Nilpotent deformations in 3d

Raffaele Savelli IPhT - CEA/Saclay

> Caltech Feb 22, 2016

Based on work with

A. Collinucci, S. Giacomelli and R. Valandro

arXiv: I 602.xxxxx

Motivation

- Describe how T-branes look like in M/F-theory.
 - Existing proposals are more "geometrical": Try to track this data in the singularity of the internal space. [Anderson-Heckman-Katz `13]; [Collinucci-RS `14]
 - Here we look at T-branes through the eyes of a probe. [Heckman-Tachikawa-Vafa-Wecht `10]
 - Use 3d field theory to gain computational power and a transparent physical meaning.

T-branes as monopole insertions

• $D2_B$ probes a singular ALF space. E.g. $SU(N_f)$ flavor:

 $U(I)^{N_{f}-1}$ $\mathcal{N}=4$ quiver gauge theory. $N_{f}-I$ global currents coupled to background vectors:

$$\int \mathrm{d}^{3}x \, J^{\mu}_{(i)} A^{b}_{\mu(i)} \subset \int \mathrm{d}^{3}x \mathrm{d}^{2}\theta \mathrm{d}^{2}\bar{\theta} \, \Sigma_{(i)} V^{b}_{(i)}$$
$$\int_{\mathbb{P}^{1}_{(i)} \times \mathbb{R}^{3}} C^{\mathrm{IIA}}_{3} \wedge *_{3} J_{(i)} = \int_{\mathrm{D4}_{(i)}} C^{\mathrm{IIA}}_{3} \wedge F_{(i)}$$

- "Electrons" associated to $J_{(i)} \Rightarrow$ D2's on vanishing cycles (UV precursors of T-branes).
- $(J_{(i)}, W_{(i),\pm})$ form $\mathcal{N}=4$ multiplets. [Gaiotto-Witten `08]
 - The monopoles $W_{(i),\pm}$ are the unique operators creating states with the same quantum numbers!

RG-flows

Exploit $\mathcal{N}=2$ mirror symmetry to treat nilpotent deformations.

 $\mathcal{N}=2$ mirror symmetry

• Idea:

- I. See $W_A^{\text{effective}}$ as deformed $\mathcal{N}=2$ superpotential.
- 2. Use $\mathcal{N}=2$ mirror map to get $\mathsf{W}_{\mathsf{B}}^{\mathsf{effective}}$.
- We only have such map for abelian theories: [Aharony et al. `97]

The effective superpotential

- Introduce a mirror pair of neutral chiral fields $\Phi \leftrightarrow \Psi$.
- If deform with $\delta W_A = \sum_i Q_i \Phi \tilde{Q}^i \iff \delta W_B = \Psi \sum_i S_i$
 - \rightarrow the theory flows back to $\mathcal{N}=4$ SCFT. [Intriligator-Seiberg `96]
- Nilpotent deformations for $SU(N_f)$ flavor.
 - I. Minimal orbit: $m Q_1 \tilde{Q}^2 \leftrightarrow m W_{2,-}$ $m = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ integrating out the two heavy fields:

$$\mathbf{n} = \begin{pmatrix} 0 & m & | \\ 0 & 0 & | \\ \hline & 0 & | \\ \hline & 0 & | \\ 0 & | \\ \end{pmatrix}$$

$$W_A^{eff} = \sum_{i=3}^{N_f} Q_i \Phi \tilde{Q}^i - \frac{\Phi^2}{m} P \tilde{P} \quad \leftarrow -\underbrace{\mathcal{N}=2}_{\text{mirror}} \quad \leftarrow \quad W_B^{eff} = \sum_{i=3}^{N_f} S_i (q_i \tilde{q}^i + \Psi) + S \left(p \tilde{p} - \frac{\Psi^2}{m} \right)$$

- Geometry of CB_A/HB_B is unchanged.
- ► HB_A/CB_B is partially lifted.

$$V_+V_- \sim \Psi^{N_f}$$

Mutilated quiver

[Anderson-Heckman-Katz `13]

2. Non-minimal orbits: sum of monopole operators.

SO(2N_f) flavor symmetry

• HB_A (dim=4N_f-6): $M_{IJ} = \psi_I^a \epsilon_{ab} \psi_J^b = -M_{JI}$, rk=2, M²=0.

→ CB_B : $M \in adj$ $SO(2N_f)$ made of (R=1)-monopoles & $Tr(\phi)$'s.

• CB_A/HB_B : $G^2 - R(B+R)^2 + R^{N_f-1} = 0$ D_{N_f} singularity.

T-branes and the HB_A/CB_B

- T-brane deformation: $\delta W = Tr (mM)$ w/ nilpotent m.
 - Brakes flavor symmetry. F-terms $\Rightarrow [m, M] = 0$.
- Recall for $SU(N_f)$, $[m, M]=0 \implies mM=0$, because rk M = 1.
 - \implies Still, on HB_A, $\Phi = 0$.
- For SO(2N_f), F-terms $m_{IJ}\psi_J^a = \Phi_b^a \psi_I^b$ allow $mM \neq 0$.
 - But these vacua violate the D-term $[\Phi, \Phi^{\dagger}] = 0$.
 - → Still, after any T-brane, on HB_A : $\Phi = mM = 0$.
 - This tells us which are the coordinates (monopoles & ϕ 's) parametrizing the residual CB_B.

"Local" mirror symmetry

• Focus on one gauge node, treating all others as flavor nodes.

- Take mirror $B_{loc} \rightarrow A_{loc} \Rightarrow$ monopole \rightarrow off-diagonal mass.
- Integrate out heavy fields $\Rightarrow W_A^{eff}$ & mirror back $\rightarrow W_B^{eff}$.
- Couple back the effective B_{loc} (no gauge fields!) into the quiver.
 - ✓ We successfully tested this strategy by iteration for any nilpotent deformation of $SU(N_f)$ theories.

Application to $SO(2N_f)$

- Can study CB_A/HB_B only for minimal T-branes.
 - Choose m along root associated to an abelian node.

- $W_{B_{loc}} \Longrightarrow W_{A_{loc}} = \text{Tr}(M(\Psi \phi \mathbb{1}_2)) + M_1^1 \tilde{X}^1 X_1 + M_2^2 \tilde{X}^2 X_2 + m X_1 \tilde{X}^2$
- Integrate out: $W_{A_{loc}^{eff}} = \operatorname{Tr}(M(\Psi \phi \mathbb{1}_2)) \frac{M_1^1 M_2^2}{m} X_2 \tilde{X}^1$ SQED, N_f=1.
- Mirror back: $W_{B_{loc}^{eff}} = \operatorname{Tr}(M(\Psi \phi \mathbb{1}_2)) \frac{S}{m} \det M$ only matter!

The geometry of CB_A/HB_B

• Net effect \rightarrow Mutilated quiver + 3 new chiral fields.

- I. One adjoint of neighbouring U(2): M (HB_B field).
- 2. Two singlets: S, ϕ (CB_B fields).

• F-terms: $M^2 = 0$.

➡ We computed HB_B and found still the D_{Nf} singularity.

Conclusions

- Exceptional flavor symmetries:
 - Theory A is non-lagrangian. [Minahan-Nemeschanski `96]
 - \checkmark Can apply local mirror sym. on abelian nodes of theory B.
 - ➡ Minimal nilpotent orbits do not change HB_B geometry.
- Need non-abelian mirror symmetry:
 - Check if also non-minimal orbits preserve singularity of HB_B.
 - Check if also for E_n -theories mM=0 on the residual CB_B .
- Study more deeply the CB_B after deformation (instantons):
 - How to deduce the unbroken flavor symmetry ?
- Probe higher-dimensional F-theory backgrounds (CY₃, CY₄).