Bounding the number of tensor multiplets in 6D F-theory vacua

Daniel S. Park

New High Energy Theory Center Rutgers University

F-theory at 20 @ Burke Institute, Caltech

[Kumar/Taylor, Kumar/Morrison/Taylor]

Are all 6D $\mathcal{N} = 1$ supergravity theories embeddable into string theory?

 First superstring revolution [Alvarez-Gaumé/Witten, Green/Schwarz, Gross/Harvey/Martinec/Rohm]
 Superstand Wafe, Oppuri/Matel

Swampland [Vafa, Ooguri/Vafa]

[Kumar/Taylor, Kumar/Morrison/Taylor]

Are all 6D $\mathcal{N} = 1$ supergravity theories embeddable into string theory?

 First superstring revolution [Alvarez-Gaumé/Witten, Green/Schwarz, Gross/Harvey/Martinec/Rohm]

Swampland [Vafa, Ooguri/Vafa]

[Kumar/Taylor, Kumar/Morrison/Taylor]

Are all 6D $\mathcal{N} = 1$ supergravity theories embeddable into string theory?

- First superstring revolution [Alvarez-Gaumé/Witten, Green/Schwarz, Gross/Harvey/Martinec/Rohm]
- Swampland [Vafa, Ooguri/Vafa]

6D String Universality: Strategy

Daniel S. Park (Rutgers)

6D String Universality: Strategy

Арра	Apparently Consistent Theories			
	Cons	sistent Theories		
		Strir	ng Vacua	
			Known String Vacua	

Daniel S. Park (Rutgers)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

All known 6D N = 1 string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]

- Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
- Finite number of families of X [Grassi, Gross]

• Bounds on physical parameters?

*Modulo discrete fluxes, which do not affect the bound we study in this talk. E nac

- All known 6D N = 1 string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
 - ► Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
 - Finite number of families of X [Grassi, Gross]

• Bounds on physical parameters?

*Modulo discrete fluxes, which do not affect the bound we study in this talk. E nac

- All known 6D N = 1 string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
 - Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
 - Finite number of families of X [Grassi, Gross]

• Bounds on physical parameters?

*Modulo discrete fluxes, which do not affect the bound we study in this talk. 🛓 🕤 a d

- All known 6D N = 1 string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
 - Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
 - Finite number of families of X [Grassi, Gross]
- Bounds on physical parameters?

^{*}Modulo discrete fluxes, which do not affect the bound we study in this talk. 📱 🔊 🔍

Massless spectrum

- Number of tensor multiplets : T
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (Rⁱ_i)
- Scalars vevs:
 j ∈ SO(1, T)/SO(T)

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	(A_{μ},λ^{+})
Hyper	$(4arphi,\psi^-)$

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R_i^l)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	(A_{μ},λ^{+})
Hyper	$(4arphi,\psi^-)$

• • • • • • • • • • • • •

Can we bound T?

-

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R_i)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	$({\it A}_{\mu},\lambda^+)$
Hyper	$(4arphi,\psi^-)$

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R_i^l)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	(A_{μ},λ^+)
Hyper	$(4arphi,\psi^-)$

A (1) > A (2) > A

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R^I_i)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	$({\it A}_{\mu},\lambda^+)$
Hyper	$(4arphi,\psi^-)$

A (1) > A (2) > A

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R^I_i)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	$({\it A}_{\mu},\lambda^+)$
Hyper	$(4arphi,\psi^-)$

▲ 同 ▶ → 三 ▶

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R^I_i)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	$({\it A}_{\mu},\lambda^+)$
Hyper	$(4arphi,\psi^-)$

▲ 同 ▶ → 三 ▶

Massless spectrum

- Number of tensor multiplets : *T*
- Gauge algebra : $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \cdots \oplus \mathfrak{g}_n$
- Matter content : (R^I_i)
- Scalars vevs: $j \in SO(1, T)/SO(T)$

Multiplet	Field Content
Gravity	$(g_{\mu u},\psi^+_\mu,B^+_{\mu u})$
Tensor	$(\phi, \chi^-, B^{\mu u})$
Vector	(A_{μ},λ^{+})
Hyper	$(4arphi,\psi^-)$

• $T = h^2(B) - 1$

Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"

• Some results on bounds on *T* exist in the literature.

 $\sim B$: semi-toric (\supset toric) $\Rightarrow T \leq 1.93$. [Morrison/Taylor, Martini/Taylor] $\sim R^{21}(O) \geq 150 \Rightarrow T \leq 100$. [Taylor/Mang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? > "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 B : comittone (⇒ tone) ⇒ T ≤ 198. [Morrison/Taylor, Martini/Taylor] > th⁴ (Q) ⇒ 150 ⇒ (T ≤ 100. [Taylor/Mang)

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? > "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 B : comittone (⇒ tone) ⇒ T ≤ 198. [Morrison/Taylor, Martini/Taylor] > th⁴ (Q) ⇒ 150 ⇒ (T ≤ 100. [Taylor/Mang)

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 B : cemi-tone (⇒ tone) ⇒ T ≤ 188. [Momson/Teylor, Martini/Taylor]
 B⁺(C) ≥ 150 ⇒ T ≤ 100. [Taylor/Wang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 - ▶ *B* : semi-toric (⊃ toric) ⇒ $T \le 193$. [Morrison/Taylor, Martini/Taylor] ▶ $h^{2,1}(X) \ge 150 \Rightarrow T \le 100$. [Taylor/Wang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 - ▶ *B* : semi-toric (\supset toric) \Rightarrow *T* ≤ 193. [Morrison/Taylor, Martini/Taylor] ▶ $h^{2,1}(X) \ge 150 \Rightarrow T \le 100.$ [Taylor/Wang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 - ▶ *B* : semi-toric (\supset toric) \Rightarrow *T* ≤ 193. [Morrison/Taylor, Martini/Taylor]
 - ▶ $h^{2,1}(X) \ge 150 \implies T \le 100$. [Taylor/Wang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 - ▶ *B* : semi-toric (\supset toric) \Rightarrow *T* ≤ 193. [Morrison/Taylor, Martini/Taylor]
 - ▶ $h^{2,1}(X) \ge 150 \implies T \le 100$. [Taylor/Wang]

Main result: $T \leq 35908$

- $T = h^2(B) 1$
 - Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? ⇒ "Admissible surface"
- Some results on bounds on *T* exist in the literature.
 - ▶ *B* : semi-toric (\supset toric) \Rightarrow *T* ≤ 193. [Morrison/Taylor, Martini/Taylor]
 - ▶ $h^{2,1}(X) \ge 150 \implies T \le 100$. [Taylor/Wang]

Main result: $T \leq 35908$

- ∃ Infinite classes of theories with *T* unbounded, that satisfy all known low-energy consistency conditions.
 (of Groop/Sebwarz/West Segnetti Kumar/Taylor Seiberg/Taylor)
 - (cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$\mathfrak{g} = \mathfrak{u}(1)^{\oplus 29k}$$

 $T = k \ (\geq 9)$
matter $= 273 \times \cdot$

- ▶ Not realizable in F-theory. (\Rightarrow *T* ≤ 9 for all abelian theories.)
- Do these theories violate unknown consistency conditions? (Unitarity? Causality?)

- ∃ Infinite classes of theories with *T* unbounded, that satisfy all known low-energy consistency conditions.
 (of Groop/Sebwarz/West Segnetti Kumar/Taylor Seiberg/Taylor)
 - (cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$\mathfrak{g} = \mathfrak{u}(1)^{\oplus 29k}$$

 $T = k \ (\geq 9)$
natter $= 273 \times \cdot$

▶ Not realizable in F-theory. (\Rightarrow *T* ≤ 9 for all abelian theories.)

r

 Do these theories violate unknown consistency conditions? (Unitarity? Causality?)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ∃ Infinite classes of theories with *T* unbounded, that satisfy all known low-energy consistency conditions.
 - (cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$\mathfrak{g} = \mathfrak{u}(1)^{\oplus 29k}$$

 $T = k \ (\geq 9)$
natter $= 273 \times \cdot$

▶ Not realizable in F-theory. (\Rightarrow *T* ≤ 9 for all abelian theories.)

r

 Do these theories violate unknown consistency conditions? (Unitarity? Causality?)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Strategy

- 3 Baby problem
- 4) The general problem

5 Summary

э

2 Strategy

- Baby problem
- 4 The general problem
- 5 Summary

2 Strategy

5 Summary

э

2 Strategy

5 Summary

2 Strategy

Strategy

Smooth CY threefold $X \rightarrow B$:

$$y^2 = x^3 + Fx + G$$
, $\Delta = 4F^3 + 27G^2$

with $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$, $\Delta \in \mathcal{O}(-12K)$.

 $\{C_i\}$: (Irreducible) curves with $C_i^2 \leq -2$.

- C_i must have genus zero. (Same for $C^2 = -1$.)
- Intersection patterns of C_i are restricted.
- \exists minimal bounds on multiplicity of C_i in (F, G, Δ) .

Smooth CY threefold $X \rightarrow B$:

$$y^2 = x^3 + Fx + G$$
, $\Delta = 4F^3 + 27G^2$

with $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$, $\Delta \in \mathcal{O}(-12K)$.

- $\{C_i\}$: (Irreducible) curves with $C_i^2 \leq -2$.
 - C_i must have genus zero. (Same for $C^2 = -1$.)
 - Intersection patterns of C_i are restricted.
 - \exists minimal bounds on multiplicity of C_i in (F, G, Δ) .

3

4 **A** N A **B** N A **B** N

Smooth CY threefold $X \rightarrow B$:

$$y^2 = x^3 + Fx + G$$
, $\Delta = 4F^3 + 27G^2$

with $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$, $\Delta \in \mathcal{O}(-12K)$.

- $\{C_i\}$: (Irreducible) curves with $C_i^2 \leq -2$.
 - C_i must have genus zero. (Same for $C^2 = -1$.)
 - Intersection patterns of C_i are restricted.
 - \exists minimal bounds on multiplicity of C_i in (F, G, Δ) .

3

イロト イポト イラト イラト

Smooth CY threefold $X \rightarrow B$:

$$y^2 = x^3 + Fx + G$$
, $\Delta = 4F^3 + 27G^2$

with $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$, $\Delta \in \mathcal{O}(-12K)$.

- $\{C_i\}$: (Irreducible) curves with $C_i^2 \leq -2$.
 - C_i must have genus zero. (Same for $C^2 = -1$.)
 - Intersection patterns of C_i are restricted.
 - \exists minimal bounds on multiplicity of C_i in (F, G, Δ) .

< 口 > < 同 > < 回 > < 回 > < 回 > <

Non-Higgsable Clusters

[Morrison/Taylor]

Name	Curves	Gauge	Matter	(f, g, δ)			
12	(-12)	e8	-	(4, 5, 10)			
8	(-8)	e7	-	(3, 5, 9)			
7	(-7)	e7	<u>1</u> 256	(3, 5, 9)			
6	(-6)	e ₆	-	(3, 4, 8)			
5	(-5)	f4	-	(3, 4, 8)			
4	(-4)	\$0g	-	(2, 3, 6)			
3	(-3)	suz	-	(2, 2, 4)			
32	(-3)-(-2)	$\mathfrak{g}_2\oplus\mathfrak{su}_2$	$(7+1, \frac{1}{2}2)$	(2, 3, 6), (1, 2, 3)			
322	(-3)-(-2)-(-2)	$\mathfrak{g}_2\oplus\mathfrak{su}_2$	$(7+1, \frac{1}{2}2)$	(2, 3, 6), (2, 2, 4), (1, 1, 2)			
232	(-2)-(-3)-(-2)	$\mathfrak{su}_2\oplus\mathfrak{so}_7\oplus\mathfrak{su}_2$	$(1, 8, \frac{1}{2}2) + (\frac{1}{2}2, 8, 1)$	(1, 2, 3), (2, 4, 6), (1, 2, 3)			
•	(-2) curves	-	-	(0, 0, 0)			

2

イロト イヨト イヨト イヨト

Multiplicity bounds

Multiplicity m_i of C_i within effective divisor D:

 $(C_j \cdot C_i) m_i \leq [D] \cdot C_j, \quad m_i \geq 0.$

Applied to [D] = -nK for n = 4, 6, 12.

3

Residual divisors

$$R_F = -4K - \sum_i f_i C_i$$
, $R_G = -6K - \sum_i g_i C_i$, $R_\Delta = -12K - \sum_i \delta_i C_i$.

 R_F , R_G and R_{Δ} are effective. (cf. Cordova/Dumitrescu/Intriligator)

э

イロト イポト イヨト イヨト

Residual divisors

$$R_F = -4K - \sum_i f_i C_i$$
, $R_G = -6K - \sum_i g_i C_i$, $R_\Delta = -12K - \sum_i \delta_i C_i$.

 R_F , R_G and R_{Δ} are effective. (cf. Cordova/Dumitrescu/Intriligator)

э

< ロ > < 同 > < 回 > < 回 >

$$R_F^2 = (4K + \sum_i f_i C_i)^2 = 16(9 - T) + 8K \cdot f_i C_i + f_i f_j C_i \cdot C_j$$

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \quad t \in \{12, 8, \cdots, 232\}$$

$$\alpha_t \equiv -\frac{1}{16} (8f_i K \cdot C_i + f_i f_j C_i \cdot C_j), \quad C_i : \text{curves in NHC } t$$

Base equations

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \ 9 = T + \frac{R_G^2}{36} + \sum_t \beta_t n_t, \ 9 = T + \frac{R_{\Delta}^2}{144} + \sum_t \gamma_t n_t.$$

æ

イロト イヨト イヨト イヨト

$$R_F^2 = (4K + \sum_i f_i C_i)^2 = 16(9 - T) + 8K \cdot f_i C_i + f_i f_j C_i \cdot C_j$$

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \quad t \in \{12, 8, \cdots, 232\}$$

 $\alpha_t \equiv -\frac{1}{16} (8f_i K \cdot C_i + f_i f_j C_i \cdot C_j), \quad C_i : \text{curves in NHC } t$

Base equations

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \ 9 = T + \frac{R_G^2}{36} + \sum_t \beta_t n_t, \ 9 = T + \frac{R_{\Delta}^2}{144} + \sum_t \gamma_t n_t.$$

э

$$R_F^2 = (4K + \sum_i f_i C_i)^2 = 16(9 - T) + 8K \cdot f_i C_i + f_i f_j C_i \cdot C_j$$

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \quad t \in \{12, 8, \cdots, 232\}$$

$$\alpha_t \equiv -\frac{1}{16} (8f_i K \cdot C_i + f_i f_j C_i \cdot C_j), \quad C_i : \text{curves in NHC } t$$

Base equations

$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \ 9 = T + \frac{R_G^2}{36} + \sum_t \beta_t n_t, \ 9 = T + \frac{R_{\Delta}^2}{144} + \sum_t \gamma_t n_t.$

2

イロト イヨト イヨト イヨト

$$R_F^2 = (4K + \sum_i f_i C_i)^2 = 16(9 - T) + 8K \cdot f_i C_i + f_i f_j C_i \cdot C_j$$

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \quad t \in \{12, 8, \cdots, 232\}$$

$$lpha_t \equiv -rac{1}{16} (8f_i K \cdot C_i + f_i f_j C_i \cdot C_j), \quad C_i : ext{curves in NHC } t$$

Base equations

$$9 = T + \frac{R_F^2}{16} + \sum_t \alpha_t n_t, \ 9 = T + \frac{R_G^2}{36} + \sum_t \beta_t n_t, \ 9 = T + \frac{R_{\Delta}^2}{144} + \sum_t \gamma_t n_t.$$

æ

イロト イヨト イヨト イヨト

An assumption

The NHC condition

For generic F and G (i.e., in the maximally Higgsed phase) the non-abelian gauge/matter content of the theory is given by a direct sum of NHCs.

Gravitational anomaly constraint

$$\Rightarrow \quad T = \frac{273 - \nu}{29} + \sum_{t} \left(\frac{V_t - H_t}{29} \right) n_t$$

 $\nu = H_n + H_{ab} - V_{ab} = h^{2,1}(X) + 1 + (H_{ab} - V_{ab}) \le h^{21}(X) + 1$

3

イロン イ団と イヨン 一

Linear programming problem?

- Obtain lower bounds on R_F^2 , R_G^2 and R_{Δ}^2 that are linear with respect to n_t .
- Obtain lower bounds on T that are linear with respect to n_t.
- Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν . Vary ν in the allowed range $\nu \leq 150$ and find

 $\max_{\nu\leq 150} T(\nu).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear programming problem?

- Obtain lower bounds on R_F^2 , R_G^2 and R_{Δ}^2 that are linear with respect to n_t .
- Obtain lower bounds on T that are linear with respect to n_t .
- 3 Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν . Vary ν in the allowed range $\nu \leq 150$ and find

 $\max_{\nu\leq 150} T(\nu) \, .$

< ロ > < 同 > < 回 > < 回 >

Linear programming problem?

- Obtain lower bounds on R_F^2 , R_G^2 and R_{Δ}^2 that are linear with respect to n_t .
- 2 Obtain lower bounds on T that are linear with respect to n_t .
- 3 Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν . Vary ν in the allowed range $\nu \leq 150$ and find

 $\max_{\nu\leq 150} T(\nu) \, .$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear programming problem?

- Obtain lower bounds on R_F^2 , R_G^2 and R_{Δ}^2 that are linear with respect to n_t .
- 2 Obtain lower bounds on T that are linear with respect to n_t .
- Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν . Vary ν in the allowed range $\nu \leq 150$ and find

 $\max_{\nu\leq 150} T(\nu) \, .$

イロト イポト イラト イラト

Outline

2 Strategy

5 Summary

э

Problem becomes simple with following assumption:

$$R_F^2, \quad R_G^2, \quad R_\Delta^2 \ge 0$$

for generic $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$.

Let's call $X \rightarrow B$ satisfying this property a B-fold.[†]

$$9 \ge T + \sum_t \alpha_t n_t, \quad T + \sum_t \beta_t n_t, \quad T + \sum_t \gamma_t n_t.$$

[†]These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an elliptic fibration would be named after the winner of the tournament.

Daniel S. Park (Rutgers)

Problem becomes simple with following assumption:

$$R_F^2, \quad R_G^2, \quad R_\Delta^2 \ge 0$$

for generic $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$.

Let's call $X \rightarrow B$ satisfying this property a B-fold.[†]

$$9 \geq T + \sum_{t} \alpha_t n_t, \quad T + \sum_{t} \beta_t n_t, \quad T + \sum_{t} \gamma_t n_t.$$

[†]These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an elliptic fibration would be named after the winner of the tournament.

Problem becomes simple with following assumption:

$$R_F^2, \quad R_G^2, \quad R_\Delta^2 \ge 0$$

for generic $F \in \mathcal{O}(-4K)$, $G \in \mathcal{O}(-6K)$.

Let's call $X \rightarrow B$ satisfying this property a B-fold.[†]

$$9 \geq T + \sum_{t} \alpha_t n_t, \quad T + \sum_{t} \beta_t n_t, \quad T + \sum_{t} \gamma_t n_t.$$

[†]These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an elliptic fibration would be named after the winner of the tournament.

• $N_C \equiv |\{C_i\}|$: Total number of all components of the NHCs

- N_{NHC} : Total number of all NHCs
- A subset of at least (N_C 56) elements of {C_i} form a subset of a basis of a unimodular lattice

$$T \ge N_C - 56 + N_{NHC} = \sum_t (N_t + 1)n_t - 56$$
 [Nikulin]

3

• $N_C \equiv |\{C_i\}|$: Total number of all components of the NHCs

• N_{NHC} : Total number of all NHCs

A subset of at least (N_C - 56) elements of {C_i} form a subset of a basis of a unimodular lattice

$$T \ge N_C - 56 + N_{NHC} = \sum_t (N_t + 1)n_t - 56$$
 [Nikulin]

3

- $N_C \equiv |\{C_i\}|$: Total number of all components of the NHCs
- N_{NHC} : Total number of all NHCs
- A subset of at least (N_C 56) elements of {C_i} form a subset of a basis of a unimodular lattice

$$T \ge N_C - 56 + N_{NHC} = \sum_t (N_t + 1)n_t - 56 \qquad [\text{Nikulin}]$$

- $N_C \equiv |\{C_i\}|$: Total number of all components of the NHCs
- N_{NHC} : Total number of all NHCs
- A subset of at least (N_C 56) elements of {C_i} form a subset of a basis of a unimodular lattice

$$T \ge N_C - 56 + N_{NHC} = \sum_t (N_t + 1)n_t - 56 \qquad [\text{Nikulin}]$$

- $N_C \equiv |\{C_i\}|$: Total number of all components of the NHCs
- N_{NHC} : Total number of all NHCs
- A subset of at least (N_C 56) elements of {C_i} form a subset of a basis of a unimodular lattice

$$T \ge N_C - 56 + N_{NHC} = \sum_t (N_t + 1)n_t - 56$$
 [Nikulin]

3

$$\sum_{t} (VH_{t} + 29\alpha_{t}) n_{t}, \sum_{t} (VH_{t} + 29\beta_{t}) n_{t}, \sum_{t} (VH_{t} + 29\gamma_{t}) n_{t} \le \nu - 12$$

$$\sum_{t} (\alpha_{t} + N_{t} + 1) n_{t}, \sum_{t} (\beta_{t} + N_{t} + 1) n_{t}, \sum_{t} (\gamma_{t} + N_{t} + 1) n_{t} \le 65$$

$$\sum_{t} \left(\frac{H_{t} - V_{t} + 29N_{t}}{29} + 1 \right) n_{t} - 56 \le \frac{273 - \nu}{29}$$

$$T = \frac{273 - \nu}{29} + \sum_{t} \left(\frac{V_{t} - H_{t}}{29} \right) n_{t}, \quad \nu \le 150$$

$$\Rightarrow T \le 1454^{\ddagger}$$

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ」

$$\sum_{t} (VH_{t} + 29\alpha_{t}) n_{t}, \sum_{t} (VH_{t} + 29\beta_{t}) n_{t}, \sum_{t} (VH_{t} + 29\gamma_{t}) n_{t} \le \nu - 12$$

$$\sum_{t} (\alpha_{t} + N_{t} + 1) n_{t}, \sum_{t} (\beta_{t} + N_{t} + 1) n_{t}, \sum_{t} (\gamma_{t} + N_{t} + 1) n_{t} \le 65$$

$$\sum_{t} \left(\frac{H_{t} - V_{t} + 29N_{t}}{29} + 1 \right) n_{t} - 56 \le \frac{273 - \nu}{29}$$

$$T = \frac{273 - \nu}{29} + \sum_{t} \left(\frac{V_{t} - H_{t}}{29} \right) n_{t}, \quad \nu \le 150$$

$$\Rightarrow T \le 1454^{\ddagger}$$

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ」

$$\begin{split} \sum_{t} \left(VH_{t} + 29\alpha_{t} \right) n_{t}, & \sum_{t} \left(VH_{t} + 29\beta_{t} \right) n_{t}, \\ \sum_{t} \left(VH_{t} + 29\gamma_{t} \right) n_{t} \leq \nu - 12 \\ \sum_{t} \left(\alpha_{t} + N_{t} + 1 \right) n_{t}, \\ & \sum_{t} \left(\beta_{t} + N_{t} + 1 \right) n_{t}, \\ & \sum_{t} \left(\gamma_{t} + N_{t} + 1 \right) n_{t} \leq 65 \\ & \sum_{t} \left(\frac{H_{t} - V_{t} + 29N_{t}}{29} + 1 \right) n_{t} - 56 \leq \frac{273 - \nu}{29} \\ & T = \frac{273 - \nu}{29} + \sum_{t} \left(\frac{V_{t} - H_{t}}{29} \right) n_{t}, \quad \nu \leq 150 \\ & \Rightarrow T < 1454^{\ddagger} \end{split}$$

◆□> ◆圖> ◆ヨ> ◆ヨ> 「ヨ」

Outline

2 Strategy

- 3 Baby problem
- The general problem

5 Summary

э

The general problem

$$R = \sum_{c} m_{c}c \quad \Rightarrow \quad R^{2} = \sum_{c} m_{c}(c \cdot R)$$

Which c can contribute negatively ($c \cdot R < 0$) to R^2 ?

э

The general problem

$$R = \sum_{c} m_{c}c \quad \Rightarrow \quad R^{2} = \sum_{c} m_{c}(c \cdot R)$$

Which *c* can contribute negatively ($c \cdot R < 0$) to R^2 ?

э

< ロ > < 同 > < 回 > < 回 >

Negatively contributing curves

		12	8	7	6	5	4	3	32		322			232		
		12							32	3Ż	32	322	322	32Ż	ż32	232
3					7	6										
32	32					12		×								11
	32		2	1				×	×		3					
	3ż							×	×	×						
322	322					14		×	×	×	×					13
	322				9	8		×	×	×	×	×				
	322	0						×	×	×	×	×	×			
232	232		5	4				×	×	×	×	×	×	×		
	232						10	×	×	×	×	×	×	×	×	15

æ

Negatively contributing curves

æ

1. Classify how a single NHC can connect to multiple (-1) curves.

Eg. The 7 cluster \Rightarrow no. 1 or no. 4 curve

 $\begin{array}{ll} n_7 & \Rightarrow & n_{7,(\cdot)}, \\ & & n_{7,(1)}, n_{7,(1,1)}, n_{7,(1,1,1)}, n_{7,(1,1,1,1)}, n_{7,(1,1,1,1,1)}, \\ & & n_{7,(4)}, n_{7,(1,4)}, n_{7,(1,1,4)}, n_{7,(1,1,1,4)}, \\ & & n_{7,(4,4)}, n_{7,(1,4,4)} \\ & & n_{7,(4,4,4)}. \end{array}$

 $n_{12}, \cdots, n_{232} \Rightarrow 246$ variables w/ linear constraints

э.

イロト イポト イラト イラト

1. Classify how a single NHC can connect to multiple (-1) curves.

Eg. The 7 cluster \Rightarrow no. 1 or no. 4 curve

$$\begin{array}{ll} n_7 & \Rightarrow & n_{7,(\cdot)}, \\ & & n_{7,(1)}, n_{7,(1,1)}, n_{7,(1,1,1)}, n_{7,(1,1,1,1)}, n_{7,(1,1,1,1,1)}, \\ & & n_{7,(4)}, n_{7,(1,4)}, n_{7,(1,1,4)}, n_{7,(1,1,1,4)}, \\ & & n_{7,(4,4)}, n_{7,(1,4,4)} \\ & & n_{7,(4,4,4)}. \end{array}$$

 $n_{12}, \cdots, n_{232} \Rightarrow$ 246 variables w/ linear constraints

イロト イポト イラト イラ

2. Bound R_F^2 , R_G^2 and R_{Δ}^2 as a linear functional of the 246 variables.

Eg. (-1) curve C: 7 - 1 - 32.

$$R_G = mC + \cdots, \quad C \cdot R_G = -1$$

with $m \ge 1$. Then

$$R_G^2 = -m + \sum_{c
eq C} m_c(c \cdot R_G)$$

Is R_G^2 unbounded below?

3

A (-7)-curve C_7 contributes to R_G^2 positively: $C_7 \cdot R_G = 5$. $\widetilde{m}_{(-7)}$: degenerecy of the (-7) in *G*:

$$\widetilde{m}_7 \geq \frac{\sum_{c:(c \cdot C_7)=1} m_c + 30}{7}$$

The contribution of C_7 to R_G^2 :

$$m_7 C_7 \cdot R_G = (\widetilde{m}_7 - 5) C_7 \cdot R_G \ge \frac{5}{7} \sum_{c: (c \cdot C_7) = 1} m_c - \frac{25}{7}.$$

(-2)/(-3)-curve C_2/C_3 of 32 cluster: $C_2 \cdot R_G = C_3 \cdot R_G = 1$. The contribution of C_2 and C_3 to R_G^2 :

$$m_2C_2 \cdot R_G + m_3C_3 \cdot R_G \geq \frac{3}{5} \sum_{c: (c \cdot C_2) = 1} m_c + \frac{4}{5} \sum_{c: (c \cdot C_3) = 1} m_c - \frac{7}{5}$$

3

$$\begin{aligned} R_{G}^{2} &= \sum_{c} m_{c}(c \cdot R) \\ m_{7}C_{7} \cdot R_{G} &\geq \frac{5}{7} \sum_{c: (c \cdot C_{7})=1} m_{c} - \frac{25}{7} \\ m_{2}C_{2} \cdot R_{G} + m_{3}C_{3} \cdot R_{G} &\geq \frac{3}{5} \sum_{c: (c \cdot C_{2})=1} m_{c} + \frac{4}{5} \sum_{c: (c \cdot C_{3})=1} m_{c} - \frac{7}{5} \end{aligned}$$

$$R_{G}^{2} \geq -\frac{25}{7}n_{7} - \frac{7}{5}n_{32} + \left(\frac{5}{7} + \frac{4}{5} - 1\right) \sum_{c: \text{ no } 1. \text{ curve}} m_{c} + \cdots$$
$$\geq -\frac{25}{7}n_{7} - \frac{7}{5}n_{32} + \frac{18}{35}n_{(1)} + \cdots$$

 $n_{(1)} = n_{7,(1)} + 2n_{7,(1,1)} + 3n_{7,(1,1,1)} + \dots + n_{7,(1,4,4)}$

イロト 不得 トイヨト イヨト 二日

$$\begin{aligned} R_G^2 &= \sum_c m_c(c \cdot R) \\ m_7 C_7 \cdot R_G &\geq \frac{5}{7} \sum_{c: (c \cdot C_7) = 1} m_c - \frac{25}{7} \\ m_2 C_2 \cdot R_G + m_3 C_3 \cdot R_G &\geq \frac{3}{5} \sum_{c: (c \cdot C_2) = 1} m_c + \frac{4}{5} \sum_{c: (c \cdot C_3) = 1} m_c - \frac{7}{5} \\ R_G^2 &\geq -\frac{25}{7} n_7 - \frac{7}{5} n_{32} + \left(\frac{5}{7} + \frac{4}{5} - 1\right) \sum_{c: \text{no 1. curve}} m_c + \cdots \\ &\geq -\frac{25}{7} n_7 - \frac{7}{5} n_{32} + \frac{18}{35} n_{(1)} + \cdots \\ n_{(1)} &= n_{7,(1)} + 2n_{7,(1,1)} + 3n_{7,(1,1,1)} + \cdots + n_{7,(1,4,4)} \end{aligned}$$

2

イロト イヨト イヨト イヨト

$$\begin{aligned} R_G^2 &= \sum_c m_c(c \cdot R) \\ m_7 C_7 \cdot R_G &\geq \frac{5}{7} \sum_{c: (c \cdot C_7) = 1} m_c - \frac{25}{7} \\ m_2 C_2 \cdot R_G + m_3 C_3 \cdot R_G &\geq \frac{3}{5} \sum_{c: (c \cdot C_2) = 1} m_c + \frac{4}{5} \sum_{c: (c \cdot C_3) = 1} m_c - \frac{7}{5} \\ R_G^2 &\geq -\frac{25}{7} n_7 - \frac{7}{5} n_{32} + \left(\frac{5}{7} + \frac{4}{5} - 1\right) \sum_{c: \text{no 1. curve}} m_c + \cdots \\ &\geq -\frac{25}{7} n_7 - \frac{7}{5} n_{32} + \frac{18}{35} n_{(1)} + \cdots \\ n_{(1)} &= n_{7,(1)} + 2n_{7,(1,1)} + 3n_{7,(1,1,1)} + \cdots + n_{7,(1,4,4)} \end{aligned}$$

• (no. 12) $5 - 1 - \dot{3}2$ to R_F^2

• $m_{(12)} \leq 2$ in F. If $m_{(12)} > 2$, $\mathfrak{so}_8 \oplus \mathfrak{su}_2$.

• (no. 14) $5 - 1 - \dot{3}22$ to R_F^2

- Must introduce new "clusters" 51322 and 223151322.
- Must worry about eight more (−1) curves.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• (no. 12) $5 - 1 - \dot{3}2$ to R_F^2

• $m_{(12)} \leq 2$ in F. If $m_{(12)} > 2$, $\mathfrak{so}_8 \oplus \mathfrak{su}_2$.

• (no. 14) $5 - 1 - \dot{3}22$ to R_F^2

- Must introduce new "clusters" 51322 and 223151322.
- Must worry about eight more (−1) curves.

• (no. 12) $5 - 1 - \dot{3}2$ to R_F^2

• $m_{(12)} \leq 2$ in F. If $m_{(12)} > 2$, $\mathfrak{so}_8 \oplus \mathfrak{su}_2$.

• (no. 14) $5 - 1 - \dot{3}22$ to R_F^2

- Must introduce new "clusters" 51322 and 223151322.
- ▶ Must worry about eight more (-1) curves.

不同 いんきいんき

- (no. 12) $5 1 \dot{3}2$ to R_F^2
 - $m_{(12)} \leq 2$ in F. If $m_{(12)} > 2$, $\mathfrak{so}_8 \oplus \mathfrak{su}_2$.
- (no. 14) $5 1 \dot{3}22$ to R_F^2
 - Must introduce new "clusters" 51322 and 223151322.
 - ▶ Must worry about eight more (-1) curves.

- (no. 12) 5 1 32 to R_F^2
 - $m_{(12)} \leq 2$ in F. If $m_{(12)} > 2$, $\mathfrak{so}_8 \oplus \mathfrak{su}_2$.
- (no. 14) $5 1 \dot{3}22$ to R_F^2
 - Must introduce new "clusters" 51322 and 223151322.
 - ► Must worry about eight more (-1) curves.

3. Solve linear programming problem!

T ≤ 35908

Maximizing configuration:

 $\sim 150 \times (12 - 1 - 2 - 2 - 3 - 1 - 5 - 1 - 3 - 2 - 2 - 1 - 12)$ $\sim 500 \times (8 - 1 - 2 - 3 - 2 - 1 - 8 - \dots - 1 - 8)$ $\sim 5000 \times (6 - 1 - 3 - 1 - 6)$

3

3. Solve linear programming problem!

T ≤ 35908

Maximizing configuration:

$$\begin{array}{ll} \sim 150 \times & (12-1-2-2-3-1-5-1-3-2-2-1-12) \\ \sim 500 \times & (8-1-2-3-2-1-8-\cdots -1-8) \\ \sim 5000 \times & (6-1-3-1-6) \end{array}$$

< ロ > < 同 > < 回 > < 回 >

• We have obtained a crude bound of *T* by solving a linear programming problem.

Some (possibly drastic) improvements of the bound are expected in the forseeable future.

• Some residual problems are left.

- How general is the NHC condition?
 - Is it true for all admissible surfaces? Can we prove it?
- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

< ロ > < 同 > < 回 > < 回 >

• We have obtained a crude bound of *T* by solving a linear programming problem.

Some (possibly drastic) improvements of the bound are expected in the forseeable future.

• Some residual problems are left.

- How general is the NHC condition?
 - Is it true for all admissible surfaces? Can we prove it?
- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

< 回 > < 三 > < 三 >

• We have obtained a crude bound of *T* by solving a linear programming problem.

Some (possibly drastic) improvements of the bound are expected in the forseeable future.

Some residual problems are left.

- How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

• We have obtained a crude bound of *T* by solving a linear programming problem.

- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
 - How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
 - Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

< 回 > < 三 > < 三 >

• We have obtained a crude bound of *T* by solving a linear programming problem.

- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
 - How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
 - Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

A (10) A (10)

• We have obtained a crude bound of *T* by solving a linear programming problem.

- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
 - How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
 - Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

A B F A B F