Gapped Boundary Phases of Topological Insulators via Weak Coupling

Nathan Seiberg Institute for Advanced Study

Dave Day, 2016

### Happy Birthday, Dave



Gapped Boundary Phases of Topological Insulators via Weak Coupling

Nathan Seiberg Institute for Advanced Study

Nathan Seiberg and Edward Witten, arXiv:1602.04251

### **Phases of Theories**

- Gapless (= massless)
  - Nontrivial fixed point = interacting conformal theory
  - Free theory
- Gapped
  - Trivial bulk theory
    - Trivial boundary
    - Gapless boundary modes
    - Gapped TQFT on the boundary\_\_\_\_\_\_
  - Nontrivial bulk topological quantum theory
    - Same as above

Bulk is not completely

trivial. Symmetry

 Protected Topological (SPT) phase

### Topological Insulators [Kane, Mele; ...]

- Insulator
  - Unbroken global  $U(1)_A$ . The electromagnetic gauge field A can be viewed as a classical background field.
  - Gapped and trivial bulk
- Assume it is time-reversal (T) invariant
- Model:  $\frac{1}{8\pi} \int F \wedge F$  (i.e.  $\theta = \pi$ ) inside the material and  $\theta = 0$  outside [Qi, Hughes, Zhang; Essin, Moore, Vanderbilt])
- Nontrivial boundary
  - Typically, massless fermions (gapless)
  - Can also lift the fermions and have gapped boundary states. (Examples by [Metlitski, Kane, Fisher; ...].)

### Topological Insulator: simple example

On the boundary 2 + 1-dimensional complex massless fermions. Parity anomaly:

We would like to preserve  $U(1)_A$  and T.

But we can preserve

- either  $U(1)_A$  and violate T
- or T and violate  $U(1)_A$
- or  $U(1)_A$  and T, but the theory is not truly 2 + 1-dimensional. It needs a 3 + 1-dimensional bulk with  $\frac{1}{8\pi} \int F \wedge F$ . This is an example of anomaly inflow [Callan, Harvey].

Massless boundary modes are associated with  $U(1)_A$  and T. They are robust.

## **Topological Insulator**

Start with  $\frac{1}{8\pi}\int F \wedge F$  inside the material, but not outside. Massless boundary modes are associated with  $U(1)_A$  and T. They are robust – cannot be lifted by small perturbations.

- Can we add a large perturbation and gap the system?
- Something must remain on the boundary to account for the anomaly inflow.
- Can there be a TQFT on the boundary with the same anomaly? (Examples by [Metlitski, Kane, Fisher; ...].)
- Not obvious whether a given TQFT has the right anomaly.

### **Extend the Previous Model**

Cast of characters:

- Emergent  $U(1)_a$  gauge field on the boundary
- Scalar w of  $U(1)_a$  charge 1, which can Higgs it to be trivial.
- Massless fermion  $\chi$  with  $U(1)_A \times U(1)_a$  charges (1, 2s)
  - For integer s no additional anomaly associated with a (actually, s has to be even for more subtle reasons).

In the phase with  $\langle w \rangle \neq 0$  the low-energy spectrum consists of a massless fermion with  $U(1)_A$  charge one.

So this system contains the previous system – same anomaly. (Even the same gravitational anomalies, which we do not discuss today.)

## **Extend the Previous Model**

Add:

• Scalar  $\Phi$  with  $U(1)_A \times U(1)_a$  charges (2, 4s) such that we can have a *T*-invariant coupling  $\chi \chi \Phi^* + c.c.$ 

In a phase with  $\langle w \rangle = 0$ , but  $\langle \Phi \rangle \neq 0$  the theory is gapped:

- Higgs  $U(1)_a \rightarrow Z_{4s}$ . No massless gauge field.
- $\chi$  acquires a mass from  $\chi \chi \Phi^*$
- Unbroken T and global  $U(1)_A$  symmetry (linear combination of the original global  $U(1)_A$  and gauge  $U(1)_a$ )
- Our system has the right anomaly to be a boundary state.
- It has a gapped boundary phase with a TQFT.
- Everything can be analyzed explicitly.

### The Massive Spectrum

- w quanta are  $U(1)_A$  neutral bosons transforming with "charge" 1 under  $Z_{4s}$ .
- $\chi$  quanta are  $U(1)_A$  neutral fermions transforming with "charge" 2s under  $Z_{4s}$ .
- Interesting spectrum of vortices from  $U(1)_a \rightarrow \mathbf{Z}_{4s}$ :
  - The elementary vortex (vorticity  $v = \pm 1$ ) has a single  $\chi$  zero mode. It exhibits non-Abelian statistics.
  - More generally, all odd v vortices have non-Abelian statistics.
  - Even v vortices have Abelian statistics.

### The Low Energy TQFT

First, we describe the  $Z_{4s}$  gauge theory as a  $U(1)_a \times U(1)_c$  Chern-Simons theory [Maldacena, Moore, NS]  $\frac{1}{2\pi} c d(4sa + 2A)$ . c is dual to the phase of the Higgs field  $\Phi$ . Its equation of motion constrains a to be a  $Z_{4s}$  gauge field. The coupling to A follows from the coupling of  $\Phi$ .

Second, we integrate out  $\chi$  to find a Chern-Simons term

$$\frac{1}{8\pi}(2sa+A)d(2sa+A)$$

The term  $\frac{1}{8\pi}AdA$  is the only term that is not properly normalized. It reflects the anomaly. It comes form the bulk of the system. (Need to be more careful and use  $\eta$ .)

# The Low Energy TQFT $\frac{1}{2\pi} c d(4sa + 2A) + \frac{1}{8\pi} (2sa + A) d(2sa + A)$

But this cannot be the whole story.

The Wilson lines  $\exp(i \oint c)$  should represent the vortices. But this misses the fact that they have non-Abelian statistics.

It turns out that we need to add to this free TQFT another non-Abelian sector. It is the 2+1-dimensional TQFT that corresponds to the 1+1-dimensional Ising model. Further, the two sectors are subject to a  $Z_2$  quotient. Same TQFT in [Metlitski, Kane, Fisher].

The line operators of this theory represent the world-lines of the quasi-particles we found semi-classically.

## Conclusions

- Topological phases of matter are interesting.
  - They exhibit rich phenomena. Some of them have already been encountered by high energy physicists, but most of them have not.
  - Mathematics, quantum field theory, condensed matter physics...
- We have presented a weakly coupled T-invariant theory with a global  $U(1)_A$  symmetry. It has two interesting phases:
  - Massless charged fermions. Hence, the right anomaly to be the boundary of a topological insulator.
  - Gapped phase with a TQFT.
  - Explicit, calculable.

## Conclusions

- The analysis of this system, despite being weakly coupled, has many interesting subtleties.
- New consistency conditions
- New anomalies
- Many more models
- Topological superconductors  $(U(1)_A \text{ is broken to } \mathbb{Z}_2)$
- Many interesting questions

Dave, Thank you for a wonderful friendship.

Happy Birthday

