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Review: What is F-theory?

F-theory is a ten-dimensional quantum theory of gravity
semi-classically approximated by:

I SL(2,Z)-equivariant type IIB SUGRA with quantized
p-form fields, coupled to gauge theories along 7-branes
and 3-branes with additional massless fields associated
to brane intersections.

Mild singularities are allowed in the background spacetime
which may introduce additional degrees of freedom.
The 7-branes are sources for a scalar field in the theory, and
there is a richer variety of F-theory 7-branes than of string
theory 7-branes.
One task for the future is to expand this formalism to allow
for background 1-branes and 5-branes, as well as anti-branes.
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Background fields in F-theory
The background fields in F-theory consist of

I An SL(2,Z)-invariant complex scalar, specified by
means of a complex line bundle L on spacetime,
together with sections f ∈ H0(L⊗4), g ∈ H0(L⊗6).

I An SL(2,Z)-doublet of 2-forms, whose expectation
value is specified by a section of the sheaf CZ ⊗Z A2,
where CZ is the sheaf of possible integration contours
for the elliptic integral

∫
γ

dx√
x3+fx+g

, i.e., the sheaf of

local string charges.

I A self-dual 4-form field.

I 7-branes located at {4f 3 + 27g2 = 0}, per a catalog. . .

I The field content of the 8D and 4D coupled theories
(gauge fields and scalars), including Higgs vevs.

I Massless fields at brane intersections.

I A metric (with specified asymptotics near branes).

I Fermions and a gravitino.
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Background fields in F-theory
The background fields in F-theory consist of

I An SL(2,Z)-invariant complex scalar, specified by
means of a complex line bundle L on spacetime,
together with sections f ∈ H0(L⊗4), g ∈ H0(L⊗6).
These two sections together determine a Weierstrass
equation y2 = x3 + fx + g which defines a Calabi–Yau
hypersurface in P(O ⊕ L⊗2 ⊕ L⊗3) relevant for the
duality with M-theory. In addition, we recover
τ =

∫
γ2

dx√
x3+fx+g

/
∫
γ1

dx√
x3+fx+g

.

I An SL(2,Z)-doublet of 2-forms, whose expectation
value is specified by a section of the sheaf CZ ⊗Z A2

I A self-dual 4-form field.
I 7-branes located at {4f 3 + 27g2 = 0}, per a catalog. . .
I The field content of the 8D and 4D coupled theories

(gauge fields and scalars), including Higgs vevs.
I Massless fields at brane intersections.
I A metric (with specified asymptotics near branes).
I Fermions and a gravitino.
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Background fields in F-theory
The background fields in F-theory consist of

I An SL(2,Z)-invariant complex scalar, specified by
means of a complex line bundle L on spacetime,
together with sections f ∈ H0(L⊗4), g ∈ H0(L⊗6).

I An SL(2,Z)-doublet of 2-forms, whose expectation
value is specified by a section of the sheaf CZ ⊗Z A2,
where CZ is the sheaf of possible integration contours
for the elliptic integral

∫
γ

dx√
x3+fx+g

, i.e., the sheaf of

local string charges.

I A self-dual 4-form field.

I 7-branes located at {4f 3 + 27g2 = 0}, per a catalog. . .

I The field content of the 8D and 4D coupled theories
(gauge fields and scalars), including Higgs vevs.

I Massless fields at brane intersections.

I A metric (with specified asymptotics near branes).

I Fermions and a gravitino.
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A catalog of 7-branes

type SL(2,Z) class λ monodromy gauge algebra

In, n ≥ 1

(
1 n
0 1

)
0

none su(n)
Z2 sp([ n

2
])

II

(
1 1
−1 0

)
1
6

– –

III

(
0 1
−1 0

)
1
4

– su(2)

IV

(
0 1
−1 −1

)
1
3

none su(3)
Z2 sp(1)

I ∗0

(
−1 0

0 −1

)
1
2

none so(8)
Z2 so(7)

Z3 or S3 g2

I ∗n , n ≥ 1

(
−1 −n

0 −1

)
1
2

none so(2n + 8)
Z2 so(2n + 7)

IV ∗
(
−1 −1

1 0

)
2
3

none e6
Z2 f4

III ∗
(

0 −1
1 0

)
3
4

– e7

II ∗
(

0 −1
1 1

)
5
6

– e8
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Determining the gauge algebra

type ordz=0(f , g ,∆) eqn. of monodromy cover

I0 (≥ 0,≥ 0, 0) –

I1 (0, 0, 1) –

I2 (0, 0, 2) –

Im, m≥3 (0, 0,m) ψ2 + (9g/2f )|z=0

II (≥ 1, 1, 2) –

III (1,≥ 2, 3) –

IV (≥ 2, 2, 4) ψ2 − (g/z2)|z=0

I ∗0 (≥ 2,≥ 3, 6) ψ3 + (f /z2)|z=0 · ψ + (g/z3)|z=0

I ∗2n−5, n≥3 (2, 3, 2n+1) ψ2 + 1
4
(∆/z2n+1)(2zf /9g)3|z=0

I ∗2n−4, n≥3 (2, 3, 2n+2) ψ2 + (∆/z2n+2)(2zf /9g)2|z=0

IV ∗ (≥ 3, 4, 8) ψ2 − (g/z4)|z=0

III ∗ (3,≥ 5, 9) –

II ∗ (≥ 4, 5, 10) –

non-min. (≥ 4,≥ 6,≥ 12) –

Explicit determination of the Kodiara type and monodromy
(and hence the gauge algebra) for Weierstrass models.
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The bundle

The line bundle captures an invariance in this setup: for a
non-vanishing function u, replacing f and g by u4f and u6g
does not change τ . The line bundle allows this ambiguity to
be accounted for locally.
In addition, it may happen that f = u4f ′, g = u6g ′ for some
bundle W and section u of that bundle (with L =W ⊗L′).
In this case, τ is still identical between the two models (with
a change of bundle).
A model for which there is no such u with a nontrivial W is
known as a “minimal Weierstrass model.” It is a result from
mathematics that a minimal Weierstrass model always exists.
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Dualities
F-theory is related to other quantum gravity theories by
means of dualities.

I F-theory is the limit of M-theory when the spacetime is
fibered by T 2’s whose area goes to zero in the limit.
From the F-theory perspective, the vacuum contains a
circle whose radius goes to ∞ in the limit, leaving
behind a 10D theory compactified on the base of the
elliptic fibration.
The typical spacetime here is a resolution of the total
space of a Weierstrass fibration (or of an elliptic
Calabi–Yau torsor).

I F-theory vacua which are fibered by S2’s may have a
limit in which the S2’s break in half; in this case, there
is a duality with certain vacua of the e8 ⊕ e8-heterotic
string. There is also an so(32)-heterotic variant of this.

I F-theory vacua may have a limit which is pure type IIB
string theory including D7-branes and orientifold planes
(the “Sen limit”).
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1. The frozen phase of F-theory

I There are known to be M-theory vacua with ADE
singularities which have no associated enhanced gauge
symmetry. These singularities also feature a nonzero
value for the integral of the M-theory 3-form field over
the boundary of a neighborhood of the singularity.

I Tachikawa argued in arXiv:1508.06679 that precisely
one of these “frozen” singularities lifts to F-theory,
namely, the singularity which describes an O7+

orientifold plane in type IIB string theory. Witten had
argued in hep-th/9712028 that the monodromy around

such an O7+-plane is

[
−1 −4

0 −1

]
, the same as for an I ∗4

Kodaira fiber. More generally one can put additional
D7-branes on top of the orientifold plane yielding a

monodromy of the form

[
−1 −4− k

0 −1

]
and a

symplectic (rather than orthogonal) gauge group.
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1. The frozen phase of F-theory

I In work in progress with Bhardwaj, Tachikawa, and
Tomasiello, we are working out the details of this
“frozen phase” of F-theory. For certain (perhaps all)
Weierstrass models with one or more singular fibers of
type I ∗4+k , there is an alternate compactification of
F-theory with some discrete flux turned on, with a
different dictionary than the usual one for the gauge
algebra and matter content.

I Somewhat surprisingly, for 6D models the anomaly
cancellation – although highly constrained – does admit
solutions of this type, at least for the gauge and mixed
anomalies. Calculating the purely gravitational anomaly
is a challenge since the discrete flux influences the
calculation.
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2. Limitations of Tate’s algorithm
I Tate’s algorithm was originally developed in number

theory to refine Kodaira’s original procedure for
determining the type of singular fiber in a Weierstrass
model.

I Although Tate’s algorithm was originally designed to
detect things happening in codimension one on the base
(i.e., gauge symmetries from a physical point of view),
in hep-th/9605200 and arXiv:1106.3854 the algorithm
was used to study phenomena in codimension two under
some assumptions about the singularities present on the
discriminant locus.

I Even with these assumptions, the analysis in
arXiv:1106.3854 is known to be incomplete: we have no
general description of the form of the equation in cases
SU(m) with 6 ≤ m ≤ 9, Sp(n) with n = 3, 4, or SO(`)
with ` = 13, 14. To fully understand the codimension
two phenomena in these cases, we need to complete the
Tate-algorthm-inspired analysis.



Mathematical
Aspects of
F-theory

David R. Morrison

What is F-theory

The frozen phase

Tate’s algorithm

Matter content

Log terminal

Canonical
singularities

Abelian gauge
symmetry

Discrete
symmetries

T-branes

Fluxes and
instantons

Finiteness

Summary

3. The matter content of an F-theory vacuum

I More generally, we need an expanded dictionary for
possible matter content in F-theory models. The Tate’s
algorithm analysis (and the Katz–Vafa analysis to which
it is closely related) provides a wide array of matter
representation but there are some representations which
are more subtle to explain.

I In particular, when the local ring of the discriminant
locus at a particular point is not a unique factorization
domain, the Tate’s algorithm analysis breaks down
completely. There are now many interesting examples
known with more exotic matter (work of Taylor and
various collaborators) but a systematic procedure for
determining the matter content is not known.
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3. The matter content of an F-theory vacuum

I From a mathematical perspective, one would like to
know the structure of the singular fibers along any locus
of codimension two in the base, once the singularities in
the Weierstrass model have been resolved. One would
also like to know the intersection numbers of the
components of the singular fiber with the divisors in the
resolved Weirstrass model, which will determine the
charges present in the representation. Finally – and this
is the most subtle point – when the divisors themselves
have some monodromy, one would like to determine the
corresponding representation content. (It is not clear
whether or not this latter step is a purely mathematical
question.)
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4. Log terminal singularities and birational
geometry

I When B has dimension 1, Kodaira proved a formula for
the canonical bundle of the total space of the elliptic
fibration π : X → B, which for simplicity we state in
case there are no multiple fibers. Kodaira showed that
KX = π∗(KB + Λ), where Λ =

∑
λiDi + 1

12 j
∗[P]. Here,

λi are the coefficients associated to the various Kodaira
types in the catalog, and P represents some fixed point
on the j-line, being pulled back to a divisor on B by the
j-function.

I Note that Λ is a Q-divisor on B, and this formula really
gives a formula for 12KX with integer coefficients.

I Kodaira’s canonical bundle formula has been extended
in various ways to higher dimension. Let us say that
π : X → B is a good elliptic fibration if
KX = π∗(KB + Λ).
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4. Log terminal singularities and birational
geometry

I In higher dimension, the singularities of B and the
singularities of Λ become relevant. Algebraic geometers,
motivated by the study of birational geometry (blowing
up and blowing down) have introduced the notion of a
“klt pair” (B,Λ). There are two properties: (1) all
coefficients of Λ must be strictly less than 1, and (2)
there is a “log resolution” of singularities
f : (B̃, Λ̃)→ (B,Λ) such that the difference

K
B̃

+ Λ̃− f ∗(KB + Λ)

is an effective divisor.
I Example: if B has dimension 2 and Λ is empty, this is

equivalent to B = C2/Γ for some Γ ⊂ U(2) with the
origin as isolated fixed point.

I “Minimal model” property: (KB + Λ) · C ≥ 0 for all
curves C on B.
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4. Log terminal singularities and birational
geometry

I The work of Grassi from the early 1990’s shows that for
an elliptic Calabi–Yau threefold:

1. First we can blow up base and fiber so that both are
nonsingular and that the family π : X → B is flat (i.e.,
all fibers have dimension one) and “good.”

2. Then, we can blow back down, achieving the key
“minimal model” property KX · C ≥ 0 for all C on the
total space, and simultaneously achieving the “log
minimal model” property (KB + Λ) · C ≥ 0 for all C on
the base. The family is still flat and “good.”

3. The singularities of the minimal model of X are at worst
Q-factorial terminal singularities, while the singularities
of the minimal model of (B,Λ) are at worst klt.

I Unpublished work of Grassi extends much of this picture
to the case of elliptic Calabi–Yau fourfolds.
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5. Calabi–Yau varieties with terminal singularities

I The singularities of X are called canonical if there is a
resolution of singularities f : Y → X such that
KY − f ∗(KX ) is an effective divisor. The singularities
are called terminal if in addition every exceptional
divisor of the blowup map occurs in KY − f ∗(KX ) with
a nonzero coefficient. The singularities are called
Q-factorial if an integer multiple of every codimension
one subvariety can be defined by a single equation (i.e.,
every Weil divisor is Q-Cartier).

I As mentioned earlier, these conditions on singularities
are the natural outcome of studying blowing down on
algebraic varieties: the endpoint of blowing down (and
flips) leaves one with an algebraic variety having at
worst Q-factorial terminal singularities.

I Weierstrass models have canonical singularities, and
some blowing up will be needed to get them into
“Q-factorial terminal” form.
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6. The abelian part of the gauge group

I We need a better understanding of the abelian part of
the gauge group. On a resolution X of the Weierstrass
model, the abelian part is described in terms of the
Cartier divisors on X , but those divisors may fail to be
Q-Cartier on the Weierstrass model itself. The presence
of non-Q-Cartier divisors suggests that at least some
singular points will not be Q-factorial. Should we more
naturally consider this as a property of the local
singularities, or as a more global property of the entire
Weiestrass model?

I A related issue: from the perspective of the Weierstrass
coefficients themselves, we do not have an algorithm for
computing the Mordell–Weil group of y2 = x3 + fx + g .
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7. The discrete part of the gauge group

I We need to understand the possible discrete symmetries
more algorithmically. Mathematically, this boils down to
the problem of finding all of the elliptic Calabi–Yau
torsors for a given Weierstrass model.

I An elliptic Calabi–Yau torsor for a Weierstrass model
W → B is a Calabi–Yau variety X which is fibered by
curves of genus one π : X → B such that the elliptic
curve EW /B over the function field of B acts on the
genus one curve CX/B :

EW /B × CX/B → CX/B .

I The reason this notion is important is that the τ
functions of W → B and X → B are identical. Since
F-theory is only sensitive to the τ function,
compactifying M-theory on any of the torsors of
W → B and taking the F-theory limit must lead to the
same F-theory model.
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7. The discrete part of the gauge group

I How can this happen physically? In other words, how
can there be distinct models in M-theory with a
common F-theory limit? We already understand this for
continuous parameters (the Kaluza–Klein mechanism),
but for discrete choices the lesson is: discrete choices of
M-theory vacua correspond to discrete symmetries in
F-theory.

I Let us recall how this works in a particular example
(which I worked out with Taylor), in which the discrete
symmetry in F-theory can also be seen to arise via the
Higgs mechanism. Taylor and I started with a theory
having a U(1) gauge symmetry (from the Mordell–Weil
group) and two kinds of charged matter. We found the
deformation of complex structure which Higgsed the
matter of charge 2, and this left us with a residual Z2

gauge symmetry.
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7. The discrete part of the gauge group

M2

W

S2 J2
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7. The discrete part of the gauge group

I Just as we are missing a good algorithm for determining
the Mordell–Weil group of an elliptic fibration, we are
missing a good algorithm for determining the set of
elliptic Calabi–Yau torsors. In work in progress, I am
attempting to find such an algorithm.
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8. Intermediate Jacobians and T-branes

I We need an improved understanding of the role of
intermediate Jacobians and of T-branes. Anderson,
Heckman, and Katz gave a beautiful geometric
interpretation to the role played by the the 3-form field
(intermediate Jacobian) in M-theory compactifications
of F-theory models involving T-branes, particularly
when the total space has singularities. They gave
details for Calabi–Yau threefolds; the picture still needs
to be worked out in detail for Calabi–Yau fourfolds.

I The M-theory 3-form field corresponds under the
Kaluza–Klein analysis to the self-dual 4-form field in
type IIB supergravity. It would be ideal to have an
intrinsic way to specify this part of the data directly in
terms of the self-dual 4-form. This would also be useful
when discrete flux effects are present, as in the case of
the frozen phase of F-theory.
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9. Fluxes and Instantons

I We need a systematic way to understand fluxes and
instantons in detail. The KKLT analysis and its variants
in F-theory suggest that these are the key effects for
stabilizing moduli. The fluxes and instantons are
typically studied in M-theory rather than directly in
F-theory; ideally, there would be a translation to direct
F-theory properties which would then enable these
fluxes to be analyzed mathematically.

I Let me advertise some work concerning fluxes in
M-theory (joint with Jockers, Katz, and Plesser) which
Katz will talk about on Thursday.
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10. Finiteness

Is the set of complete families of elliptically fibered
Calabi–Yau fourfolds finite (up to birational automorphism)?
Taylor and collaborators are making significant progress in
surveying and classifying these models.
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Summary: Mathematical Aspects

Here are the mathematical aspects we have focussed on.

I We began with a review of F-theory. Primary
interpretation in terms of IIB with variable dilaton (i.e.,
SL(2,Z)-equivariant type IIB string theory), but many
important properties are studied either via duality to
M-theory after a circle compactification, duality to the
heterotic string after a degeneration of complex
structure, or duality to IIB orientifold models after a
different degeneration of complex structure.

1. The frozen phase of F-theory.
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Summary: Mathematical Aspects

2. We need to complete Tate’s algorithm (or better
understand the situation) for certain classical groups.

3. We need an improved dictionary for determining the
matter content of an F-theory model. One aspect of
this is the fact that there is some ambiguity between
matter content at codimension one and at codimension
two (in the base). Another aspect is that when the
discriminant locus has complicated singularities, the
standard approach (derived from Tate’s algorithm which
was originally intended to answer questions about the
number theory of elliptic curves) is inadequate for
anwering the question.
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4. Motivated by Kodaira’s canonical bundle formula on the
one hand and birational geometry of the base of an
elliptic fibration on the other hand, we introduced pairs
(B,Λ) (with the coefficients of Λ determined by the
Kodaira classification) as well as the notion of “klt
pair” which restricts the singularity type.
The birational geometry of F-theory models in
dimension six is quite well understood, thanks to work
of Grassi from the early 1990’s, and has been extended
in part to dimension four.
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5. Birational geometry of threefolds and fourfolds: there
are two natural classes of singularities, terminal
singularities and canonical singularities, which do not
affect the canonical divisor. (There is one related
property of singularities: whether or not the singularity
is “Q-factorial”.) The mathematics strongly suggests
that such singular Calabi–Yau threefolds and fourfolds
should be on an equal footing with the nonsingular
ones. We saw several instances where the physical
interpretation is clear and important.



Mathematical
Aspects of
F-theory

David R. Morrison

What is F-theory

The frozen phase

Tate’s algorithm

Matter content

Log terminal

Canonical
singularities

Abelian gauge
symmetry

Discrete
symmetries

T-branes

Fluxes and
instantons

Finiteness

Summary

Summary: Mathematical Aspects

6. We need a better understanding of the abelian part of
the gauge group. On a resolution X of the Weierstrass
model, the abelian part is described in terms of the
Cartier divisors on X , but those divisors may fail to be
Q-Cartier on the Weierstrass model itself. The presence
of non-Q-Cartier divisors suggests that at least some
singular points will not be Q-factorial. Should we more
naturally consider this as a property of the local
singularities, or as a more global property of the entire
Weiestrass model?
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7. We need to understand the possible discrete symmetries
more algorithmically. Mathematically, this boils down to
the problem of finding all of the elliptic Calabi–Yau
torsors for a given Weierstrass model.

8. We need an improved understanding of the role of
intermediate Jacobians and of T-branes.

9. We need a systematic way to understand fluxes and
instantons in detail.

10. Is the set of complete families of elliptically fibered
Calabi–Yau fourfolds finite (up to birational
automorphism)?
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