Dualities between（Non－）Geometric Heterotic String Vacua via F－Theory
 joint work with A．Font，I．García－Etxebarria，D．Lüst and
 $$
\begin{aligned} & \text { S. Massai: } \\ & \text { arXiv:1602.xxxxx } \end{aligned}
$$

Christoph Mayrhofer

Arnold Sommerfeld Center，LMU München

$22^{\text {nd }}$ February， 2016 at F－Theory＠ 20 （Caltech）

Motivation

- To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;

Motivation

- To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;
- Because (most probably) amount of such vacua is much larger than geometric ones;

Motivation

- To understand landscape of string vacua need to go away from the lamppost and look at non-geometric string compactifications too;
- Because (most probably) amount of such vacua is much larger than geometric ones;
- Step in this direction is understanding of following 6d heterotic vacua and dualities among them;

Heterotic String Theory on T^{2} I

- From compactification of het. string on T^{2} obtain following moduli in 8d:
- complexified Kähler modulus: $\rho=\int_{T^{2}} B+\omega \wedge \bar{\omega}$;

Heterotic String Theory on T^{2}

- From compactification of het. string on T^{2} obtain following moduli in 8d:
- complexified Kähler modulus: $\rho=\int_{T^{2}} B+\omega \wedge \bar{\omega}$;
- complex structure modulus: $\tau=\frac{\int_{b} \omega}{\int_{a} \omega}$;

Heterotic String Theory on T^{2}

- From compactification of het. string on T^{2} obtain following moduli in 8d:
- complexified Kähler modulus: $\rho=\int_{T^{2}} B+\omega \wedge \bar{\omega}$;
- complex structure modulus: $\tau=\frac{\int_{b} \omega}{\int_{a} \omega}$;

- Wilson line moduli: $\beta^{i}=\int_{a} A^{i}+i \int_{b} A^{i}$;

Heterotic String Theory on T^{2}

- From compactification of het. string on T^{2} obtain following moduli in 8d:
- complexified Kähler modulus: $\rho=\int_{T^{2}} B+\omega \wedge \bar{\omega}$;
- complex structure modulus: $\tau=\frac{\int_{b} \omega}{\int_{a} \omega}$;

- Wilson line moduli: $\beta^{i}=\int_{a} A^{i}+i \int_{b} A^{i}$;
- Moduli space of het. torus compactification is (Narain space):

$$
O(2) \times O\left(2+n_{W L}\right) \backslash O\left(2,2+n_{W L}\right) / O\left(2,2+n_{W L}, \mathbb{Z}\right)
$$

Main case of interest: $n_{W L}=1$ (and $n_{W L}=0$);

Heterotic String Theory on T^{2} II

- For $n_{W L}=1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$
\mathbb{H}_{2}=\left\{\left.\Omega=\left(\begin{array}{cc}
\tau & \beta \\
\beta & \rho
\end{array}\right) \right\rvert\, \Im(\operatorname{det}(\Omega))>0 \wedge \Im(\rho)>0\right\}
$$

quotient by $\operatorname{Sp}(4, \mathbb{Z})$-action $\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1}$ with

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(4, \mathbb{Z})
$$

Heterotic String Theory on T^{2} II

- For $n_{W L}=1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$
\mathbb{H}_{2}=\left\{\left.\Omega=\left(\begin{array}{cc}
\tau & \beta \\
\beta & \rho
\end{array}\right) \right\rvert\, \Im(\operatorname{det}(\Omega))>0 \wedge \Im(\rho)>0\right\}
$$

quotient by $\operatorname{Sp}(4, \mathbb{Z})$-action $\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1}$ with

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \operatorname{Sp}(4, \mathbb{Z})
$$

- Note, map is not one-to-one, only bijective on $O(2) \times O(3) \backslash O(2,3) / S O^{+}(2,3, \mathbb{Z})$; [Vinberg '13, MalmendiereMorison '14]

Heterotic String Theory on T^{2} II

- For $n_{W L}=1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$
\mathbb{H}_{2}=\left\{\left.\Omega=\left(\begin{array}{cc}
\tau & \beta \\
\beta & \rho
\end{array}\right) \right\rvert\, \Im(\operatorname{det}(\Omega))>0 \wedge \Im(\rho)>0\right\}
$$

quotient by $\operatorname{Sp}(4, \mathbb{Z})$-action $\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1}$ with

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in S p(4, \mathbb{Z})
$$

- Note, map is not one-to-one, only bijective on $O(2) \times O(3) \backslash O(2,3) / S O^{+}(2,3, \mathbb{Z})$; [Vinberg '13, MalmendiereMorison '14]
- Above moduli fields are entries of Ω;

Heterotic String Theory on T^{2} II

- For $n_{W L}=1$, above Narain space can be mapped to Siegel upper half plan of genus two

$$
\mathbb{H}_{2}=\left\{\left.\Omega=\left(\begin{array}{cc}
\tau & \beta \\
\beta & \rho
\end{array}\right) \right\rvert\, \Im(\operatorname{det}(\Omega))>0 \wedge \Im(\rho)>0\right\}
$$

quotient by $\operatorname{Sp}(4, \mathbb{Z})$-action $\Omega \rightarrow(A \Omega+B)(C \Omega+D)^{-1}$ with

$$
\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in S p(4, \mathbb{Z})
$$

- Note, map is not one-to-one, only bijective on $O(2) \times O(3) \backslash O(2,3) / S O^{+}(2,3, \mathbb{Z})$; [Vinberg '13, Malmendierz Morison '14]
- Above moduli fields are entries of Ω;
- $\mathbb{H}_{2} / S p(4, \mathbb{Z})$ is (complex structure) moduli space of genus two curves;

Genus Two Fibration I

- Interested in vacua with non-trivial moduli field background; Let torus compactification vary (adiabatically) along two dimensions;

Genus Two Fibration I

- Interested in vacua with non-trivial moduli field background; Let torus compactification vary (adiabatically) along two dimensions;
- Allow for stringy (patching) dualities, i.e. identifications under $S p(4, \mathbb{Z})$ action;

Genus Two Fibration I

- Interested in vacua with non-trivial moduli field background; Let torus compactification vary (adiabatically) along two dimensions;
- Allow for stringy (patching) dualities, i.e. identifications under Sp $(4, \mathbb{Z})$ action;
- Like in F-theory, geometrify information of varyring fields in terms of fibration, i.e. genus two fibration;

Genus Two Fibration I

- Interested in vacua with non-trivial moduli field background; Let torus compactification vary (adiabatically) along two dimensions;
- Allow for stringy (patching) dualities, i.e. identifications under $S p(4, \mathbb{Z})$ action;
- Like in F-theory, geometrify information of varyring fields in terms of fibration, i.e. genus two fibration;

- That way end up with non-geometric compactification; Because allow for identifications with inverse of metric, or even total mixing of three moduli τ, ρ and β;

Genus Two Fibration II

- To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;

Genus Two Fibration II

- To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);

Genus Two Fibration II

- To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);
- All degenerations of genus two curves are classified;
[Ogg '66, Namikawa\&Ueno '73]

Genus Two Fibration II

- To fulfil EOM, fibration has to be holomorphic; Hence, degenerates at (complex) co-dim one loci;
- Degeneration points are location of quotient singularities, non-pert. objects like NS5 branes, or more generally T-fects (see D. Lüst's talk);
- All degenerations of genus two curves are classified;
[Ogg '66, Namikawa\&Ueno '73]
- Natural question: can we find identification/interpretation of physical objects at all these degenerations?

Duality with F-Theory I

- Het. string on T^{2} and F-Theory on elliptically fibered K3 are dual to each other; [Morrison\&Vafa '96]

Duality with F-Theory I

- Het. string on T^{2} and F-Theory on elliptically fibered K 3 are dual to each other; [Morrison\&Vafa '96]
- Duality is best understood in large volume/stable degeneration limit; [Morrison\&Vafa '96] At this point in moduli space, base \mathbb{P}^{1} of K3 splits in two; The het. data, i.e. τ and β^{i} $(\rho \rightarrow i \infty)$, can be read off from intersection of two components of degenerated K3; [Friedman et al. '97]

Duality with F-Theory I

- Het. string on T^{2} and F-Theory on elliptically fibered K 3 are dual to each other; [Morison\&Vafa '96]
- Duality is best understood in large volume/stable degeneration limit; [MorrisoneVafa '96] At this point in moduli space, base \mathbb{P}^{1} of K 3 splits in two; The het. data, i.e. τ and β^{i} $(\rho \rightarrow i \infty)$, can be read off from intersection of two components of degenerated K3; [Friedman et al. '97]
- But for $n_{W L}=0$ and $n_{W L}=1$, there is even identification in terms of moduli space; [Cardoso '96, McOrist et al. '10, MalmendiereMorison '14]

Duality with F-Theory II

- For both cases $\left(n_{W L}=0,1\right)$ F-Theory K3 given by

$$
y^{2}=x^{3}+\left(a u^{4}+c u^{3}\right) x+\left(b u^{6}+d u^{5}+e u^{7}\right)=0 ;
$$

Duality with F-Theory II

- For both cases $\left(n_{W L}=0,1\right)$ F-Theory K3 given by

$$
y^{2}=x^{3}+\left(a u^{4}+c u^{3}\right) x+\left(b u^{6}+d u^{5}+e u^{7}\right)=0 ;
$$

- K3 has $I I^{*}$ sing. at $u=\infty$ and $I I I^{*}$ sing. (or $I I^{*}$ in case of $c=0$) at $u=0$; Therefore, Picard number of K3 is 17 $\left(n_{W L}=1\right)$ or $18\left(n_{W L}=1\right)$, respectively;

Duality with F-Theory II

- For both cases $\left(n_{W L}=0,1\right)$ F-Theory K3 given by

$$
y^{2}=x^{3}+\left(a u^{4}+c u^{3}\right) x+\left(b u^{6}+d u^{5}+e u^{7}\right)=0 ;
$$

- K3 has $I I^{*}$ sing. at $u=\infty$ and $I I I^{*}$ sing. (or $I I^{*}$ in case of $c=0$) at $u=0$; Therefore, Picard number of K3 is 17 $\left(n_{W L}=1\right)$ or $18\left(n_{W L}=1\right)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:

Duality with F-Theory II

- For both cases $\left(n_{W L}=0,1\right)$ F-Theory K3 given by

$$
y^{2}=x^{3}+\left(a u^{4}+c u^{3}\right) x+\left(b u^{6}+d u^{5}+e u^{7}\right)=0 ;
$$

- K3 has $I I^{*}$ sing. at $u=\infty$ and $I I I^{*}$ sing. (or $I I^{*}$ in case of $c=0$) at $u=0$; Therefore, Picard number of K3 is 17 $\left(n_{W L}=1\right)$ or $18\left(n_{W L}=1\right)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:
- $n_{W L}=1(e=1): a=-\frac{1}{48} \psi_{4}(\Omega), b=-\frac{1}{864} \psi_{6}(\Omega)$, $c=-4 \chi_{10}(\Omega), d=\chi_{12}(\Omega)$;
Siegel modular forms $\psi_{4}, \psi_{6}, \chi_{10}$ and χ_{12} fix Ω uniquely;

Duality with F-Theory II

- For both cases $\left(n_{W L}=0,1\right)$ F-Theory K3 given by

$$
y^{2}=x^{3}+\left(a u^{4}+c u^{3}\right) x+\left(b u^{6}+d u^{5}+e u^{7}\right)=0 ;
$$

- K3 has $I I^{*}$ sing. at $u=\infty$ and $I I I^{*}$ sing. (or $I I^{*}$ in case of $c=0$) at $u=0$; Therefore, Picard number of K3 is 17 $\left(n_{W L}=1\right)$ or $18\left(n_{W L}=1\right)$, respectively;
- Moduli spaces agree with het. ones and can even be mapped:
- $n_{W L}=1(e=1): a=-\frac{1}{48} \psi_{4}(\Omega), b=-\frac{1}{864} \psi_{6}(\Omega)$, $c=-4 \chi_{10}(\Omega), d=\chi_{12}(\Omega)$;
Siegel modular forms $\psi_{4}, \psi_{6}, \chi_{10}$ and χ_{12} fix Ω uniquely;
- $n_{W L}=0(c=0): j(\tau) j(\rho)=-1728^{2} \frac{a^{3}}{27 d e}$,

$$
(j(\tau)-1728)(j(\rho)-1728)=1728^{2} \frac{b^{2}}{4 d e} \text { and } \beta=0 ;
$$

Duality with F-Theory III

- Therefore, have identification of $E_{8} \times E_{7} \mathrm{~K} 3$ with genus two curve, and identification of $E_{8} \times E_{8} \mathrm{~K} 3$ with two tori glued together at one point (degenerated hyperelliptic curve);
- Further, if genus two curve is given in terms of sextic, i.e.

$$
y^{2}=c_{6} x^{6}+c_{5} x^{5}+\ldots
$$

then a, b, c, d of K3 are simply given by Igusa-Clebsch invariants of sectic, i.e. polynomials of coefficients c_{i};

- Fortunately, all degenerations of genus two curves are in this form; Therefore, can easily map them to (singularities of) K3;
- Note, to go from K3 to representation of hyperelliptic curve is much more involved;

Resolutions of F-Theory Side I

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_{i} vary with t, with singular curve at $t=0$;

Resolutions of F-Theory Side I

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_{i} vary with t, with singular curve at $t=0$;
- From c_{i} obatin a, b, c, d, which are then functions (sections) of t too;

Resolutions of F-Theory Side I

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_{i} vary with t, with singular curve at $t=0$;
- From c_{i} obatin a, b, c, d, which are then functions (sections) of t too;
- On K3 (fibre) have already III* singularity at $u=0$ which will enhance at $u=t=0$ to non-min./beyond Kodaira type sing.;

Resolutions of F-Theory Side I

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_{i} vary with t, with singular curve at $t=0$;
- From c_{i} obatin a, b, c, d, which are then functions (sections) of t too;
- On K3 (fibre) have already III* singularity at $u=0$ which will enhance at $u=t=0$ to non-min./beyond Kodaira type sing.;
- Need to blow up base to resolve such singularities; [Miranda' 83,

Grassi '93, Aspinwall\&Morrison '97]

Resolutions of F-Theory Side I

- Degeneration of hyperelliptic curve is parametrised by t, i.e. c_{i} vary with t, with singular curve at $t=0$;
- From c_{i} obatin a, b, c, d, which are then functions (sections) of t too;
- On K3 (fibre) have already $I I I^{*}$ singularity at $u=0$ which will enhance at $u=t=0$ to non-min./beyond Kodaira type sing.;
- Need to blow up base to resolve such singularities; [Miranda' 83,

Grassi '93, Aspinwall\&Morrison '97]

- To determine which base blow-ups must be done, take sort of toric approach; Write down f and g in terms of its (leading) monomials in u and t,

$$
f=\sum_{i} f_{i} u^{m_{i}^{1}} t^{m_{i}^{2}}, \quad g=\sum_{i} g_{i} u^{l_{i}^{1}} t^{l_{i}^{2}}
$$

and ask for allowed 'blow-up direction' \mathbf{n} such that hypersurface

$$
y^{2}=x^{3}+f x+g
$$

is still CY;

Resolutions of F-Theory Side II

- Condition on vanishing first Chern class translates to:

$$
\left(m_{i}^{1}-4\right) n_{1}+\left(m_{i}^{2}-4\right) n_{2} \geq-4 \quad \text { and } \quad\left(l_{i}^{1}-6\right) n_{1}+\left(l_{i}^{2}-6\right) n_{2} \geq-6
$$ for all $\mathbf{m}^{i}, \mathbf{l}^{i}$ with $\mathbf{n}=\left(n_{1}, n_{2}\right)$ direction of blow-up, i.e. $t, u \rightarrow e^{n_{1}} t, e^{n_{2}} u$;

Resolutions of F-Theory Side II

- Condition on vanishing first Chern class translates to:
$\left(m_{i}^{1}-4\right) n_{1}+\left(m_{i}^{2}-4\right) n_{2} \geq-4$ and $\left(l_{i}^{1}-6\right) n_{1}+\left(l_{i}^{2}-6\right) n_{2} \geq-6$ for all $\mathbf{m}^{i}, \mathbf{I}^{i}$ with $\mathbf{n}=\left(n_{1}, n_{2}\right)$ direction of blow-up, i.e. $t, u \rightarrow e^{n_{1}} t, e^{n_{2}} u$;

Ex. het. $\left[\mathrm{II}^{*}-\mathrm{I}_{0}\right]$ singularity: Solution set $\left\{\boldsymbol{n}^{j}\right\}$ to inequalities

$$
(6,-1) \cdot \mathbf{n} \geq-4,(1,0) \cdot \mathbf{n} \geq-4
$$

for f and for g :

$$
(4,-1) \cdot \mathbf{n} \geq-6,(-1,0) \cdot \mathbf{n} \geq-6,
$$

$$
(-6,1) \cdot \mathbf{n} \geq-6
$$

Resolutions of F-Theory Side III

- Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$
\mu(a)<4 \quad \text { or } \mu(b)<6 \quad \text { or } \mu(c)<10 \text { or } \mu(d)<12
$$

where μ is vanishing order at $t=0$;

Resolutions of F-Theory Side III

- Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$
\mu(a)<4 \text { or } \mu(b)<6 \text { or } \mu(c)<10 \text { or } \mu(d)<12,
$$

where μ is vanishing order at $t=0$;

- If this is fulfilled, solution set $\left\{\boldsymbol{n}^{j}\right\}$ to above inequalities is finite;

Resolutions of F-Theory Side III

- Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$
\mu(a)<4 \text { or } \mu(b)<6 \text { or } \mu(c)<10 \text { or } \mu(d)<12
$$

where μ is vanishing order at $t=0$;

- If this is fulfilled, solution set $\left\{\boldsymbol{n}^{j}\right\}$ to above inequalities is finite;
- From $\left\{\boldsymbol{n}^{j}\right\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^{j} one has $a_{j} \mathbf{n}^{j}=\mathbf{n}^{j+1}+\mathbf{n}^{j-1}$ with a_{j} self-intersection number of \mathbf{n}^{j};

Resolutions of F-Theory Side III

- Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$
\mu(a)<4 \text { or } \mu(b)<6 \text { or } \mu(c)<10 \text { or } \mu(d)<12
$$

where μ is vanishing order at $t=0$;

- If this is fulfilled, solution set $\left\{\boldsymbol{n}^{j}\right\}$ to above inequalities is finite;
- From $\left\{\boldsymbol{n}^{j}\right\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^{j} one has $a_{j} \mathbf{n}^{j}=\mathbf{n}^{j+1}+\mathbf{n}^{j-1}$ with a_{j} self-intersection number of \mathbf{n}^{j};
- Further vanishing orders of f, g and Δ along e_{i} 's are immediately obtained;

Resolutions of F-Theory Side III

- Not all singularities which obtained from degenerations of genus two can be resolved on F-Theory side; Can give simple criterion for when can resolve in above way:

$$
\mu(a)<4 \text { or } \mu(b)<6 \text { or } \mu(c)<10 \text { or } \mu(d)<12
$$ where μ is vanishing order at $t=0$;

- If this is fulfilled, solution set $\left\{\boldsymbol{n}^{j}\right\}$ to above inequalities is finite;
- From $\left\{\boldsymbol{n}^{j}\right\}$ read off self-intersection numbers, because for adjacent \mathbf{n}^{j} one has $a_{j} \mathbf{n}^{j}=\mathbf{n}^{j+1}+\mathbf{n}^{j-1}$ with a_{j} self-intersection number of \mathbf{n}^{j};
- Further vanishing orders of f, g and Δ along e_{i} 's are immediately obtained;
- To work out gauge algebras and matter representations standard techniques have to be applied; [Bershadsky '96, Katz\&Vafa

Example: III-III

- The genus two curve is given by

$$
y^{2}=x(x-1)\left(x^{2}+t\right)\left[(x-1)^{2}+t\right] .
$$

Example: III-III

- The genus two curve is given by

$$
y^{2}=x(x-1)\left(x^{2}+t\right)\left[(x-1)^{2}+t\right] .
$$

- Note again, degeneration at $t \rightarrow 0$;

Example: III-III

- The genus two curve is given by

$$
y^{2}=x(x-1)\left(x^{2}+t\right)\left[(x-1)^{2}+t\right] .
$$

- Note again, degeneration at $t \rightarrow 0$;
- Monodromies around $\mathrm{t}=0$ are

$$
\tau \rightarrow \frac{\rho}{\beta^{2}-\rho \tau}, \quad \beta \rightarrow-\frac{\beta}{\beta^{2}-\rho \tau}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\rho \tau}
$$

Example: III-III

- The genus two curve is given by

$$
y^{2}=x(x-1)\left(x^{2}+t\right)\left[(x-1)^{2}+t\right] .
$$

- Note again, degeneration at $t \rightarrow 0$;
- Monodromies around $\mathrm{t}=0$ are

$$
\tau \rightarrow \frac{\rho}{\beta^{2}-\rho \tau}, \quad \beta \rightarrow-\frac{\beta}{\beta^{2}-\rho \tau}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\rho \tau}
$$

- From map, obtain following CY3 singularity (to leading orders):

$$
y^{2}=x^{3}+\left[t^{6} u^{3}+t^{2} u^{4}\right] x+t^{4} u^{6}+t^{6} u^{5}+u^{7}
$$

Example: III-III

- The genus two curve is given by

$$
y^{2}=x(x-1)\left(x^{2}+t\right)\left[(x-1)^{2}+t\right] .
$$

- Note again, degeneration at $t \rightarrow 0$;
- Monodromies around $\mathrm{t}=0$ are

$$
\tau \rightarrow \frac{\rho}{\beta^{2}-\rho \tau}, \quad \beta \rightarrow-\frac{\beta}{\beta^{2}-\rho \tau}, \quad \rho \rightarrow \frac{\tau}{\beta^{2}-\rho \tau}
$$

- From map, obtain following CY3 singularity (to leading orders):

$$
y^{2}=x^{3}+\left[t^{6} u^{3}+t^{2} u^{4}\right] x+t^{4} u^{6}+t^{6} u^{5}+u^{7}
$$

- Get following resolved geometry:

$$
\frac{1}{2}(\mathbf{1}, \mathbf{2}) \quad \frac{1}{2}(\mathbf{7}, \mathbf{2})
$$

Dual Theories

- Having mapped all genus two degenerations to F-Theory, can search for dual theories;

Dual Theories

- Having mapped all genus two degenerations to F-Theory, can search for dual theories;
- In subclass of elliptic models, obtain the following dual theories:

$\mu\left(I_{10}\right)$	dual models
2	$\left[\mathrm{I}_{0}-\mathrm{II}\right]_{0112}$
3	$\left[\mathrm{I}_{0}-\mathrm{III}\right]_{0113}$
4	$\left[\mathrm{I}_{0}-\mathrm{IV}\right]_{0224},[\mathrm{II}-\mathrm{II}]_{0224}$
5	$[\mathrm{III}-\mathrm{II}]_{0225}$
6	$\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]_{0226},[\mathrm{III}-\mathrm{III}]_{0226},[\mathrm{IV}-\mathrm{II}]_{0336}$
7	$[\mathrm{IV}-\mathrm{III}]_{0337}$
8	$\left[\mathrm{I}_{0}-\mathrm{IV}^{*}\right]_{0448},[\mathrm{IV}-\mathrm{IV}]_{0448},\left[\mathrm{I}_{0}^{*}-\mathrm{II}\right]_{0338}$
9	$\left[\mathrm{I}_{0}-\mathrm{III}\right]_{0339},\left[\mathrm{I}_{0}^{*}-\mathrm{III}\right]_{0339}$
10	$\left[\mathrm{I}_{0}-\mathrm{II}^{*}\right]_{05510},[\mathrm{IV}-\mathrm{II}]_{05510},\left[\mathrm{I}_{0}^{*}-\mathrm{IV}\right]_{04410}$
11	$\left.\left[\mathrm{II}-\mathrm{III}^{*}\right]_{04411},[\mathrm{IV}]^{*}-\mathrm{III}\right]_{05511}$

Interpretation of Dualities

- For these elliptic models can find some insight by looking at monodromy relations;

Interpretation of Dualities

- For these elliptic models can find some insight by looking at monodromy relations;
- Start from III - III and apply following moves:

$$
\begin{array}{rll}
{[\mathrm{III}-\mathrm{III}]} & =A_{1} B_{1} A_{1} A_{2} B_{2} A_{2} \\
& =A_{1} B_{1} A_{1} A_{1} B_{1} A_{1} \quad(\rho \rightarrow \tau) \\
& =A_{1} B_{1} A_{1} B_{1} A_{1} B_{1} \quad(\text { braid }) \\
& =\left(A_{1} B_{1}\right)^{3}=\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right],
\end{array}
$$

where A_{i}, B_{i} are Dehn twists around a_{i}, b_{i} of genus two curve;

Interpretation of Dualities

- For these elliptic models can find some insight by looking at monodromy relations;
- Start from III - III and apply following moves:

$$
\begin{array}{rlr}
{[\mathrm{III}-\mathrm{III}]} & =A_{1} B_{1} A_{1} A_{2} B_{2} A_{2} \\
& =A_{1} B_{1} A_{1} A_{1} B_{1} A_{1} \quad(\rho \rightarrow \tau) \\
& =A_{1} B_{1} A_{1} B_{1} A_{1} B_{1} \quad(\text { braid }) \\
& =\left(A_{1} B_{1}\right)^{3}=\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right],
\end{array}
$$

where A_{i}, B_{i} are Dehn twists around a_{i}, b_{i} of genus two curve;

- Colliding of IV and II singularity gives also [$\left.\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$

Interpretation of Dualities

- For these elliptic models can find some insight by looking at monodromy relations;
- Start from III - III and apply following moves:

$$
\begin{array}{rlr}
{[\mathrm{III}-\mathrm{III}]} & =A_{1} B_{1} A_{1} A_{2} B_{2} A_{2} \\
& =A_{1} B_{1} A_{1} A_{1} B_{1} A_{1} \quad(\rho \rightarrow \tau) \\
& =A_{1} B_{1} A_{1} B_{1} A_{1} B_{1} \quad(\text { braid }) \\
& =\left(A_{1} B_{1}\right)^{3}=\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right],
\end{array}
$$

where A_{i}, B_{i} are Dehn twists around a_{i}, b_{i} of genus two curve;

- Colliding of IV and II singularity gives also [$\left.\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$
- Reason for why $\rho \rightarrow \tau$ should be valid operation can be seen from duality map with $\beta=0$:

$$
j(\tau) j(\rho)=-1728^{2} \frac{a^{3}}{27 d e},(j(\tau)-1728)(j(\rho)-1728)=1728^{2} \frac{b^{2}}{4 d e}
$$

Can 'compensate' for ρ degeneration by enhance τ degeneration;

Interpretation of Dualities

- For these elliptic models can find some insight by looking at monodromy relations;
- Start from III - III and apply following moves:

$$
\begin{array}{rlr}
{[\mathrm{III}-\mathrm{III}]} & =A_{1} B_{1} A_{1} A_{2} B_{2} A_{2} \\
& =A_{1} B_{1} A_{1} A_{1} B_{1} A_{1} \quad(\rho \rightarrow \tau) \\
& =A_{1} B_{1} A_{1} B_{1} A_{1} B_{1} \quad(\text { braid }) \\
& =\left(A_{1} B_{1}\right)^{3}=\left[\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right],
\end{array}
$$

where A_{i}, B_{i} are Dehn twists around a_{i}, b_{i} of genus two curve;

- Colliding of IV and II singularity gives also [$\left.\mathrm{I}_{0}-\mathrm{I}_{0}^{*}\right]$
- Reason for why $\rho \rightarrow \tau$ should be valid operation can be seen from duality map with $\beta=0$:

$$
j(\tau) j(\rho)=-1728^{2} \frac{a^{3}}{27 d e},(j(\tau)-1728)(j(\rho)-1728)=1728^{2} \frac{b^{2}}{4 d e}
$$

Can 'compensate' for ρ degeneration by enhance τ degeneration;

- Note, have duality between non-gemetric/geometric vacua, cf. | صас |
| :---: |
| $1 / 16$ |

Comment on Compact 6d Non-Geometric Heterotic Models

- Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^{1};

Comment on Compact 6d Non-Geometric Heterotic Models

- Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^{1};
- Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);

Comment on Compact 6d Non-Geometric Heterotic Models

- Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^{1};
- Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);
- As example can extend [III - III] degeneration to global fibration;

Comment on Compact 6d Non-Geometric Heterotic Models

- Map to F-Theory side enforces coefficients of sextic to be sections of anti-canonical bundle of \mathbb{P}^{1};
- Therefore, discriminant (of sextic) is a polynomial of degree 20, i.e. sextic generically degenerates over 20 points (loci of T-fects);
- As example can extend [III - III] degeneration to global fibration;
- Obtain in addition to [III - III] a [$\left.\mathrm{I}_{2}-0-0\right]$ singularity at one point and $\left[I_{1}-0-0\right]$ singularities at 12 further points;

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;
- Would be nice to understand map from F-theory to het. better (away from stable degeneration limit);

Summary \& Outlook

- Analysed all genus two degenerations from F-theory side;
- Identified dual models in this list;
- Interpretation for some of them;
- Compact examples;
- Would be nice to understand map from F-theory to het. better (away from stable degeneration limit);
- In-depth study of het. EOM and its solution for non-vanishing Wilson line (for $\beta=0$ see \mathbf{D}. Lüst's talk);

Thank you for your attention!

