6d SCFTs and F-theory:
 a bottom-up perspective

Yuji Tachikawa

Feb. 2016, F-theory @ 20, Caltech

I know it's not quite the Dave day yet, but let me say one thing.

I know it's not quite the Dave day yet, but let me say one thing.
Dave was originally a pure mathematician.
When he was about my age right now, he started to learn string theory, and became one of the leading figures in the field.

I know it's not quite the Dave day yet, but let me say one thing.
Dave was originally a pure mathematician.
When he was about my age right now, he started to learn string theory, and became one of the leading figures in the field.

Isn't it amazing?

Maybe I should try something other than string theory, following his example!

6d SCFTs and F-theory:
 a bottom-up perspective

As you know, I'm not really an F-theory person.

As you know, I'm not really an F-theory person.
I don't even remember the orders of $(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{\Delta})$ in Kodaira's table by heart!
I was asked to give a review talk from an outsider point of view, so it's probably OK.

As you know, I'm not really an F-theory person.
I don't even remember the orders of (f, g, Δ) in Kodaira's table by heart!
I was asked to give a review talk from an outsider point of view, so it's probably OK.

I guess the idea was like inviting an LQG person to the Strings conference...

I also apologize in advance that my talk will be very subjective, and will not cite/mention many relevant papers, although I know I should.

But at least I would like to illustrate ...

The Unreasonable Effectiveness of F-theory in the study of 6d SCFTs

Q. Why 6d SCFT?

Q. Why 6d SCFT?

A. When [Heckman-Morrison-Vafa 1312.5746] came out, my student Hiroyuki Shimizu got interested, so as an adviser I needed to study it and come up with a project he could work on.

Q. Why 6d SCFT?

A. When [Heckman-Morrison-Vafa 1312.5746] came out, my student Hiroyuki Shimizu got interested, so as an adviser I needed to study it and come up with a project he could work on.
A. I've been studying $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ SUSY for quite some time, and 6d SCFTs felt familiar
Q. Why 6d SCFT?
A. When [Heckman-Morrison-Vafa 1312.5746] came out, my student Hiroyuki Shimizu got interested, so as an adviser I needed to study it and come up with a project he could work on.
A. I've been studying $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ SUSY for quite some time, and 6d SCFTs felt familiar
A. 6 d is the maximal dimension where superconformal groups are available. So, something interesting might be going on.

Sketch of the proof that $\mathbf{6 d}$ is the maximal dimension:
(1) Superconformal algebras are simple.
(2) Fermionic parts of the superconformal algebras are spinors.
(3) Simple superalgebras are classified.
(4) Fermionic parts of almost all of them are in the fundamental.
(5) Need an accidental isomorphism spinors \simeq fundamental.
(6) The maximal case is therefore $\mathfrak{s o}(8)$, or $\mathfrak{s o}(6,2)$ for our purpose.
$6 \mathrm{~d} \boldsymbol{\mathcal { N }}=(\boldsymbol{n}, \mathbf{0})$ SCFT corresponds to $\mathfrak{o s p}(\mathbf{6}, \mathbf{2} \mid \mathbf{2} \boldsymbol{n})$.

Open question

Show that $\mathcal{N}=(n>2,0)$ SCFTs don't exist.
$6 \mathrm{~d} \boldsymbol{\mathcal { N }}=(\boldsymbol{n}, \mathbf{0})$ SCFT corresponds to $\mathfrak{o s p}(6,2 \mid 2 \boldsymbol{n})$.

Open question

Show that $\mathcal{N}=(n>2,0)$ SCFTs don't exist.
cf. $5 \mathrm{~d} \boldsymbol{\mathcal { N }}=1$ SCFT corresponds to $\boldsymbol{F}(4)$, whose bosonic part is $\mathfrak{s o}(7) \oplus \mathfrak{s u}(2)$ and the fermionic part is spinor \otimes doublet.

There simply is no $5 \mathrm{~d} \boldsymbol{\mathcal { N }}>\mathbf{1}$ superconformal algebra, so there's no corresponding open question.
Q. How do you study 6d SCFTs?

- Conformal bootstrap.
- Analysis of the Lagrangian on the tensor branch.
- Analysis of the Lagrangian of the $\boldsymbol{S}^{\mathbf{1}}$ compactification.
- Brane constructions in M, (massive) type IIA, or type I
- F-theory!

M-theory constructions and F-theory

\downarrow
structure on the tensor branch and F-theory

massive type IIA constructions and F-theory

M-theory constructions and F-theory

$$
\begin{aligned}
& \downarrow \\
& \text { structure on the tensor branch and F-theory } \\
& \downarrow \\
& \text { massive type IIA constructions and F-theory }
\end{aligned}
$$

A large class of $6 \mathrm{~d} \mathcal{N}=(1,0)$ SCFTs can be obtained by putting M5-branes on the ALE singularities:

When $\boldsymbol{\Gamma}=\mathbb{Z}_{\boldsymbol{k}}$, we have $\mathbf{S U}(\boldsymbol{k})$ gauge fields at the singularity, and an M5 just gives a bifundamental of $\mathbf{S U}(\boldsymbol{k}) \times \mathbf{S U}(\boldsymbol{k})$:

But surprising things happen when $\boldsymbol{\Gamma}$ is of type $\boldsymbol{D}_{\boldsymbol{k}}$ or $\boldsymbol{E}_{\boldsymbol{k}}$. [del Zotto-Heckman-Tomasiello-Vafa, 1407.6359]

For example, take $\boldsymbol{\Gamma}$ of type $\boldsymbol{D}_{\boldsymbol{k}}$ and put 1 M5:

The M5 becomes two fractional M5s:

Somehow the middle region the gauge group is $\mathbf{U S p}(2 k-8)$, and each half-M5 gives a bifundamental.

Similarly, when $\boldsymbol{\Gamma}$ is of type $\boldsymbol{E}_{\mathbf{6}}$, a full M5-brane fractionates ...

Similarly, when $\boldsymbol{\Gamma}$ is of type $\boldsymbol{E}_{\mathbf{6}}$, a full M5-brane fractionates ...

into 4 fractional M 5 s , and the gauge groups occur in the sequence
$E_{6}, \quad \varnothing, \quad \mathbf{S U}(3), \quad \varnothing, \quad \boldsymbol{E}_{6}$.

In general, we have

A : doesn't fractionate.
$D_{k}: \mathbf{S O}(2 k), \mathbf{U S p}(2 k-8), \mathbf{S O}(2 k)$
$E_{6} \quad: \quad E_{6}, \varnothing, \mathbf{S U}(3), \varnothing, E_{6}$
$E_{7} \quad: \quad E_{7}, \varnothing, \mathbf{S U}(2), \mathbf{S O}(7), \mathbf{S U}(2), \varnothing, E_{7}$
$E_{8} \quad: \quad E_{8}, \varnothing, \varnothing, \mathbf{S U}(2), G_{2}, \varnothing, F_{4}, \varnothing, G_{2}, \mathbf{S U (2)}, \varnothing, \varnothing, E_{8}$.
My natural reaction was this:

What the hell are these sequences of groups?

M-theoretically, you can go as follows [Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]:

To study the tensor branch of this system,

We can instead study the Coulomb branch of its $T^{\mathbf{3}}$ compactification:

Reduce it to IIA:

Take the double T-dual:

Lift it back to M-theory:

We're now interested in its Higgs branch, since we've effectively taken the 3d mirror.

An M2 can dissolve into the G gauge field as an instanton on $T^{3} \times \mathbb{R}$:

The plot below shows the evolution of the Chern-Simons invariant on T^{3} at each slice.

When $G=\mathbf{S O}(2 k)$, the instanton can fractionate:

In an extreme situation, we have this:
$\mathrm{SO}(2 k)$

The bundle is flat but nontrivial.

Three holonomies are known to be given by

$$
\begin{aligned}
& \operatorname{diag}\left(+,+,+,-,-,-,-,+{ }^{2 k-7}\right) \\
& \operatorname{diag}\left(+,-,-,+,+,-,-,+^{2 k-7}\right) \\
& \operatorname{diag}\left(-,+,-,+,-,+,-,+^{2 k-7}\right)
\end{aligned}
$$

Originally noticed by [Witten, hep-th/9712028].

So the unbroken gauge group is

So we have

Going back the duality chain, we have

since we need to take 4d S-duality / 3d mirror symmetry:

$$
\mathbf{S O}(2 k-7) \leftrightarrow \mathbf{U S p}(2 k-8)
$$

The analysis can be carried out in a similar manner for any \boldsymbol{G}, using the results in [Borel,Friedman,Morgan math.GR/9907007].

What needs to be done is the classification of flat G bundles on T^{3}

and the computation of their Chern-Simons invariants.

Example: $\boldsymbol{G}=\boldsymbol{E}_{\boldsymbol{7}}$.
You can construct a bundle with $C S=1 / 2$ as follows. Take

$$
\begin{aligned}
& \operatorname{diag}(+,+,+,-,-,-,-) \\
& \operatorname{diag}(+,-,-,+,+,-,-) \\
& \operatorname{diag}(-,+,-,+,-,+,-)
\end{aligned}
$$

in $\mathbf{S O}(7)$. In fact they are in $\boldsymbol{G}_{\mathbf{2}}$.
\boldsymbol{E}_{7} has a maximal subgroup $\boldsymbol{G}_{\mathbf{2}} \times \mathbf{U S p}(\mathbf{6})$. Therefore

You can fractionate further, since the allowed CS invariants are

$$
C S=0, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}
$$

We have

In the original duality frame we have

Note that the M5 charges are not equally distributed.

In F-theory, the analysis is done as follows [Aspinwall-Morrison, hep-th/9705104]:

Recall that the M-theory configuration

is dual to ...

This F-theory configuration:

where two F-theory 7-branes intersect transversally at a point.

I know I don't have to review the following in this workshop, but anyway.

Let's say we put the elliptic fibration to the Weierstrass form

$$
y^{2}=x^{3}+f x+g
$$

where $\boldsymbol{f}, \boldsymbol{g}$ are functions on the base.
Let $\Delta=4 f^{3}+27 g^{2}$ be its discriminant.

	g	G	$\boldsymbol{o r d}(f)$	ord (g)	$\boldsymbol{o r d}(\Delta)$
I_{k}	$\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$	$\mathbf{S U}(\boldsymbol{k})$	0	0	k
II	$\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)$	\varnothing	≥ 1	1	2
III	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$	SU(2)	1	≥ 2	3
IV	$\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$	SU(3)	≥ 2	2	4
I_{k}^{*}	$\left(\begin{array}{cc}-1 & -k \\ 0 & -1\end{array}\right)$	$\mathbf{S O}(2 k+8)$	2	3	$k+6$
$I V^{*}$	$\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$	E_{6}	≥ 3	4	8
III ${ }^{*}$	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	E_{7}	3	≥ 5	9
$I I^{*}$	$\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$	E_{8}	≥ 4	5	10

So, suppose two $\boldsymbol{E}_{7} 7$-branes intersect.

Here $(\mathbf{3}, \mathbf{5}, \mathbf{9})$ means that $(\boldsymbol{f}, \boldsymbol{g}, \boldsymbol{\Delta})$ vanish to these orders there.
At the intersection,

$$
(3,5,9)+(3,5,9)=(6,10,18) \geq(4,6,12)
$$

A smooth elliptic fibration can't exceed $(4,6,12)$.
So we blow-up the intersection point.

We now get this configuration

where

$$
(2,4,6)=(3,5,9)+(3,5,9)-(4,6,12)
$$

Looking up the table, this corresponds to I_{0}^{*} with $\mathbf{S O}(8)$.

A more detailed analysis shows that there is an outer-automorphism action of $\mathbf{S O}(8)$ around this $S^{\mathbf{2}}$ of I_{0}^{*} curve

giving $\mathbf{S O}(7)$.
The intersection of $(2,4,6)$ and $(3,5,9)$ is still singular since

$$
(2,4,6)+(3,5,9) \geq(4,6,12)
$$

We need to blow up, repeat ...

We end up with this final configuration:

Recall that in M-theory this was

which reflected possible choices of flat $\boldsymbol{E}_{\boldsymbol{7}}$ connections on $\boldsymbol{T}^{\mathbf{3}}$

The correspondence works for any $\boldsymbol{G}=\boldsymbol{A}_{\boldsymbol{k}}, \boldsymbol{D}_{\boldsymbol{k}}$ and $\boldsymbol{E}_{\mathbf{6}, \mathbf{7}, \mathbf{8}}$.

How on earth does the F-theory know the flat connections on $T^{\mathbf{3}}$?
Note that [Aspinwall-Morrison, hep-th/9705104] appeared before [Borel,Friedman,Morgan math.GR/9907007].

How on earth does the F-theory know the flat connections on T^{3} ?
Note that [Aspinwall-Morrison, hep-th/9705104] appeared before [Borel,Friedman,Morgan math.GR/9907007].

F-theory works in mysterious ways.

Open question

The F-theory should know the CS invariants of the flat connections, but how?

M-theory constructions and F-theory

\downarrow

structure on the tensor branch and F-theory

massive type IIA constructions and F-theory

We're activating scalars in the tensor multiplet.

On generic points on the tensor branch, we just have

- tensor multiplets
- vector multiplets
- hypermultiplets
so one can apply a more traditional field-theoretical analysis.

Caveat: we are assuming that all nontrivial SCFTs have tensor branch.

Open question

Show that if a 6d SCFT does not have any tensor branch, it is a theory of free hypermultiplets.

Open question

Show that if a $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ SCFT does not have any Coulomb branch, it is a theory of free hypermultiplets.

Comments:

- If you believe every 6d SCFT comes from F-theoretic singularities, then the answer is yes:
3-dim CY singularities can always be resolved.
- Bootstrap?

In F-theory, each $\mathbb{P}^{\mathbf{1}}$ is associated to

- a tensor multiplet
- a string coming from D3 wrapped there, whose tension is given by the scalar in the tensor multiplet
- possibly a gauge multiplet, whose inverse coupling squared is also given by the scalar in the tensor multiplet
- When \exists gauge multiplet, the string is the instanton-string.

In F-theory, each intersection of two $\mathbb{P}^{\mathbf{1}}$ supporting $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ gives a particular hypermultiplet charged under $\boldsymbol{G}_{\mathbf{1}} \times \boldsymbol{G}_{\mathbf{2}}$.

So you can try to work bottom-up: what is the possible structure of

- tensors $\boldsymbol{H}_{\boldsymbol{i}}, \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}_{\boldsymbol{T}}$
- vectors for $\boldsymbol{G}_{a}, a=1, \ldots, n_{V}$
- hypers charged under $\prod G_{a}$
on generic points of the tensor branch of a 6 d SCFT?
Strong constraints come from the anomaly cancellation.
An important role is played by the Dirac pairing $\langle\cdot, \cdot\rangle$ on the charge lattice $\Lambda \simeq \mathbb{Z}^{\boldsymbol{n}_{\boldsymbol{T}}}$ of the strings.

Note that in 6 d , the pairing is symmetric.
SCFT requires it to be positive definite.

Before getting further, I should say the analysis that follows would be rather defective.

- There's no guarantee that a given anomaly-free combination comes from a 6d SCFT that really exists.
- The analysis does not tell us anything about the models where there are no vectors.

I will come back to the first point later.

On the second point:
There should be a way to understand better the models that do not have vector multiplets on the tensor branch.

So far, known examples are

- $\operatorname{ADE} \mathcal{N}=(2,0)$ theories, and
- E-string theory and its higher-rank analogues, which are $\mathcal{N}=(1,0)$.

Why does $\mathcal{N}=(2,0)$ theories classified by ADE?
Where does the \boldsymbol{E}_{8} symmetry come from, for $\mathcal{N}=(\mathbf{1}, \mathbf{0})$ examples?

Why does $\mathcal{N}=(2,0)$ theories classified by ADE?
There is a nice argument [Henningson, hep-th/0405056] showing that the anomaly cancellation on the string worldsheet requires that the charge lattice of any $\mathcal{N}=(2,0)$ theory should be a simply-laced root lattice.

Essential points of his idea are as follows.

- Take the string of charge vector $\boldsymbol{q} \in \boldsymbol{\Lambda}$.
- The string breaks half the SUSY.

Nambu-Goldstone modes become worldsheet fields. They are chiral, and therefore anomalous.

- It also couples to the self-dual fields in the bulk. This gives the anomaly inflow proportional to $\langle\boldsymbol{q}, \boldsymbol{q}\rangle$.
- The cancellation requires $\langle\boldsymbol{q}, \boldsymbol{q}\rangle=\mathbf{2}$.
- So $\boldsymbol{\Lambda}$ is an integral lattice generated by elements of (length) ${ }^{\mathbf{2}}=\mathbf{2}$.

How about $\boldsymbol{\mathcal { N }}=(\mathbf{1}, \mathbf{0})$ examples?

Open question

Give an argument that if a genuine $\mathcal{N}=(\mathbf{1}, \mathbf{0})$ SCFT does not have any vector multiplet on generic points on the tensor branch, it is the E-string or its higher-rank analogue.

The first step would be to study the rank-1 case.
Assume that the Dirac pairing of the charge lattice $\Lambda \simeq \mathbb{Z}$ is minimal.
Then it seems that the cancellation of the worldsheet anomaly requires that \exists a left-moving $c=8$ modular-invariant sector, showing that it automatically has \boldsymbol{E}_{8} symmetry.

Anybody interested in filling in the gaps?
Or is it already given in the literature?

Let us come back to the setup:

- tensors $\boldsymbol{H}_{\boldsymbol{i}}, \boldsymbol{i}=1, \ldots, \boldsymbol{n}_{\boldsymbol{T}}$
- vectors for $\boldsymbol{G}_{a}, a=1, \ldots, n_{V}$
- hypers charged under $\prod G_{a}$

Let us further assume $\boldsymbol{n}_{\boldsymbol{T}}=\boldsymbol{n}_{\boldsymbol{V}}$. Instanton strings are charged under the tensors, so we have

$$
d H_{a}=c_{2}\left(G_{a}\right)
$$

This contributes to the anomaly by

$$
I_{8}^{\text {tensor }}=\frac{1}{2} \Omega^{a b} c_{2}\left(G_{a}\right) c_{2}\left(G_{b}\right)
$$

where $\Omega^{a b}$ is the integral Dirac pairing of the charge lattice.

A side comment:
The IIB \boldsymbol{F}_{5} also satisfies $\boldsymbol{d} \boldsymbol{F}_{5}=$ (something), and therefore there is

$$
I_{12}^{\mathrm{GS}}=\frac{1}{2}(\text { something })^{2}
$$

which is not usually discussed. Is it zero?
If it isn't, it ruins the anomaly cancellation of IIB supergravity.

A side comment:
The IIB \boldsymbol{F}_{5} also satisfies $\boldsymbol{d} \boldsymbol{F}_{5}=$ (something), and therefore there is

$$
I_{12}^{\mathrm{GS}}=\frac{1}{2}(\text { something })^{2}
$$

which is not usually discussed. Is it zero?
If it isn't, it ruins the anomaly cancellation of IIB supergravity.
Yes, since (something) $=H_{3} \wedge G_{3}$.

Coming back to 6d, the total anomaly should vanish:

$$
0=\frac{1}{2} \Omega^{a b} c_{2}\left(G_{a}\right) c_{2}\left(G_{b}\right)+\sum_{a} I_{8}^{\text {vector }}\left(G_{a}\right)+\sum I_{8}^{\text {hyper }}
$$

First analyzed by Seiberg [hep-th/9609161] for $\boldsymbol{n}_{\boldsymbol{V}}=\boldsymbol{n}_{\boldsymbol{T}}=\mathbf{1}$.
For $\mathbf{S U}(\mathbf{2})$ with $\mathbf{2} \boldsymbol{N}_{f}$ half-hypers in the doublet, we have

$$
0=\frac{1}{2} \Omega{c_{2}}^{2}-\frac{32-2 N_{f}}{24} c_{2}^{2}
$$

We need $\mathbf{3 2}>\mathbf{2} \boldsymbol{N}_{f}$, because $\Omega>\mathbf{0}$.

For $\mathbf{S U}(\mathbf{2})$ with $\boldsymbol{N}_{\boldsymbol{f}}$ half-hypers in the doublet, we have

$$
0=\frac{1}{2} \Omega c_{2}^{2}-\frac{32-2 N_{f}}{24} c_{2}^{2}
$$

We need $\mathbf{3 2}>\mathbf{2} \boldsymbol{N}_{f}$, because $\Omega>\mathbf{0}$.
Bershadsky and Vafa in [hep-th/9703167] pointed out that there are more constraints.

- F-theory constructions only gave $N_{f}=4$ and $=10$. Why?
- In $6 d$, there's a global anomaly associated to $\pi_{\mathbf{6}}(\mathbf{S U}(2))=\mathbb{Z}_{\mathbf{1 2}}$, and it requires $32-2 N_{f}=0 \bmod 12$.
- Also, Ω needs to be an integer, which gives the same condition.

How on earth does the F-theory know the global anomaly associated to the subtle homotopy group $\pi_{6}(\mathbf{S U}(2))=\mathbb{Z}_{12}$?

F-theory works in mysterious ways.

We can extend the field-theoretical analysis to general $\boldsymbol{n}_{\boldsymbol{T}}=\boldsymbol{n}_{\boldsymbol{V}}$, with arbitrary $\prod G_{a}$ and arbitrary hypers.
[Heckman-Morrison-Rudelius-Vafa 1502.05405][Bhardwaj, 1502.06594]
One example is $n_{T}=n_{V}=2, G=\mathfrak{s u}(2) \times \mathfrak{s o}(8)$, with a half-hyper in $2 \otimes 8_{V}$ and full spinors in $8_{S} \oplus 8_{C}$.

This is free of both local and global anomalies, with the charge pairing

$$
\left(\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right)
$$

But this is never realized in F-theory! Is there a field-theoretical way to see this?

Yes. [Ohmori-Shimizu-YT-Yonekura, 1508.00915, Appendix A]

This model tries to gauge the $\mathfrak{s o}(8)$ flavor symmetry of the 6 d model

$\mathfrak{s u}(2)$ and 4 doublets on the tensor branch.

The point is that this SCFT only has $\mathfrak{s o}(7) \subset \mathfrak{s o}(8)$ where 8 doublets transform as a spinor of $\mathfrak{s o}(7)$.

So you can't gauge $\mathfrak{s o (8)}$.

To see that there is only $\mathfrak{s o}(7)$, compactify on T^{2} the 6 d model

$\mathfrak{s u}(2)$ and 4 doublets on the tensor branch.

You get

$$
4 \mathrm{~d} \mathcal{N}=2 \mathfrak{s u}(2)_{G} \text { with } 4 \text { doublets }
$$

+ an additional $\mathfrak{s u}(2)_{T}$ coming from the $\mathbf{6 d}$ tensor.

The Weyl group of $\mathfrak{s u}(\mathbf{2})_{T}$ is the S-duality of this $4 \mathrm{~d} \mathcal{N}=2 \mathfrak{s u}(2)_{G}$ with 4 doublets, and maps 8_{V} to 8_{S}.

So, only the $\mathfrak{s o}(7) \subset \mathfrak{s o}(8)$ s.t. $8_{C} \rightarrow 7+1$ is compatible.

Another way is to compactify on $\boldsymbol{S}^{\boldsymbol{1}}$ the 6 d model

$\mathfrak{s u}(2)$ and 4 doublets on the tensor branch.

You get

$$
5 \mathrm{~d} \mathcal{N}=1 \mathfrak{s u}(2)_{G} \text { with } 4 \text { doublets }
$$

+ an additional $\mathfrak{s u}(2)_{T}$ coming from the $\mathbf{6 d}$ tensor.

5d $\mathfrak{s u}(2)_{G}$ with 4 doublets has an enhanced $\mathfrak{s o}(10)$ flavor symmetry, and the $\mathfrak{s u}(2)_{\boldsymbol{T}}$ gauges the $\mathfrak{s o}(3)$ subgroup, which comes from the enhanced instanton number symmetry.

The commutant is clearly $\mathfrak{s o}(7)$, since $\mathfrak{s o}(3) \oplus \mathfrak{s o}(7) \subset \mathfrak{s o}(10)$.

How does the F-theory know this subtle issue?

F-theory works in mysterious ways.

M-theory constructions and F-theory

$$
\begin{aligned}
& \downarrow \\
& \text { structure on the tensor branch and F-theory } \\
& \downarrow \\
& \text { massive type IIA constructions and F-theory }
\end{aligned}
$$

We can also use (massive) IIA to engineer 6d SCFTs.
[Brunner-Karch, hep-th/9712143] [Hanany-Zaffaroni, hep-th/9712145]
Two examples:

gives $\mathfrak{s u}(\boldsymbol{n})$ with an antisymmetric and $\boldsymbol{n}+\mathbf{8}$ fundamentals, and

gives $\mathfrak{s u}(\boldsymbol{n})$ with a symmetric and $\boldsymbol{n}-\mathbf{8}$ fundamentals.

They are free from anomalies, both local and global.
However, it so happens that the F-theoretic atomic classification [Heckman-Morrison-Rudelius-Vafa, 1502.05405] includes
$\mathfrak{s u}(\boldsymbol{n})$ with an antisymmetric and $\boldsymbol{n}+8$ fundamentals
but does not include
$\mathfrak{s u}(\boldsymbol{n})$ with a symmetric and $\boldsymbol{n}-8$ fundamentals.

This conundrum was noticed by many people simultaneously, in the US, in Canada, in Japan, and maybe elsewhere too.

I didn't notice it myself, but I learned about it from multiple sources.
Does the model
$\mathfrak{s u}(n)$ with a symmetric and $n-8$ fundamentals.
have some secret inconsistency?
No. Classifications in F-theory so far forgot to include $\mathbf{0 7 +}$. [work in progress, with Bhardwaj, Morrison and Tomasiello]

You can take either

or

and compactify one transverse direction, then take the T-dual to go to the IIB.

You get

or

In the F-theory language, we have

or

What's this " $I_{4}^{* " ? ~}$

The point is that in F-theory, there are two distinct types of I_{n}^{*} singularities when $n \geq 4$.

- I_{n}^{*} with $\mathfrak{s o}(2 n+8)$ symmetry, deformable to be smooth.
- " $I_{n}^{* / "}$ with $\mathfrak{u s p}(2 n-8)$ symmetry, deformable only down to " I_{4}^{*} ".

The latter is frozen by a mysterious discrete flux [Witten, hep-th/9712028].

You might worry that other Kodaira types might have frozen versions, but that doesn't happen [YT, 1508.06679].

F-theory geometrizes most of the field theory phenomena, but it still needs some additional data. cf. T-brane.

Summary

- 6d SCFTs can be studied in many ways.
- Various subtle field-theoretical features are always encoded in F-theory, but in mysterious ways.
- Properties of $\boldsymbol{A} \boldsymbol{D} \boldsymbol{E}$ Instantons on $\mathbb{R} \times \boldsymbol{T}^{3}$
- Global anomaly $\boldsymbol{\pi}_{6}(\mathbf{S U (2)})=\mathbb{Z}_{\mathbf{1 2}}$
- Reduction of flavor symmetry $\mathfrak{s o}(8) \supset \mathfrak{s o}(7)$ of $\boldsymbol{n}_{\boldsymbol{T}}=1 \mathfrak{s u}(2)$ with 4 doublets
- Issues on \boldsymbol{O}^{+}-planes
- There are many open questions.

Open question

Does every 6d SCFT come from F-theory?

Open question

Does every 6d SCFT come from F-theory?

Open question

Does every $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2}$ SCFT come from string theory?
cf. As far as I know, there is neither a stringy realization of

- $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2} \mathbf{S U}(7)$ or $\mathbf{S U (8)}$ with 3-index antisymmetric
- $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2} \mathbf{S p}(3)$ or $\mathbf{S p}(4)$ with 3 -index antisymmetric
- $4 \mathrm{~d} \boldsymbol{\mathcal { N }}=\mathbf{2} \mathbf{S O}(13)$ or $\mathbf{S O}(14)$ with spinor
nor the Seiberg-Witten solutions to them. Does F-theory help?
Note that almost exactly the same list of groups were given by Dave on the 1 st day of the workshop, as subtle cases in Tate's algorithm. Any relation?

