het. string on T² obtain following moduli in 8d:
 - ▶ complexified Kähler modulus: $\rho = \int_{T^2} B + \omega \wedge \bar{\omega}$;
 - complex structure modulus: $\tau = \frac{\int_b \omega}{\int_a \omega}$;

- Wilson line moduli: $\beta^i = \int_a A^i + i \int_b A^i$;
- ▶ Moduli space of het. torus compactification is (Narain space):

$$O(2) \times O(2 + n_{WL}) \setminus O(2, 2 + n_{WL}) / O(2, 2 + n_{WL}, \mathbb{Z});$$

[Narain '86]

Main case of interest: $n_{WL} = 1$ (and $n_{WL} = 0$);

▶ For $n_{WL} = 1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$\begin{split} \mathbb{H}_2 &= \left\{ \Omega = \left(\begin{array}{cc} \tau & \beta \\ \beta & \rho \end{array} \right) \, \Big| \Im(\det(\Omega)) > 0 \wedge \Im(\rho) > 0 \right\} \\ \text{quotient by } \mathit{Sp}(4,\mathbb{Z}) \text{-action } \Omega \to (A\Omega + B)(C\Omega + D)^{-1} \text{ with} \\ & \left(\begin{array}{cc} A & B \\ C & D \end{array} \right) \in \mathit{Sp}(4,\mathbb{Z}) \,; \end{split}$$

For $n_{WL} = 1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$\mathbb{H}_2 = \left\{ \Omega = \left(\begin{array}{cc} \tau & \beta \\ \beta & \rho \end{array} \right) \, \middle| \Im(\det(\Omega)) > 0 \land \Im(\rho) > 0 \right\}$$

quotient by $Sp(4,\mathbb{Z})$ -action $\Omega \to (A\Omega+B)(C\Omega+D)^{-1}$ with

$$\left(\begin{array}{cc}A&B\\C&D\end{array}\right)\in Sp(4,\mathbb{Z});$$

Note, map is not one-to-one, only bijective on $O(2) \times O(3) \setminus O(2,3) / SO^+(2,3,\mathbb{Z});$ [Vinberg '13, Malmendier&Morrison '14]

For $n_{WL} = 1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$\mathbb{H}_2 = \left\{\Omega = \left(egin{array}{cc} au & eta \ eta &
ho \end{array}
ight) \left|\Im(\det(\Omega)) > 0 \wedge \Im(
ho) > 0
ight\}$$

quotient by $Sp(4,\mathbb{Z})$ -action $\Omega \to (A\Omega+B)(C\Omega+D)^{-1}$ with

$$\left(\begin{array}{cc}A&B\\C&D\end{array}\right)\in Sp(4,\mathbb{Z});$$

- Note, map is not one-to-one, only bijective on $O(2) \times O(3) \setminus O(2,3) / SO^+(2,3,\mathbb{Z})$; [Vinberg '13, Malmendier&Morrison '14]
- Above moduli fields are entries of Ω;

▶ For $n_{WL} = 1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$\mathbb{H}_2 = \left\{ \Omega = \left(\begin{array}{cc} \tau & \beta \\ \beta & \rho \end{array} \right) \bigg| \Im(\det(\Omega)) > 0 \land \Im(\rho) > 0 \right\}$$

quotient by $Sp(4,\mathbb{Z})$ -action $\Omega \to (A\Omega+B)(C\Omega+D)^{-1}$ with

$$\left(\begin{array}{cc}A&B\\C&D\end{array}\right)\in Sp(4,\mathbb{Z});$$

- Note, map is not one-to-one, only bijective on $O(2) \times O(3) \setminus O(2,3) / SO^+(2,3,\mathbb{Z})$; [Vinberg '13, Malmendier&Morrison '14]
- ▶ Above moduli fields are entries of Ω ;
- ▶ $\mathbb{H}_2/Sp(4,\mathbb{Z})$ is (complex structure) moduli space of genus two curves;

Interested in vacua with non-trivial moduli field background;
 Let torus compactification vary (adiabatically) along two dimensions;

- Interested in vacua with non-trivial moduli field background;
 Let torus compactification vary (adiabatically) along two dimensions;
- ▶ Allow for stringy (patching) dualities, i.e. identifications under $Sp(4,\mathbb{Z})$ action;

- Interested in vacua with non-trivial moduli field background;
 Let torus compactification vary (adiabatically) along two dimensions;
- ▶ Allow for stringy (patching) dualities, i.e. identifications under $Sp(4,\mathbb{Z})$ action;
- ▶ Like in F-theory, geometrify information of varyring fields in terms of fibration, i.e. genus two fibration;

- Interested in vacua with non-trivial moduli field background;
 Let torus compactification vary (adiabatically) along two dimensions;
- ▶ Allow for stringy (patching) dualities, i.e. identifications under $Sp(4,\mathbb{Z})$ action;
- ▶ Like in F-theory, geometrify information of varyring fields in terms of fibration, i.e. genus two fibration;

► That way end up with non-geometric compactification; Because allow for identifications with inverse of metric, or even total mixing of three moduli τ , ρ and β ;

➤ To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;

- ➤ To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);

- ➤ To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);
- All degenerations of genus two curves are classified;

[Ogg '66, Namikawa&Ueno '73]

- ➤ To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);
- ► All degenerations of genus two curves are classified;

 [Ogg '66, Namikawa&Ueno '73]
- ▶ Natural question: can we find identification/interpretation of physical objects at all these degenerations?

► Het. string on T^2 and F-Theory on elliptically fibered K3 are dual to each other; [Morrison&Vafa '96]

- ► Het. string on T^2 and F-Theory on elliptically fibered K3 are dual to each other; [Morrison&Vafa '96]
- ▶ Duality is best understood in large volume/stable degeneration limit; [Morrison&Vafa '96] At this point in moduli space, base \mathbb{P}^1 of K3 splits in two; The het. data, i.e. τ and β^i ($\rho \to i\infty$), can be read off from intersection of two components of degenerated K3; [Friedman et al. '97]

- ► Het. string on T^2 and F-Theory on elliptically fibered K3 are dual to each other; [Morrison&Vafa '96]
- ▶ Duality is best understood in large volume/stable degeneration limit; [Morrison&Vafa '96] At this point in moduli space, base \mathbb{P}^1 of K3 splits in two; The het. data, i.e. τ and β^i ($\rho \to i\infty$), can be read off from intersection of two components of degenerated K3; [Friedman et al. '97]
- ▶ But for $n_{WL} = 0$ and $n_{WL} = 1$, there is even identification in terms of moduli space; [Cardoso '96, McOrist et al. '10, Malmendier&Morrison '14]

$$y^2 = x^3 + (au^4 + cu^3)x + (bu^6 + du^5 + eu^7) = 0;$$

▶ For both cases $(n_{WL} = 0, 1)$ F-Theory K3 given by

$$y^2 = x^3 + (au^4 + cu^3)x + (bu^6 + du^5 + eu^7) = 0;$$

▶ K3 has II^* sing. at $u = \infty$ and III^* sing. (or II^* in case of c = 0) at u = 0; Therefore, Picard number of K3 is 17 $(n_{WL} = 1)$ or 18 $(n_{WL} = 1)$, respectively;

$$y^2 = x^3 + (a u^4 + c u^3) x + (b u^6 + d u^5 + e u^7) = 0;$$

- ▶ K3 has II^* sing. at $u = \infty$ and III^* sing. (or II^* in case of c = 0) at u = 0; Therefore, Picard number of K3 is 17 $(n_{WL} = 1)$ or 18 $(n_{WL} = 1)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:

$$y^2 = x^3 + (au^4 + cu^3)x + (bu^6 + du^5 + eu^7) = 0;$$

- ▶ K3 has II^* sing. at $u = \infty$ and III^* sing. (or II^* in case of c = 0) at u = 0; Therefore, Picard number of K3 is 17 $(n_{WL} = 1)$ or 18 $(n_{WL} = 1)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:
 - ▶ $n_{WL} = 1$ (e = 1): $a = -\frac{1}{48}\psi_4(\Omega)$, $b = -\frac{1}{864}\psi_6(\Omega)$, $c = -4\chi_{10}(\Omega)$, $d = \chi_{12}(\Omega)$; Siegel modular forms ψ_4 , ψ_6 , χ_{10} and χ_{12} fix Ω uniquely;

$$y^2 = x^3 + (au^4 + cu^3)x + (bu^6 + du^5 + eu^7) = 0;$$

- ▶ K3 has II^* sing. at $u = \infty$ and III^* sing. (or II^* in case of c = 0) at u = 0; Therefore, Picard number of K3 is 17 $(n_{WL} = 1)$ or 18 $(n_{WL} = 1)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:
 - ▶ $n_{WL} = 1$ (e = 1): $a = -\frac{1}{48}\psi_4(\Omega)$, $b = -\frac{1}{864}\psi_6(\Omega)$, $c = -4\chi_{10}(\Omega)$, $d = \chi_{12}(\Omega)$; Siegel modular forms ψ_4 , ψ_6 , χ_{10} and χ_{12} fix Ω uniquely;
 - ▶ $n_{WL} = 0$ (c = 0): $j(\tau)j(\rho) = -1728^2 \frac{a^3}{27d e}$, ($j(\tau) - 1728$)($j(\rho) - 1728$) = $1728^2 \frac{b^2}{4d e}$ and $\beta = 0$;

- ▶ Therefore, have identification of $E_8 \times E_7$ K3 with genus two curve, and identification of $E_8 \times E_8$ K3 with two tori glued together at one point (degenerated hyperelliptic curve);
- ▶ Further, if genus two curve is given in terms of sextic, i.e.

$$y^2 = c_6 x^6 + c_5 x^5 + \dots ,$$

then a, b, c, d of K3 are simply given by Igusa-Clebsch invariants of sectic, i.e. polynomials of coefficients c_i ;

- ► Fortunately, all degenerations of genus two curves are in this form; Therefore, can easily map them to (singularities of) K3;
- Note, to go from K3 to representation of hyperelliptic curve is much more involved;

Degeneration of hyperelliptic curve is parametrised by t, i.e. c_i vary with t, with singular curve at t = 0;

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_i vary with t, with singular curve at t = 0;
- ► From *c_i* obatin *a*, *b*, *c*, *d*, which are then functions (sections) of *t* too;

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_i vary with t, with singular curve at t=0;
- ► From *c_i* obatin *a*, *b*, *c*, *d*, which are then functions (sections) of *t* too;
- ▶ On K3 (fibre) have already III^* singularity at u = 0 which will enhance at u = t = 0 to non-min./beyond Kodaira type sing.;

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_i vary with t, with singular curve at t=0;
- ► From *c_i* obatin *a*, *b*, *c*, *d*, which are then functions (sections) of *t* too;
- ▶ On K3 (fibre) have already III^* singularity at u = 0 which will enhance at u = t = 0 to non-min./beyond Kodaira type sing.;
- ▶ Need to blow up base to resolve such singularities; [Miranda '83,

Grassi '93, Aspinwall&Morrison '97]

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_i vary with t, with singular curve at t = 0;
- ► From *c_i* obatin *a*, *b*, *c*, *d*, which are then functions (sections) of *t* too;
- ▶ On K3 (fibre) have already III^* singularity at u = 0 which will enhance at u = t = 0 to non-min./beyond Kodaira type sing.;
- ► Need to blow up base to resolve such singularities; [Miranda '83, Grassi '93, Aspinwall&Morrison '97]
- ➤ To determine which base blow-ups must be done, take sort of toric approach; Write down f and g in terms of its (leading) monomials in u and t,

$$f = \sum_{i} f_{i} u^{m_{i}^{1}} t^{m_{i}^{2}}, \qquad g = \sum_{i} g_{i} u^{l_{i}^{1}} t^{l_{i}^{2}},$$

and ask for allowed 'blow-up direction' \mathbf{n} such that hypersurface

$$y^2 = x^3 + f x + g$$

is still CY;

Condition on vanishing first Chern class translates to:

$$(m_i^1-4)n_1+(m_i^2-4)n_2 \ge -4$$
 and $(l_i^1-6)n_1+(l_i^2-6)n_2 \ge -6$ for all \mathbf{m}^i , \mathbf{l}^i with $\mathbf{n}=(n_1,n_2)$ direction of blow-up, i.e. $t, u \to e^{n_1}t, e^{n_2}u;$

Condition on vanishing first Chern class translates to:

$$(m_i^1-4)n_1+(m_i^2-4)n_2\geq -4$$
 and $(l_i^1-6)n_1+(l_i^2-6)n_2\geq -6$ for all \mathbf{m}^i , \mathbf{l}^i with $\mathbf{n}=(n_1,n_2)$ direction of blow-up, i.e. $t,\ u\to e^{n_1}t, e^{n_2}u;$

Ex. het. $[II^* - I_0]$ singularity: Solution set $\{\mathbf{n}^j\}$ to inequalities

$$(6,-1){\cdot} {\boldsymbol n} \geq -4\,,\, (1,0){\cdot} {\boldsymbol n} \geq -4\,,$$

for f and for g:

$$\begin{aligned} & (4,-1) \cdot \textbf{n} \geq -6 \,,\, (-1,0) \cdot \textbf{n} \geq -6 \,, \\ & (-6,1) \cdot \textbf{n} \geq -6 \,; \end{aligned}$$

Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$\mu({\it a})<4\quad {\rm or}\quad \mu({\it b})<6\quad {\rm or}\quad \mu({\it c})<10\quad {\rm or}\quad \mu({\it d})<12\,,$$
 where μ is vanishing order at $t=0$;

Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$\mu(\mathbf{a}) < 4 \quad \text{or} \quad \mu(\mathbf{b}) < 6 \quad \text{or} \quad \mu(\mathbf{c}) < 10 \quad \text{or} \quad \mu(\mathbf{d}) < 12 \,,$$

where μ is vanishing order at t = 0;

▶ If this is fulfilled, solution set {n^j} to above inequalities is finite;

Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$\mu(\mathbf{a}) < 4 \quad \text{or} \quad \mu(\mathbf{b}) < 6 \quad \text{or} \quad \mu(\mathbf{c}) < 10 \quad \text{or} \quad \mu(\mathbf{d}) < 12 \,,$$

where μ is vanishing order at t = 0;

- If this is fulfilled, solution set {n^j} to above inequalities is finite;
- ▶ From $\{\mathbf{n}^j\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^j one has $a_j\mathbf{n}^j = \mathbf{n}^{j+1} + \mathbf{n}^{j-1}$ with a_j self-intersection number of \mathbf{n}^j ;

Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$\mu(\mathbf{a}) < 4 \quad \text{or} \quad \mu(\mathbf{b}) < 6 \quad \text{or} \quad \mu(\mathbf{c}) < 10 \quad \text{or} \quad \mu(\mathbf{d}) < 12 \,,$$

where μ is vanishing order at t = 0;

- ▶ If this is fulfilled, solution set {n^j} to above inequalities is finite;
- From $\{\mathbf{n}^j\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^j one has $a_j\mathbf{n}^j=\mathbf{n}^{j+1}+\mathbf{n}^{j-1}$ with a_j self-intersection number of \mathbf{n}^j ;
- ▶ Further vanishing orders of f, g and Δ along e_i 's are immediately obtained;

Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$\mu(\mathbf{a}) < 4 \quad \text{or} \quad \mu(\mathbf{b}) < 6 \quad \text{or} \quad \mu(\mathbf{c}) < 10 \quad \text{or} \quad \mu(\mathbf{d}) < 12 \,,$$

where μ is vanishing order at t = 0;

- If this is fulfilled, solution set {n^j} to above inequalities is finite;
- From $\{\mathbf{n}^j\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^j one has $a_j\mathbf{n}^j=\mathbf{n}^{j+1}+\mathbf{n}^{j-1}$ with a_j self-intersection number of \mathbf{n}^j ;
- ▶ Further vanishing orders of f, g and Δ along e_i 's are immediately obtained;
- ► To work out gauge algebras and matter representations standard techniques have to be applied; [Bershadsky '96, Katz&Vafa

► The genus two curve is given by

$$y^2 = x(x-1)(x^2+t)[(x-1)^2+t]$$
.

► The genus two curve is given by

$$y^2 = x(x-1)(x^2+t)[(x-1)^2+t]$$
.

▶ Note again, degeneration at $t \to 0$;

► The genus two curve is given by

$$y^2 = x(x-1)(x^2+t)[(x-1)^2+t]$$
.

- ▶ Note again, degeneration at $t \to 0$;
- Monodromies around t=0 are

$$\tau \to \frac{\rho}{\beta^2 - \rho \tau}, \quad \beta \to -\frac{\beta}{\beta^2 - \rho \tau}, \quad \rho \to \frac{\tau}{\beta^2 - \rho \tau};$$

► The genus two curve is given by

$$y^2 = x(x-1)(x^2+t)[(x-1)^2+t]$$
.

- ▶ Note again, degeneration at $t \to 0$;
- ► Monodromies around t=0 are

$$\tau \to \frac{\rho}{\beta^2 - \rho \tau}, \quad \beta \to -\frac{\beta}{\beta^2 - \rho \tau}, \quad \rho \to \frac{\tau}{\beta^2 - \rho \tau};$$

From map, obtain following CY3 singularity (to leading orders):

$$y^2 = x^3 + [t^6u^3 + t^2u^4]x + t^4u^6 + t^6u^5 + u^7;$$

► The genus two curve is given by

$$y^2 = x(x-1)(x^2+t)[(x-1)^2+t]$$
.

- ▶ Note again, degeneration at $t \to 0$;
- ► Monodromies around t=0 are

$$\tau \to \frac{\rho}{\beta^2 - \rho \tau}, \quad \beta \to -\frac{\beta}{\beta^2 - \rho \tau}, \quad \rho \to \frac{\tau}{\beta^2 - \rho \tau};$$

From map, obtain following CY3 singularity (to leading orders):

$$y^2 = x^3 + [t^6u^3 + t^2u^4]x + t^4u^6 + t^6u^5 + u^7;$$

Get following resolved geometry:

Dual Theories

 Having mapped all genus two degenerations to F-Theory, can search for dual theories;

Dual Theories

- Having mapped all genus two degenerations to F-Theory, can search for dual theories;
- ► In subclass of elliptic models, obtain the following dual theories:

LITEOTIES.	
$\mu(I_{10})$	dual models
2	$\left[\mathrm{I}_{0}-\mathrm{II} ight]_{0112}$
3	$[I_0 - III]_{0113}$
4	$[I_0 - IV]_{0224}$, $[II - II]_{0224}$
5	$[III-II]_{0225}$
6	$[I_0 - I_0^*]_{0226}$, $[III - III]_{0226}$, $[IV - II]_{0336}$
7	$[IV - III]_{0337}$
8	$[I_0 - IV^*]_{0448}$, $[IV - IV]_{0448}$, $[I_0^* - II]_{0338}$
9	$[I_0 - III^*]_{0339}, [I_0^* - III]_{0339}$
10	$[I_0 - II^*]_{05510}$, $[IV^* - II]_{05510}$, $[I_0^* - IV]_{04410}$
11	$[II - III^*]_{04411}, [IV^* - III]_{05511}$

 For these elliptic models can find some insight by looking at monodromy relations;

- For these elliptic models can find some insight by looking at monodromy relations;
- ▶ Start from III − III and apply following moves:

$$\begin{aligned} [\text{III} - \text{III}] &= A_1 B_1 A_1 A_2 B_2 A_2 \\ &= A_1 B_1 A_1 A_1 B_1 A_1 \qquad (\rho \to \tau) \\ &= A_1 B_1 A_1 B_1 A_1 B_1 \qquad \text{(braid)} \\ &= (A_1 B_1)^3 = [\text{I}_0 - \text{I}_0^*] \,, \end{aligned}$$

where A_i , B_i are Dehn twists around a_i , b_i of genus two curve;

- For these elliptic models can find some insight by looking at monodromy relations;
- ▶ Start from III − III and apply following moves:

$$\begin{split} [\mathrm{III} - \mathrm{III}] &= A_1 B_1 A_1 A_2 B_2 A_2 \\ &= A_1 B_1 A_1 A_1 B_1 A_1 \qquad (\rho \to \tau) \\ &= A_1 B_1 A_1 B_1 A_1 B_1 \qquad \text{(braid)} \\ &= (A_1 B_1)^3 = [\mathrm{I}_0 - \mathrm{I}_0^*] \,, \end{split}$$

where A_i , B_i are Dehn twists around a_i , b_i of genus two curve;

 \blacktriangleright Colliding of IV and II singularity gives also $[I_0-I_0^*]$

- For these elliptic models can find some insight by looking at monodromy relations;
- ▶ Start from III III and apply following moves:

$$\begin{split} [\mathrm{III} - \mathrm{III}] &= A_1 B_1 A_1 A_2 B_2 A_2 \\ &= A_1 B_1 A_1 A_1 B_1 A_1 \qquad (\rho \to \tau) \\ &= A_1 B_1 A_1 B_1 A_1 B_1 \qquad \text{(braid)} \\ &= (A_1 B_1)^3 = [\mathrm{I}_0 - \mathrm{I}_0^*] \,, \end{split}$$

where A_i , B_i are Dehn twists around a_i , b_i of genus two curve;

- lacktriangle Colliding of IV and II singularity gives also $[I_0-I_0^*]$
- ▶ Reason for why $\rho \rightarrow \tau$ should be valid operation can be seen from duality map with $\beta = 0$:

$$j(\tau)j(\rho) = -1728^2 \frac{a^3}{27d e}, (j(\tau)-1728)(j(\rho)-1728) = 1728^2 \frac{b^2}{4 d e};$$

Can 'compensate' for ρ degeneration by enhance τ degeneration;

- ► For these elliptic models can find some insight by looking at monodromy relations;
- ▶ Start from III III and apply following moves:

$$\begin{aligned} [\text{III} - \text{III}] &= A_1 B_1 A_1 A_2 B_2 A_2 \\ &= A_1 B_1 A_1 A_1 B_1 A_1 \qquad (\rho \to \tau) \\ &= A_1 B_1 A_1 B_1 A_1 B_1 \qquad \text{(braid)} \\ &= (A_1 B_1)^3 = [\text{I}_0 - \text{I}_0^*] \,, \end{aligned}$$

where A_i , B_i are Dehn twists around a_i , b_i of genus two curve;

- lacktriangle Colliding of IV and II singularity gives also $[I_0 I_0^*]$
- ▶ Reason for why $\rho \to \tau$ should be valid operation can be seen from duality map with $\beta = 0$:

$$j(\tau)j(\rho) = -1728^2 \frac{a^3}{27d e} , (j(\tau)-1728)(j(\rho)-1728) = 1728^2 \frac{b^2}{4 d e} ;$$

Can 'compensate' for ρ degeneration by enhance τ degeneration;

▶ Note, have duality between non-gemetric/geometric vacua, cf. 14/16

▶ Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^1 ;

- Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of P¹;
- ► Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);

- ▶ Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^1 ;
- Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);
- ➤ As example can extend [III III] degeneration to global fibration;

- ▶ Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^1 ;
- Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);
- ➤ As example can extend [III III] degeneration to global fibration;
- ▶ Obtain in addition to [III-III] a $[I_2-0-0]$ singularity at one point and $[I_1-0-0]$ singularities at 12 further points;

Analysed all genus two degenerations from F-theory side;

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;
- Would be nice to understand map from F-theory to het. better (away from stable degeneration limit);

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;
- Would be nice to understand map from F-theory to het. better (away from stable degeneration limit);
- ▶ In-depth study of het. EOM and its solution for non-vanishing Wilson line (for $\beta = 0$ see D. Lüst's talk);

Thank you for your attention!