Nilpotent deformations in 3d

Raffaele Savelli
IPhT - CEA/Saclay

Caltech
Feb 22, 2016

Based on work with
A. Collinucci, S. Giacomelli and R.Valandro arXiv: 1602.xxxxx

Motivation

- Describe how T-branes look like in M/F-theory.
- Existing proposals are more "geometrical": Try to track this data in the singularity of the internal space. [Anderson-Heckman-Katz `I3]; [Collinucci-RS `14]
- Here we look at T-branes through the eyes of a probe.
[Heckman-Tachikawa-Vafa-Wecht `I0]
- Use 3d field theory to gain computational power and a transparent physical meaning.

T-branes in M/F-theory: coherent states of vanishing M2's

T-branes as monopole insertions

- D2b probes a singular ALF space. E.g. $\operatorname{SU}\left(N_{f}\right)$ flavor:

$\mathrm{U}(1)^{N_{f}-1} \mathbb{N}=4$ quiver gauge theory. $N_{f}-/$ global currents coupled to background vectors:

$$
\begin{aligned}
& \int \mathrm{d}^{3} x J_{(i)}^{\mu} A_{\mu(i)}^{b} \subset \int \mathrm{~d}^{3} x \mathrm{~d}^{2} \theta \mathrm{~d}^{2} \bar{\theta} \Sigma_{(i)} V_{(i)}^{b} \\
& \int_{\mathbb{P}_{(i)} \times \mathrm{R}^{3}} C_{3}^{\Pi 1 A} \wedge *_{3} J_{(i)}=\int_{\mathrm{DA}_{(i)}} C_{3}^{\Pi 1 \mathrm{~A}} \wedge F_{(i)}
\end{aligned}
$$

- "Electrons" associated to $J_{(i)} \Rightarrow$ D2's on vanishing cycles (UV precursors of T-branes).
- $\left(J_{(i)}, W_{(i), \pm)}\right.$ form $\mathfrak{N}=4$ multiplets. [Gaioto-Witten $\left.{ }^{\circ} 08\right]$
\Rightarrow The monopoles $W_{(i), \pm}$ are the unique operators creating states with the same quantum numbers!

RG-flows

Exploit $\mathcal{N}=2$ mirror symmetry to treat nilpotent deformations.

$\mathfrak{N}=2$ mirror symmetry

- Idea:
I. See W_{A} effective as deformed $\mathbb{N}=2$ superpotential.

2. Use $\mathbb{N}=2$ mirror map to get W_{B} effective.

- We only have such map for abelian theories: [Aharony etal.'97]
$\mathrm{A}_{\mathbb{N}=2}$: SQED with N_{f} flavors

$W_{A}=0$

$\mathrm{B}_{\mathbb{N}=2}: \mathrm{U}(I)^{N_{f}-1}$ quiver theory

$$
W_{B}=\sum_{i} S_{i} q_{i} \tilde{q}^{i}
$$

The effective superpotential

- Introduce a mirror pair of neutral chiral fields $\Phi \leftrightarrow \Psi$.
- If deform with $\delta \mathrm{W}_{\mathrm{A}}=\sum_{\mathrm{i}} Q_{\mathrm{i}} \boldsymbol{\Phi} \tilde{Q}^{i} \leftrightarrow \delta \mathrm{~W}_{\mathrm{B}}=\Psi \sum_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$
\Rightarrow the theory flows back to $\mathcal{N}=4$ SCFT. [lntriligator-Seiberg '96]
- Nilpotent deformations for $\operatorname{SU}\left(\mathrm{N}_{f}\right)$ flavor.
I. Minimal orbit: $m Q_{1} \tilde{Q}^{2} \leftrightarrow \mathrm{~m} W_{2,-} \quad \mathrm{m}=\left(\begin{array}{cc|c}0 & m & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0\end{array}\right)$ integrating out the two heavy fields:
$W_{A}^{\text {eff }}=\sum_{i=3}^{N_{f}} Q_{i} \Phi \tilde{Q}^{i}-\frac{\Phi^{2}}{m} P \tilde{P} \leftarrow-\frac{\mathcal{N}=2}{\text { mir for }}-\rightarrow W_{B}^{\text {eff }}=\sum_{i=3}^{N_{f}} S_{i}\left(q_{i} \tilde{q}^{i}+\Psi\right)+S\left(p \tilde{p}-\frac{\Psi^{2}}{m}\right)$
- Geometry of $\mathrm{CB}_{\mathrm{A}} / \mathrm{HB}$ B is unchanged.
- $H B_{A} / C B_{B}$ is partially lifted.

$$
V_{+} V_{-} \sim \Psi^{N_{f}}
$$

Mutilated quiver

$$
U(1)_{2}: \int \mathrm{d}^{3} x \mathrm{~d}^{2} \theta \mathrm{~d}^{2} \theta V_{(2)}^{: 5} \mathrm{E}_{(2)}^{b} \int^{2} \int \mathrm{~d}^{3} x V_{(2)} \xi_{2}
$$

\Rightarrow 2nd node frozen to zero-size (obstructed blow-up).
[Anderson-Heckman-Katz `13]
2. Non-minimal orbits: sum of monopole operators.
$\mathbf{m}=\left(\begin{array}{ccccc|c}\begin{array}{cccc}0 & m & 0 & \cdots\end{array} & 0 & \\ & 0 & m & \cdots & 0 & \\ & & \ddots & \ddots & \vdots & 0 \\ & & \ddots & m & \\ & & & & 0 & \\ \hline & & & 0\end{array}\right)$

$$
\begin{gathered}
W_{A}^{e f f}=\sum_{i=k+1}^{N_{f}} Q_{i} \Phi \tilde{Q}^{i}+(-1)^{k-1} \frac{\Phi^{k}}{m^{k-1}} P \tilde{P} \\
\mathcal{N}=2_{1}^{\text {! mirror }} \\
\downarrow \\
W_{B}^{e f f}=\sum_{i=k+1}^{N_{f}} S_{i}\left(q_{i} \tilde{q}^{i}+\Psi\right)+S\left(p \tilde{p}+(-1)^{k-1} \frac{\Psi^{k}}{m^{k-1}}\right)
\end{gathered}
$$

SO($2 \mathrm{~N}_{f}$) flavor symmetry

$\mathrm{A}_{\mathbb{N}=4}$: probing D6's + O6

$\left.\psi^{a}=\frac{1}{\sqrt{2}}\binom{Q^{a}-\epsilon^{a b} \tilde{Q}_{b}}{i\left[Q^{a}+\epsilon^{a b} \tilde{Q}_{b}\right]}\right\} 2 N_{f} \quad a, b=1,2$

$$
\Longrightarrow \quad W_{A}=\sum_{I} \psi_{I}^{a} \epsilon_{a b} \Phi_{c}^{b} \psi_{I}^{c}
$$

$\mathrm{B}_{\mathbb{N}=4}$: affine $\mathrm{D}_{\mathrm{N}_{\mathrm{f}}}$ quiver

$\mathrm{W}_{\mathrm{B}}=\mathrm{W}_{\mathrm{B}}(h, \phi) \quad$ [Borokhov ${ }^{\text {© 03] }}$

- $\mathrm{HB}_{\mathrm{A}}\left(\operatorname{dim}=4 \mathrm{~N}_{f}-6\right): M_{I J}=\psi_{I}^{a} \epsilon_{a b} \psi_{J}^{b}=-M_{J I}, r k=2, M^{2}=0$.
$\Rightarrow C B B_{B}: M \in \operatorname{adj} S O\left(2 N_{f}\right)$ made of $(R=1)$-monopoles \& $\operatorname{Tr}(\phi)$'s.
- $\mathrm{CB}_{\mathrm{A}} / H B_{B}: \quad \mathrm{G}^{2}-\mathrm{R}(\mathrm{B}+\mathrm{R})^{2}+\mathrm{R}^{N_{f}-1}=0 \quad \mathrm{D}_{N_{f}}$ singularity.

T-branes and the $H B_{A} / C_{B}$

- T-brane deformation: $\delta \mathrm{W}=\operatorname{Tr}(\mathrm{m} M) \mathrm{w} /$ nilpotent m .
- Brakes flavor symmetry. F-terms $\Rightarrow[m, M]=0$.
- Recall for $\operatorname{SU}\left(N_{f}\right),[m, M]=0 \Rightarrow m M=0$, because rk $M=1$.
\Rightarrow Still, on $\mathrm{HB}_{\mathrm{A}}, \quad \Phi=0$.
- For $\operatorname{SO}\left(2 \mathrm{~N}_{f}\right)$, F-terms $m_{I J} \psi_{J}^{a}=\Phi_{b}^{a} \psi_{I}^{b}$ allow $m M \neq 0$.
- But these vacua violate the D-term $\left[\Phi, \Phi^{\dagger}\right]=0$.
\Rightarrow Still, after any T-brane, on $\mathrm{HB}_{\mathrm{A}}: \Phi=m M=0$.
- This tells us which are the coordinates (monopoles \& ϕ 's) parametrizing the residual CB_{B}.

"Local" mirror symmetry

- Focus on one gauge node, treating all others as flavor nodes.

$\mathrm{B}_{\text {loc }}$
- Take mirror $\mathrm{B}_{\mathrm{loc}} \rightarrow \mathrm{A}_{\mathrm{loc}} \Rightarrow$ monopole \rightarrow off-diagonal mass.
- Integrate out heavy fields $\Rightarrow W_{A}$ eff $\&$ mirror back $\rightarrow W_{B}$ eff.
- Couple back the effective $\mathrm{B}_{\mathrm{loc}}$ (no gauge fields!) into the quiver.
\checkmark We successfully tested this strategy by iteration for any nilpotent deformation of $S U\left(N_{f}\right)$ theories.

Application to $\mathrm{SO}\left(2 \mathrm{~N}_{i}\right)$

- Can study $\mathrm{CB}_{\mathrm{A}} / \mathrm{HB}_{\mathrm{B}}$ only for minimal T-branes.
- Choose m along root associated to an abelian node.

Self-mirror theory $\mathrm{mW} . \leftrightarrow \mathrm{m} X_{1} \tilde{X}^{2}, M_{j}^{i}=\tilde{x}^{i} x_{j}$

- $W_{B_{\text {loc }}} \Longrightarrow W_{A_{\text {loc }}}=\operatorname{Tr}\left(M\left(\Psi-\phi \mathbb{1}_{2}\right)\right)+M_{1}^{1} \tilde{X}^{1} X_{1}+M_{2}^{2} \tilde{X}^{2} X_{2}+m X_{1} \tilde{X}^{2}$
- Integrate out: $W_{A_{l o c}^{\text {eff }}}=\operatorname{Tr}\left(M\left(\Psi-\phi \mathbb{1}_{2}\right)\right)-\frac{M_{1}^{1} M_{2}^{2}}{m} X_{2} \tilde{X}^{1} \quad$ SQED, $\mathbf{N}_{\mathrm{f}}=\mathrm{I}$.
- Mirror back: $W_{B_{\text {loc }}^{\text {eff }}}=\operatorname{Tr}\left(M\left(\Psi-\phi \mathbb{1}_{2}\right)\right)-\frac{S}{m} \operatorname{det} M \quad$ only matter!

The geometry of $C B_{A} / H_{B}$

- Net effect \rightarrow Mutilated quiver +3 new chiral fields.
I. One adjoint of neighbouring $\mathrm{U}(2)$: $M\left(\mathrm{HB}_{B}\right.$ field).

2. Two singlets: S, ϕ (CB_{B} fields).

- F-terms: $M^{2}=0$.
\Rightarrow We computed HB_{B} and found still the $\mathrm{D}_{\mathrm{N}_{\mathrm{f}}}$ singularity.

Conclusions

- Exceptional flavor symmetries:
- Theory A is non-lagrangian. [Minahan-Nemeschanski '96]
\checkmark Can apply local mirror sym. on abelian nodes of theory B.
\Rightarrow Minimal nilpotent orbits do not change HB_{B} geometry.
- Need non-abelian mirror symmetry:
- Check if also non-minimal orbits preserve singularity of HB_{B}.
- Check if also for E_{n}-theories $m M=0$ on the residual CB_{B}.
- Study more deeply the CB_{B} after deformation (instantons):
- How to deduce the unbroken flavor symmetry ?
- Probe higher-dimensional F-theory backgrounds $\left(\mathrm{CY}_{3}, \mathrm{CY}_{4}\right)$.

