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6D String Universality
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Are all 6D N = 1 supergravity theories embeddable into string theory?
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6D String Universality: Strategy

Apparently Consistent Theories

Consistent Theories

String Vacua

Known String Vacua
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6D String Universality

All known 6D N = 1 string vacua can be
embedded into geometric F-theory!∗ [Vafa, Morrison/Vafa]

I Geometric F-theory vacuum⇔ Elliptically fibered CY3 X → B
I Finite number of families of X [Grassi, Gross]

Bounds on physical parameters?

∗Modulo discrete fluxes, which do not affect the bound we study in this talk.
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6D String Universality

Massless spectrum
Number of tensor
multiplets : T
Gauge algebra :
g = g1 ⊕ g2 ⊕ · · · ⊕ gn

Matter content : (RI
i )

Scalars vevs:
j ∈ SO(1,T )/SO(T )

Multiplet Field Content

Gravity (gµν , ψ+
µ ,B+

µν)

Tensor (φ, χ−,B−µν)

Vector (Aµ, λ+)

Hyper (4ϕ,ψ−)

Can we bound T ?
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6D String Universality

T = h2(B)− 1
I Which surfaces B can be used as a base for a smooth elliptically

fibered Calabi-Yau threefold? ⇒ "Admissible surface"

Some results on bounds on T exist in the literature.
I B : semi-toric (⊃ toric)⇒ T ≤ 193. [Morrison/Taylor, Martini/Taylor]
I h2,1(X ) ≥ 150 ⇒ T ≤ 100. [Taylor/Wang]

Main result: T ≤ 35908
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6D String Universality

∃ Infinite classes of theories with T unbounded, that satisfy all
known low-energy consistency conditions.
(cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

g = u(1)⊕29k

T = k (≥ 9)

matter = 273× ·

I Not realizable in F-theory. (⇒ T ≤ 9 for all abelian theories.)
I Do these theories violate unknown consistency conditions?

(Unitarity? Causality?)
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Outline

1 Motivation - 6D String Universality

2 Strategy

3 Baby problem

4 The general problem

5 Summary
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Strategy

Smooth CY threefold X → B:

y2 = x3 + Fx + G , ∆ = 4F 3 + 27G2

with F ∈ O(−4K ), G ∈ O(−6K ), ∆ ∈ O(−12K ).

{Ci} : (Irreducible) curves with C2
i ≤ −2.

Ci must have genus zero. (Same for C2 = −1.)
Intersection patterns of Ci are restricted.
∃ minimal bounds on multiplicity of Ci in (F ,G,∆).
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Non-Higgsable Clusters
[Morrison/Taylor]

Name Curves Gauge Matter (f , g, δ)

12 (−12) e8 - (4, 5, 10)
8 (−8) e7 - (3, 5, 9)

7 (−7) e7
1
2 56 (3, 5, 9)

6 (−6) e6 - (3, 4, 8)
5 (−5) f4 - (3, 4, 8)
4 (−4) so8 - (2, 3, 6)
3 (−3) su3 - (2, 2, 4)

32 (−3)-(−2) g2 ⊕ su2 (7 + 1, 1
2 2) (2, 3, 6), (1, 2, 3)

322 (−3)-(−2)-(−2) g2 ⊕ su2 (7 + 1, 1
2 2) (2, 3, 6), (2, 2, 4), (1, 1, 2)

232 (−2)-(−3)-(−2) su2 ⊕ so7 ⊕ su2 (1, 8, 1
2 2)+( 1

2 2, 8, 1) (1, 2, 3), (2, 4, 6), (1, 2, 3)

· (−2) curves - - (0, 0, 0)
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Multiplicity bounds

Multiplicity mi of Ci within effective divisor D:

(Cj · Ci) mi ≤ [D] · Cj , mi ≥ 0 .

Applied to [D] = −nK for n = 4,6,12.
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Residual divisors

RF = −4K−
∑

i

fiCi , RG = −6K−
∑

i

giCi , R∆ = −12K−
∑

i

δiCi .

RF , RG and R∆ are effective. (cf. Cordova/Dumitrescu/Intriligator)

Daniel S. Park (Rutgers) Bounding T F-theory at 20 13 / 32



Residual divisors

RF = −4K−
∑

i

fiCi , RG = −6K−
∑

i

giCi , R∆ = −12K−
∑

i

δiCi .

RF , RG and R∆ are effective. (cf. Cordova/Dumitrescu/Intriligator)

Daniel S. Park (Rutgers) Bounding T F-theory at 20 13 / 32



Some manipulations

R2
F = (4K +

∑
i

fiCi)
2 = 16(9− T ) + 8K · fiCi + fi fjCi · Cj

9 = T +
R2

F
16

+
∑

t

αtnt , t ∈ {12,8, · · · ,232}

αt ≡ −
1

16
(8fiK · Ci + fi fjCi · Cj), Ci : curves in NHC t

Base equations

9 = T +
R2

F
16

+
∑

t

αtnt , 9 = T +
R2

G
36

+
∑

t

βtnt , 9 = T +
R2

∆

144
+
∑

t

γtnt .
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An assumption

The NHC condition
For generic F and G (i.e., in the maximally Higgsed phase) the
non-abelian gauge/matter content of the theory is given by a direct
sum of NHCs.

Gravitational anomaly constraint

⇒ T =
273− ν

29
+
∑

t

(
Vt − Ht

29

)
nt

ν = Hn + Hab − Vab = h2,1(X ) + 1 + (Hab − Vab) ≤ h21(X ) + 1

Daniel S. Park (Rutgers) Bounding T F-theory at 20 15 / 32



Strategy

Linear programming problem?

1 Obtain lower bounds on R2
F , R2

G and R2
∆ that are linear with

respect to nt .
2 Obtain lower bounds on T that are linear with respect to nt .
3 Solve the linear programming problem to obtain maximum value of

T (ν) for given ν. Vary ν in the allowed range ν ≤ 150 and find

max
ν≤150

T (ν) .

Daniel S. Park (Rutgers) Bounding T F-theory at 20 16 / 32
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Outline

1 Motivation - 6D String Universality

2 Strategy

3 Baby problem

4 The general problem

5 Summary
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B-folds

Problem becomes simple with following assumption:

R2
F , R2

G , R2
∆ ≥ 0

for generic F ∈ O(−4K ), G ∈ O(−6K ).

Let’s call X → B satisfying this property a B-fold.†

9 ≥ T +
∑

t

αtnt , T +
∑

t

βtnt , T +
∑

t

γtnt .

†These manifolds are named after Andreas Braun, champion of the “F-Theory Mini
Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an
elliptic fibration would be named after the winner of the tournament.

Daniel S. Park (Rutgers) Bounding T F-theory at 20 18 / 32
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B-folds

NC ≡ |{Ci}| : Total number of all components of the NHCs
NNHC : Total number of all NHCs
A subset of at least (NC − 56) elements of {Ci} form a subset of a
basis of a unimodular lattice

T ≥ NC − 56 + NNHC =
∑

t

(Nt + 1)nt − 56 [Nikulin]
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B-folds

∑
t

(VHt + 29αt ) nt ,
∑

t

(VHt + 29βt ) nt ,
∑

t

(VHt + 29γt ) nt ≤ ν − 12

∑
t

(αt + Nt + 1) nt ,
∑

t

(βt + Nt + 1) nt ,
∑

t

(γt + Nt + 1) nt ≤ 65

∑
t

(
Ht − Vt + 29Nt

29
+ 1
)

nt − 56 ≤ 273− ν
29

T =
273− ν

29
+
∑

t

(
Vt − Ht

29

)
nt , ν ≤ 150

⇒ T ≤ 1454‡
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The general problem

R =
∑

c

mcc ⇒ R2 =
∑

c

mc(c · R)

Which c can contribute negatively (c · R < 0) to R2?
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Negatively contributing curves

12 8 7 6 5 4 3
32 322 232

3̇2 32̇ 3̇2̇ 3̇22 32̇2 322̇ 2̇32 23̇2

3 7 6

32

3̇2 12 × 11

32̇ 2 1 × × 3

3̇2̇ × × ×

322

3̇22 14 × × × × 13

32̇2 9 8 × × × × ×

322̇ 0 × × × × × ×

232
2̇32 5 4 × × × × × × ×

23̇2 10 × × × × × × × × 15
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Negatively contributing curves

16.
-3

-3

-2 -2 -3

17.
-3

-3

-3 -2

-2

-2

18. -3

-3 -2

-2

-2 -2 -3

19.
-3

-3

-3

20.
-3

-3

-3 -2
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1. Classify how a single NHC
can connect to multiple (−1) curves.

Eg. The 7 cluster⇒ no. 1 or no. 4 curve

n7 ⇒ n7,(·),

n7,(1),n7,(1,1),n7,(1,1,1),n7,(1,1,1,1),n7,(1,1,1,1,1),

n7,(4),n7,(1,4),n7,(1,1,4),n7,(1,1,1,4),

n7,(4,4),n7,(1,4,4)

n7,(4,4,4).

n12, · · · ,n232 ⇒ 246 variables w/ linear constraints
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2. Bound R2
F , R2

G and R2
∆ as

a linear functional of the 246 variables.

Eg. (−1) curve C: 7− 1− 32̇.

RG = mC + · · · , C · RG = −1

with m ≥ 1. Then

R2
G = −m +

∑
c 6=C

mc(c · RG)

Is R2
G unbounded below?
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Eg. Minus-one curve no. 1.

A (−7)-curve C7 contributes to R2
G positively: C7 · RG = 5.

m̃(−7) : degenerecy of the (−7) in G:

m̃7 ≥
∑

c : (c·C7)=1 mc + 30

7

The contribution of C7 to R2
G:

m7C7 · RG = (m̃7 − 5)C7 · RG ≥
5
7

∑
c : (c·C7)=1

mc −
25
7
.
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Eg. Minus-one curve no. 1.

(−2)/(−3)-curve C2/C3 of 32 cluster: C2 · RG = C3 · RG = 1.
The contribution of C2 and C3 to R2

G:

m2C2 · RG + m3C3 · RG ≥
3
5

∑
c : (c·C2)=1

mc +
4
5

∑
c : (c·C3)=1

mc −
7
5
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Eg. Minus-one curve no. 1.

R2
G =

∑
c

mc(c · R)

m7C7 · RG ≥ 5
7

∑
c : (c·C7)=1

mc−
25
7

m2C2 · RG + m3C3 · RG ≥ 3
5

∑
c : (c·C2)=1

mc +
4
5

∑
c : (c·C3)=1

mc−
7
5

R2
G ≥ −

25
7

n7−
7
5

n32 +

(
5
7

+
4
5
− 1
) ∑

c : no 1. curve

mc + · · ·

≥ −25
7

n7 −
7
5

n32 +
18
35

n(1) + · · ·

n(1) = n7,(1) + 2n7,(1,1) + 3n7,(1,1,1) + · · ·+ n7,(1,4,4)
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Exceptions

(no. 12) 5− 1− 3̇2 to R2
F

I m(12) ≤ 2 in F . If m(12) > 2, so8 ⊕ su2.

(no. 14) 5− 1− 3̇22 to R2
F

I Must introduce new “clusters" 51322 and 223151322.
I Must worry about eight more (−1) curves.
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3. Solve linear programming problem!

T ≤ 35908

Maximizing configuration:

∼ 150× (12− 1− 2− 2− 3− 1− 5− 1− 3− 2− 2− 1− 12)

∼ 500× (8− 1− 2− 3− 2− 1− 8− · · · − 1− 8)

∼ 5000× (6− 1− 3− 1− 6)

Daniel S. Park (Rutgers) Bounding T F-theory at 20 31 / 32



3. Solve linear programming problem!

T ≤ 35908

Maximizing configuration:

∼ 150× (12− 1− 2− 2− 3− 1− 5− 1− 3− 2− 2− 1− 12)

∼ 500× (8− 1− 2− 3− 2− 1− 8− · · · − 1− 8)

∼ 5000× (6− 1− 3− 1− 6)

Daniel S. Park (Rutgers) Bounding T F-theory at 20 31 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32



Summary and Questions

We have obtained a crude bound of T by solving
a linear programming problem.

I Some (possibly drastic) improvements of the bound are expected in
the forseeable future.

Some residual problems are left.
I How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?
I Can we make the bounds better? (Can we get to 193?)

Can the various geometric constraints be derived
from low energy physics?

Daniel S. Park (Rutgers) Bounding T F-theory at 20 32 / 32


	Motivation - 6D String Universality
	Strategy
	Baby problem
	The general problem
	Summary

