Bounding the number of tensor multiplets in 6D F-theory vacua

Daniel S. Park
New High Energy Theory Center
Rutgers University
F-theory at 20
@ Burke Institute, Caltech

6D String Universality

[Kumar/Taylor, Kumar/Morrison/Taylor]

Are all $6 \mathrm{D} \mathcal{N}=1$ supergravity theories embeddable into string theory?

Are all $6 \mathrm{D} \mathcal{N}=1$ supergravity theories embeddable into string theory?

- First superstring revolution [Alvarez-Gaumé/Witten, Green/Schwarz, Gross/Harvey/Martinec/Rohm]
- Swampland [Vafa, Ooguri/Vafa]

Are all $6 \mathrm{D} \mathcal{N}=1$ supergravity theories embeddable into string theory?

- First superstring revolution [Alvarez-Gaumé/Witten, Green/Schwarz, Gross/Harvey/Martinec/Rohm]
- Swampland [Vafa, Ooguri/Vafa]

6D String Universality: Strategy

Apparently Consistent Theories

Consistent Theories

String Vacua

Known String Vacua

6D String Universality: Strategy

Apparently Consistent Theories

Consistent Theories

String Vacua

Known String Vacua

6D String Universality

- All known 6D $\mathcal{N}=1$ string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
- Bounds on physical parameters?
*Modulo discrete fluxes, which do not affect the bound we study in this talk.

6D String Universality

- All known 6D $\mathcal{N}=1$ string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
- Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
- Bounds on physical parameters?
*Modulo discrete fluxes, which do not affect the bound we study in this talk.

6D String Universality

- All known 6D $\mathcal{N}=1$ string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
- Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
- Finite number of families of X [Grassi, Gross]
- Bounds on physical parameters?
*Modulo discrete fluxes, which do not affect the bound we study in this talk.

6D String Universality

- All known 6D $\mathcal{N}=1$ string vacua can be embedded into geometric F-theory!* [Vafa, Morrison/Vafa]
- Geometric F-theory vacuum \Leftrightarrow Elliptically fibered CY3 $X \rightarrow B$
- Finite number of families of X [Grassi, Gross]
- Bounds on physical parameters?
*Modulo discrete fluxes, which do not affect the bound we study in this talk.

6D String Universality

Massless spectrum

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

6D String Universality

Massless spectrum

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra
- Matter content : $\left(R_{i}^{l}\right)$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra :

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra :

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

- Matter content : $\left(R_{i}^{l}\right)$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra :

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

- Matter content : $\left(R_{i}^{l}\right)$
- Scalars vevs:
$j \in S O(1, T) / S O(T)$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra :

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

- Matter content : $\left(R_{i}^{l}\right)$
- Scalars vevs:
$j \in S O(1, T) / S O(T)$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

Massless spectrum

- Number of tensor multiplets: T
- Gauge algebra :

$$
\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2} \oplus \cdots \oplus \mathfrak{g}_{n}
$$

- Matter content: $\left(R_{i}^{l}\right)$
- Scalars vevs:
$j \in S O(1, T) / S O(T)$

Multiplet	Field Content
Gravity	$\left(g_{\mu \nu}, \psi_{\mu}^{+}, B_{\mu \nu}^{+}\right)$
Tensor	$\left(\phi, \chi^{-}, B_{\mu \nu}^{-}\right)$
Vector	$\left(A_{\mu}, \lambda^{+}\right)$
Hyper	$\left(4 \varphi, \psi^{-}\right)$

Can we bound T ?

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold?

Main result: $T \leq 35908$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \qquad

Main result: $T \leq 35908$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \qquad

Main result: $T \leq 35908$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"
- Some results on bounds on T exist in the literature.

Main result: $T \leq 35908$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"
- Some results on bounds on T exist in the literature.
- B : semi-toric (\supset toric) $\Rightarrow T \leq 193$. [Morrison/Taylor, Martini/Taylor]

Main result: $T \leq 35908$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"
- Some results on bounds on T exist in the literature.
- B : semi-toric (\supset toric) $\Rightarrow T \leq 193$. [Morrison/Taylor, Martini/Taylor]
- $h^{2,1}(X) \geq 150 \Rightarrow T \leq 100$. [Taylor/Wang]

$$
\text { Main result: } T \leq 35908
$$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"
- Some results on bounds on T exist in the literature.
- B : semi-toric (\supset toric) $\Rightarrow T \leq 193$. [Morrison/Taylor, Martini/Taylor]
- $h^{2,1}(X) \geq 150 \Rightarrow T \leq 100$. [Taylor/Wang]

$$
\text { Main result: } T \leq 35908
$$

6D String Universality

- $T=h^{2}(B)-1$
- Which surfaces B can be used as a base for a smooth elliptically fibered Calabi-Yau threefold? \Rightarrow "Admissible surface"
- Some results on bounds on T exist in the literature.
- B : semi-toric (\supset toric) $\Rightarrow T \leq 193$. [Morrison/Taylor, Martini/Taylor]
- $h^{2,1}(X) \geq 150 \Rightarrow T \leq 100$. [Taylor/Wang]

Main result: $T \leq 35908$

6D String Universality

- \exists Infinite classes of theories with T unbounded, that satisfy all known low-energy consistency conditions. (cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{u}(1)^{\oplus 29 k} \\
T & =k \quad(\geq 9) \\
\text { matter } & =273 \times
\end{aligned}
$$

- Not realizable in F-theory. ($\Rightarrow T \leq 9$ for all abelian theories.) - Do these theories violate unknown consistency conditions? (Unitarity? Causality?)

6D String Universality

- \exists Infinite classes of theories with T unbounded, that satisfy all known low-energy consistency conditions. (cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{u}(1)^{\oplus 29 k} \\
T & =k \quad(\geq 9) \\
\text { matter } & =273 \times
\end{aligned}
$$

- Not realizable in F-theory. ($\Rightarrow T \leq 9$ for all abelian theories.)
(Unitarity? Causality?)

6D String Universality

- \exists Infinite classes of theories with T unbounded, that satisfy all known low-energy consistency conditions.
(cf. Green/Schwarz/West, Sagnotti, Kumar/Taylor, Seiberg/Taylor)

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{u}(1)^{\oplus 29 k} \\
T & =k \quad(\geq 9) \\
\text { matter } & =273 \times .
\end{aligned}
$$

- Not realizable in F-theory. ($\Rightarrow T \leq 9$ for all abelian theories.)
- Do these theories violate unknown consistency conditions? (Unitarity? Causality?)

Outline

(1) Motivation-6D String Universality
(2) Strategy
(3) Baby problem

4 The general problem
(5) Summary

Outline

(9) Motivation-6D String Universality
(2) Strategy
(3) Baby problem

4 The general problem
(5) Summary

Outline

(1) Motivation-6D String Universality
(2) Strategy
(3) Baby problem
(4) The general problem
(5) Summary

Outline

(1) Motivation-6D String Universality
(2) Strategy
(3) Baby problem
(4) The general problem
(5) Summary

Outline

(1) Motivation-6D String Universality
(2) Strategy
(3) Baby problem
(4) The general problem
(5) Summary

Strategy

Smooth CY threefold $X \rightarrow B$:

$$
y^{2}=x^{3}+F x+G, \quad \Delta=4 F^{3}+27 G^{2}
$$

with $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K), \Delta \in \mathcal{O}(-12 K)$.
$\left\{C_{i}\right\}$: (Irreducible) curves with $C_{i}^{2} \leq-2$.

Strategy

Smooth CY threefold $X \rightarrow B$:

$$
y^{2}=x^{3}+F x+G, \quad \Delta=4 F^{3}+27 G^{2}
$$

with $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K), \Delta \in \mathcal{O}(-12 K)$.
$\left\{C_{i}\right\}$: (Irreducible) curves with $C_{i}^{2} \leq-2$.

- C_{i} must have genus zero. (Same for $C^{2}=-1$.)
- Intersection patterns of C_{i} are restricted.
- \exists minimal bounds on multiplicity of C_{i} in (F, G, Δ).

Strategy

Smooth CY threefold $X \rightarrow B$:

$$
y^{2}=x^{3}+F x+G, \quad \Delta=4 F^{3}+27 G^{2}
$$

with $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K), \Delta \in \mathcal{O}(-12 K)$.
$\left\{C_{i}\right\}$: (Irreducible) curves with $C_{i}^{2} \leq-2$.

- C_{i} must have genus zero. (Same for $C^{2}=-1$.)
- Intersection patterns of C_{i} are restricted.
- \exists minimal bounds on multiplicity of C_{i} in (F, G, Δ).

Strategy

Smooth CY threefold $X \rightarrow B$:

$$
y^{2}=x^{3}+F x+G, \quad \Delta=4 F^{3}+27 G^{2}
$$

with $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K), \Delta \in \mathcal{O}(-12 K)$.
$\left\{C_{i}\right\}$: (Irreducible) curves with $C_{i}^{2} \leq-2$.

- C_{i} must have genus zero. (Same for $C^{2}=-1$.)
- Intersection patterns of C_{i} are restricted.
- \exists minimal bounds on multiplicity of C_{i} in (F, G, Δ).

Non-Higgsable Clusters

[Morrison/Taylor]

Name	Curves	Gauge	Matter	(f, g, δ)
12	(-12)	\mathfrak{e}_{8}	-	$(4,5,10)$
8	(-8)	\mathfrak{e}_{7}	-	$(3,5,9)$
7	(-7)	\mathfrak{e}_{7}	$\frac{1}{2} \mathbf{5 6}$	$(3,5,9)$
6	(-6)	\mathfrak{e}_{6}	-	$(3,4,8)$
5	(-5)	\mathfrak{f}_{4}	-	$(3,4,8)$
4	(-4)	$\mathfrak{s o}_{8}$	-	$(2,3,6)$
3	(-3)	$\mathfrak{s u}_{3}$	-	$(2,2,4)$
32	$(-3)-(-2)$	$\mathfrak{g}_{2} \oplus \mathfrak{s u}_{2}$	$\left(\mathbf{7}+\mathbf{1}, \frac{1}{2} \mathbf{2}\right)$	$(2,3,6),(1,2,3)$
322	$(-3)-(-2)-(-2)$	$\mathfrak{g}_{2} \oplus \mathfrak{s u}_{2}$	$\left(\mathbf{7}+\mathbf{1}, \frac{1}{2} \mathbf{2}\right)$	$(2,3,6),(2,2,4),(1,1,2)$
232	$(-2)-(-3)-(-2)$	$\mathfrak{s u}_{2} \oplus \mathfrak{s o}_{7} \oplus \mathfrak{s u}_{2}$	$\left(\mathbf{1 , 8 , \frac { 1 } { 2 } \mathbf { 2 }) + (\frac { 1 } { 2 } \mathbf { 2 } , \mathbf { 8 } , \mathbf { 1 })}\right.$	$(1,2,3),(2,4,6),(1,2,3)$
\cdot	(-2) curves	-	-	$(0,0,0)$

Multiplicity bounds

Multiplicity m_{i} of C_{i} within effective divisor D :

$$
\left(C_{j} \cdot C_{i}\right) m_{i} \leq[D] \cdot C_{j}, \quad m_{i} \geq 0
$$

Applied to $[D]=-n K$ for $n=4,6,12$.

Residual divisors

$$
R_{F}=-4 K-\sum_{i} f_{i} C_{i}, \quad R_{G}=-6 K-\sum_{i} g_{i} C_{i}, \quad R_{\Delta}=-12 K-\sum_{i} \delta_{i} C_{i} .
$$

R_{F}, R_{G} and R_{Δ} are effective. (cf. Cordova/Dumitrescu/Intriligator)

Residual divisors

$R_{F}=-4 K-\sum_{i} f_{i} C_{i}, \quad R_{G}=-6 K-\sum_{i} g_{i} C_{i}, \quad R_{\Delta}=-12 K-\sum_{i} \delta_{i} C_{i}$.
R_{F}, R_{G} and R_{Δ} are effective. (cf. Cordova/Dumitrescu/Intriligator)

Some manipulations

$$
R_{F}^{2}=\left(4 K+\sum_{i} f_{i} C_{i}\right)^{2}=16(9-T)+8 K \cdot f_{i} C_{i}+f_{i} f_{j} C_{i} \cdot C_{j}
$$

Some manipulations

$$
\begin{gathered}
R_{F}^{2}=\left(4 K+\sum_{i} f_{i} C_{i}\right)^{2}=16(9-T)+8 K \cdot f_{i} C_{i}+f_{i} f_{j} C_{i} \cdot C_{j} \\
\\
9=T+\frac{R_{F}^{2}}{16}+\sum_{t} \alpha_{t} n_{t}, \quad t \in\{12,8, \cdots, 232\}
\end{gathered}
$$

Some manipulations

$$
\begin{gathered}
R_{F}^{2}=\left(4 K+\sum_{i} f_{i} C_{i}\right)^{2}=16(9-T)+8 K \cdot f_{i} C_{i}+f_{i} f_{j} C_{i} \cdot C_{j} \\
9=T+\frac{R_{F}^{2}}{16}+\sum_{t} \alpha_{t} n_{t}, \quad t \in\{12,8, \cdots, 232\} \\
\alpha_{t} \equiv-\frac{1}{16}\left(8 f_{i} K \cdot C_{i}+f_{i} f_{j} C_{i} \cdot C_{j}\right), \quad C_{i}: \text { curves in NHC } t
\end{gathered}
$$

Some manipulations

$$
\begin{gathered}
R_{F}^{2}=\left(4 K+\sum_{i} f_{i} C_{i}\right)^{2}=16(9-T)+8 K \cdot f_{i} C_{i}+f_{i} f_{j} C_{i} \cdot C_{j} \\
9=T+\frac{R_{F}^{2}}{16}+\sum_{t} \alpha_{t} n_{t}, \quad t \in\{12,8, \cdots, 232\} \\
\alpha_{t} \equiv-\frac{1}{16}\left(8 f_{i} K \cdot C_{i}+f_{i} f_{j} C_{i} \cdot C_{j}\right), \quad C_{i}: \text { curves in NHC } t
\end{gathered}
$$

Base equations

$$
9=T+\frac{R_{F}^{2}}{16}+\sum_{t} \alpha_{t} n_{t}, 9=T+\frac{R_{G}^{2}}{36}+\sum_{t} \beta_{t} n_{t}, 9=T+\frac{R_{\Delta}^{2}}{144}+\sum_{t} \gamma_{t} n_{t}
$$

An assumption

The NHC condition

For generic F and G (i.e., in the maximally Higgsed phase) the non-abelian gauge/matter content of the theory is given by a direct sum of NHCs.

Gravitational anomaly constraint

$$
\begin{gathered}
\Rightarrow T=\frac{273-\nu}{29}+\sum_{t}\left(\frac{V_{t}-H_{t}}{29}\right) n_{t} \\
\nu=H_{n}+H_{a b}-V_{a b}=h^{2,1}(X)+1+\left(H_{a b}-V_{a b}\right) \leq h^{21}(X)+1
\end{gathered}
$$

Strategy

Linear programming problem?

Strategy

Linear programming problem?
(1) Obtain lower bounds on R_{F}^{2}, R_{G}^{2} and R_{Δ}^{2} that are linear with respect to n_{t}.
© Obtain lower bounds on T that are linear with respect to n_{t}.
(0) Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν. Vary ν in the allowed range $\nu \leq 150$ and find

Strategy

Linear programming problem?
(1) Obtain lower bounds on R_{F}^{2}, R_{G}^{2} and R_{Δ}^{2} that are linear with respect to n_{t}.
(2) Obtain lower bounds on T that are linear with respect to n_{t}.
(3) Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν. Vary ν in the allowed range $\nu \leq 150$ and find

Strategy

Linear programming problem?
(1) Obtain lower bounds on R_{F}^{2}, R_{G}^{2} and R_{Δ}^{2} that are linear with respect to n_{t}.
(2) Obtain lower bounds on T that are linear with respect to n_{t}.
(3) Solve the linear programming problem to obtain maximum value of $T(\nu)$ for given ν. Vary ν in the allowed range $\nu \leq 150$ and find

$$
\max _{\nu \leq 150} T(\nu) .
$$

Outline

(1) Motivation-6D String Universality

(2) Strategy
(3) Baby problem
(4) The general problem
(5) Summary

B-folds

Problem becomes simple with following assumption:

$$
R_{F}^{2}, \quad R_{G}^{2}, \quad R_{\Delta}^{2} \geq 0
$$

for generic $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K)$.
Let's call $X \rightarrow B$ satisfying this property a B-fold. ${ }^{\dagger}$

[^0]
B-folds

Problem becomes simple with following assumption:

$$
R_{F}^{2}, \quad R_{G}^{2}, \quad R_{\Delta}^{2} \geq 0
$$

for generic $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K)$.
Let's call $X \rightarrow B$ satisfying this property a B-fold. ${ }^{\dagger}$
${ }^{\dagger}$ These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an elliptic fibration would be named after the winner of the tournament.

B-folds

Problem becomes simple with following assumption:

$$
R_{F}^{2}, \quad R_{G}^{2}, \quad R_{\Delta}^{2} \geq 0
$$

for generic $F \in \mathcal{O}(-4 K), G \in \mathcal{O}(-6 K)$.
Let's call $X \rightarrow B$ satisfying this property a B-fold. ${ }^{\dagger}$

$$
9 \geq \quad T+\sum_{t} \alpha_{t} n_{t}, \quad T+\sum_{t} \beta_{t} n_{t}, \quad T+\sum_{t} \gamma_{t} n_{t} .
$$

${ }^{\dagger}$ These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an elliptic fibration would be named after the winner of the tournament.

B-folds

- $N_{C} \equiv\left|\left\{C_{i}\right\}\right|$: Total number of all components of the NHCs - $N_{\text {NHC }}$: Total number of all NHCs
- A subset of at least $\left(N_{C}-56\right)$ elements of $\left\{C_{i}\right\}$ form a subset of a basis of a unimodular lattice

B-folds

- $N_{C} \equiv\left|\left\{C_{i}\right\}\right|$: Total number of all components of the NHCs
- $N_{N H C}$: Total number of all NHCs
- A subset of at least $\left(N_{C}-56\right)$ elements of $\left\{C_{i}\right\}$ form a subset of a basis of a unimodular lattice

[Nikulin]

B-folds

- $N_{C} \equiv\left|\left\{C_{i}\right\}\right|$: Total number of all components of the NHCs
- $N_{N H C}$: Total number of all NHCs
- A subset of at least $\left(N_{C}-56\right)$ elements of $\left\{C_{i}\right\}$ form a subset of a basis of a unimodular lattice

$$
T \geq N_{C}-56+N_{N H C}=\sum_{t}\left(N_{t}+1\right) n_{t}-56
$$

B-folds

- $N_{C} \equiv\left|\left\{C_{i}\right\}\right|$: Total number of all components of the NHCs
- $N_{N H C}$: Total number of all NHCs
- A subset of at least $\left(N_{C}-56\right)$ elements of $\left\{C_{i}\right\}$ form a subset of a basis of a unimodular lattice

$$
T \geq N_{C}-56+N_{N H C}=\sum_{t}\left(N_{t}+1\right) n_{t}-56
$$

B-folds

- $N_{C} \equiv\left|\left\{C_{i}\right\}\right|$: Total number of all components of the NHCs
- $N_{N H C}$: Total number of all NHCs
- A subset of at least $\left(N_{C}-56\right)$ elements of $\left\{C_{i}\right\}$ form a subset of a basis of a unimodular lattice

$$
T \geq N_{C}-56+N_{N H C}=\sum_{t}\left(N_{t}+1\right) n_{t}-56
$$

[Nikulin]

B-folds

$$
\begin{gathered}
\sum_{t}\left(V H_{t}+29 \alpha_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \beta_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \gamma_{t}\right) n_{t} \leq \nu-12 \\
\sum_{t}\left(\alpha_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\beta_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\gamma_{t}+N_{t}+1\right) n_{t} \leq 65 \\
\sum_{t}\left(\frac{H_{t}-V_{t}+29 N_{t}}{29}+1\right) n_{t}-56 \leq \frac{273-\nu}{29}
\end{gathered}
$$

B-folds

$$
\begin{gathered}
\sum_{t}\left(V H_{t}+29 \alpha_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \beta_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \gamma_{t}\right) n_{t} \leq \nu-12 \\
\sum_{t}\left(\alpha_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\beta_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\gamma_{t}+N_{t}+1\right) n_{t} \leq 65 \\
\sum_{t}\left(\frac{H_{t}-V_{t}+29 N_{t}}{29}+1\right) n_{t}-56 \leq \frac{273-\nu}{29} \\
T=\frac{273-\nu}{29}+\sum_{t}\left(\frac{V_{t}-H_{t}}{29}\right) n_{t}, \quad \nu \leq 150
\end{gathered}
$$

B-folds

$$
\begin{gathered}
\sum_{t}\left(V H_{t}+29 \alpha_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \beta_{t}\right) n_{t}, \sum_{t}\left(V H_{t}+29 \gamma_{t}\right) n_{t} \leq \nu-12 \\
\sum_{t}\left(\alpha_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\beta_{t}+N_{t}+1\right) n_{t}, \sum_{t}\left(\gamma_{t}+N_{t}+1\right) n_{t} \leq 65 \\
\sum_{t}\left(\frac{H_{t}-V_{t}+29 N_{t}}{29}+1\right) n_{t}-56 \leq \frac{273-\nu}{29} \\
T=\frac{273-\nu}{29}+\sum_{t}\left(\frac{V_{t}-H_{t}}{29}\right) n_{t}, \quad \nu \leq 150 \\
\Rightarrow T \leq 1454^{\ddagger}
\end{gathered}
$$

Outline

(1) Motivation-6D String Universality

(2) Strategy

(3) Baby problem

(4) The general problem
(5) Summary

The general problem

$$
R=\sum_{c} m_{c} c \Rightarrow R^{2}=\sum_{c} m_{c}(c \cdot R)
$$

Which c can contribute negatively $(c \cdot R<0)$ to R^{2} ?

The general problem

$$
R=\sum_{c} m_{c} c \Rightarrow R^{2}=\sum_{c} m_{c}(c \cdot R)
$$

Which c can contribute negatively $(c \cdot R<0)$ to R^{2} ?

Negatively contributing curves

		12	8	7	6	5	4	3	32			322			232		
		$\dot{3} 2$							32	32	$\dot{3} 22$	322	322	$\dot{2} 32$	232		
3						7	6										
32	$\dot{3} 2$					12		\times								11	
	32		2	1				\times	\times		3						
	32							\times	\times	\times							
322	322					14		\times	\times	\times	\times					13	
	322				9	8		\times	\times	\times	\times	\times					
	322	0						\times	\times	\times	\times	\times	\times				
232	232		5	4				\times									
	232						10	\times	15								

Negatively contributing curves

17.

18.

19.

20.

1. Classify how a single NHC can connect to multiple (-1) curves.

Eg. The 7 cluster \Rightarrow no. 1 or no. 4 curve

```
n
    n
    n
    n
    n7(4,4,4)
n12,\cdots, n}232=>246 variables w/ linear constraint
```


1. Classify how a single NHC can connect to multiple (-1) curves.

Eg. The 7 cluster \Rightarrow no. 1 or no. 4 curve

$$
\begin{aligned}
n_{7} \Rightarrow & n_{7,(\cdot)} \\
& n_{7,(1)}, n_{7,(1,1)}, n_{7,(1,1,1)}, n_{7,(1,1,1,1)}, n_{7,(1,1,1,1,1)}, \\
& n_{7,(4)}, n_{7,(1,4)}, n_{7,(1,1,4)}, n_{7,(1,1,1,4)} \\
& n_{7,(4,4)}, n_{7,(1,4,4)} \\
& n_{7,(4,4,4)}
\end{aligned}
$$

$n_{12}, \cdots, n_{232} \Rightarrow 246$ variables w/ linear constraints
2. Bound R_{F}^{2}, R_{G}^{2} and R_{Δ}^{2} as a linear functional of the 246 variables.

Eg. (-1) curve C: 7-1-32.

$$
R_{G}=m C+\cdots, \quad C \cdot R_{G}=-1
$$

with $m \geq 1$. Then

$$
R_{G}^{2}=-m+\sum_{c \neq C} m_{c}\left(c \cdot R_{G}\right)
$$

Is R_{G}^{2} unbounded below?

Eg. Minus-one curve no. 1.

A (-7)-curve C_{7} contributes to R_{G}^{2} positively: $C_{7} \cdot R_{G}=5$. $\widetilde{m}_{(-7)}$: degenerecy of the (-7) in G :

$$
\widetilde{m}_{7} \geq \frac{\sum_{c:\left(c \cdot C_{7}\right)=1} m_{c}+30}{7}
$$

The contribution of C_{7} to R_{G}^{2} :

$$
m_{7} C_{7} \cdot R_{G}=\left(\widetilde{m}_{7}-5\right) C_{7} \cdot R_{G} \geq \frac{5}{7} \sum_{c:\left(c \cdot C_{7}\right)=1} m_{c}-\frac{25}{7} .
$$

Eg. Minus-one curve no. 1.

$(-2) /(-3)$-curve C_{2} / C_{3} of 32 cluster: $C_{2} \cdot R_{G}=C_{3} \cdot R_{G}=1$. The contribution of C_{2} and C_{3} to R_{G}^{2} :

$$
m_{2} C_{2} \cdot R_{G}+m_{3} C_{3} \cdot R_{G} \geq \frac{3}{5} \sum_{c:\left(c \cdot C_{2}\right)=1} m_{c}+\frac{4}{5} \sum_{c:\left(c \cdot C_{3}\right)=1} m_{c}-\frac{7}{5}
$$

Eg. Minus-one curve no. 1.

$$
\begin{gathered}
R_{G}^{2}=\sum_{c} m_{c}(c \cdot R) \\
m_{7} C_{7} \cdot R_{G} \geq \frac{5}{7} \sum_{c:\left(c \cdot C_{7}\right)=1} m_{c}-\frac{25}{7} \\
m_{2} C_{2} \cdot R_{G}+m_{3} C_{3} \cdot R_{G} \geq \frac{3}{5} \sum_{c:\left(c \cdot C_{2}\right)=1} m_{c}+\frac{4}{5} \sum_{c:\left(c \cdot C_{3}\right)=1} m_{c}-\frac{7}{5} \\
R_{G}^{2} \geq \frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\left(\frac{5}{7}+\frac{4}{5}-1\right) \sum_{c: n 0} m_{c}+\cdots \\
\geq-\frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\frac{18}{35} n_{(1)}+\cdots \\
n_{(1)}=n_{7,(1)}+2 n_{7,(1,1)}+3 n_{7,(1,1,1)}+\cdots+n_{7,(1,4,4)}
\end{gathered}
$$

Eg. Minus-one curve no. 1.

$$
\begin{aligned}
& R_{G}^{2}=\sum_{c} m_{c}(c \cdot R) \\
& m_{7} C_{7} \cdot R_{G} \geq \frac{5}{7} \sum_{c:\left(c \cdot C_{7}\right)=1} m_{c}-\frac{25}{7} \\
& m_{2} C_{2} \cdot R_{G}+m_{3} C_{3} \cdot R_{G} \geq \frac{3}{5} \sum_{c:\left(c \cdot C_{2}\right)=1} m_{c}+\frac{4}{5} \sum_{c:\left(c \cdot C_{3}\right)=1} m_{c}-\frac{7}{5} \\
& R_{G}^{2} \geq-\frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\left(\frac{5}{7}+\frac{4}{5}-1\right) \sum_{c: \text { no 1. curve }} m_{c}+\cdots \\
& \geq-\frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\frac{18}{35} n_{(1)}+\cdots
\end{aligned}
$$

Eg. Minus-one curve no. 1.

$$
\begin{gathered}
R_{G}^{2}=\sum_{c} m_{c}(c \cdot R) \\
m_{7} C_{7} \cdot R_{G} \geq \frac{5}{7} \sum_{c:\left(c \cdot C_{7}\right)=1} m_{c}-\frac{25}{7} \\
m_{2} C_{2} \cdot R_{G}+m_{3} C_{3} \cdot R_{G} \geq \frac{3}{5} \sum_{c:\left(c \cdot C_{2}\right)=1} m_{c}+\frac{4}{5} \sum_{c:\left(c \cdot C_{3}\right)=1} m_{c}-\frac{7}{5} \\
R_{G}^{2} \geq-\frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\left(\frac{5}{7}+\frac{4}{5}-1\right) \sum_{c: \text { no 1. curve }} m_{c}+\cdots \\
\geq-\frac{25}{7} n_{7}-\frac{7}{5} n_{32}+\frac{18}{35} n_{(1)}+\cdots \\
n_{(1)}=n_{7,(1)}+2 n_{7,(1,1)}+3 n_{7,(1,1,1)}+\cdots+n_{7,(1,4,4)}
\end{gathered}
$$

Exceptions

- (no. 12) 5-1-3ं2 to R_{F}^{2}
- $m_{(12)} \leq 2$ in F. If $m_{(12)}>2,50_{8} \oplus \mathfrak{s u}_{2}$.

Exceptions

- (no. 12) 5-1-32 to R_{F}^{2}
- $m_{(12)} \leq 2$ in F. If $m_{(12)}>2, \mathfrak{s o}_{8} \oplus \mathfrak{s u}_{2}$.

Exceptions

- (no. 12) 5-1-32 to R_{F}^{2}
- $m_{(12)} \leq 2$ in F. If $m_{(12)}>2, \mathfrak{s o}_{8} \oplus \mathfrak{s u}_{2}$.
- (no. 14) 5-1 - 322 to R_{F}^{2}
- Must introduce new "clusters" 51322 and 223151322.
- Must worry about eight more (-1) curves.

Exceptions

- (no. 12) 5-1-32 to R_{F}^{2}
- $m_{(12)} \leq 2$ in F. If $m_{(12)}>2, \mathfrak{s o}_{8} \oplus \mathfrak{s u}_{2}$.
- (no. 14) 5-1-322 to R_{F}^{2}
- Must introduce new "clusters" 51322 and 223151322.

Exceptions

- (no. 12) 5-1-32 to R_{F}^{2}
- $m_{(12)} \leq 2$ in F. If $m_{(12)}>2, \mathfrak{s o}_{8} \oplus \mathfrak{s u}_{2}$.
- (no. 14) 5-1-322 to R_{F}^{2}
- Must introduce new "clusters" 51322 and 223151322.
- Must worry about eight more (-1) curves.

3. Solve linear programming problem!

$$
T \leq 35908
$$

Maximizing configuration:

3. Solve linear programming problem!

$$
T \leq 35908
$$

Maximizing configuration:

$$
\begin{aligned}
\sim 150 \times & (12-1-2-2-3-1-5-1-3-2-2-1-12) \\
\sim 500 \times & (8-1-2-3-2-1-8-\cdots-1-8) \\
\sim 5000 \times & (6-1-3-1-6)
\end{aligned}
$$

Summary and Questions

- We have obtained a crude bound of T by solving a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- Can the various geometric constraints be derived from low energy physics?

Summary and Questions

- We have obtained a crude bound of T by solving
a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- Can the various geometric constraints be derived from low energy physics?

Summary and Questions

- We have obtained a crude bound of T by solving a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?

- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

Summary and Questions

- We have obtained a crude bound of T by solving a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
- Can the various geometric constraints be derived from low energy physics?

Summary and Questions

- We have obtained a crude bound of T by solving a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- How general is the NHC condition? Is it true for all admissible surfaces? Can we prove it?
- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

Summary and Questions

- We have obtained a crude bound of T by solving a linear programming problem.
- Some (possibly drastic) improvements of the bound are expected in the forseeable future.
- Some residual problems are left.
- How general is the NHC condition?

Is it true for all admissible surfaces? Can we prove it?

- Can we make the bounds better? (Can we get to 193?)
- Can the various geometric constraints be derived from low energy physics?

[^0]: †These manifolds are named after Andreas Braun, champion of the "F-Theory Mini Golf Tournament" held in Aspen in the summer of 2015. A bet was made that an

