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I know	it’s	not	quite	the	Dave	day	yet, but	let	me	say	one	thing.

Dave	was	originally	a	pure	mathematician.

When	he	was	about	my	age	right	now, he	started	to	learn	string	theory,
and	became	one	of	the	leading	figures	in	the	field.

Isn’t	it	amazing?

Maybe	I should	try	something	other	than	string	theory,
following	his	example!
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6d	SCFTs	and	F-theory:

a bottom-up perspective
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As	you	know, I’m	not	really	an	F-theory	person.

I don’t	even	remember	the	orders	of (f, g,∆) in	Kodaira’s	table	by	heart!

I was	asked	to	give	a	review	talk	from	an	outsider	point	of	view,
so	it’s	probably	OK.

I guess	the	idea	was	like	inviting	an	LQG person	to	the	Strings
conference...

I also	apologize	in	advance	that	my	talk	will	be	very	subjective,
and	will	not	cite/mention	many	relevant	papers,
although	I know	I should.

But	at	least	I would	like	to	illustrate	...
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The Unreasonable	Effectiveness of	F-theory

in	the	study	of	6d	SCFTs
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Q. Why	6d	SCFT?

A. When [Heckman-Morrison-Vafa 1312.5746] came	out, my	student
Hiroyuki	Shimizu	got	interested, so	as	an	adviser	I needed	to	study	it	and
come	up	with	a	project	he	could	work	on.

A. I’ve	been	studying	4d N=2 SUSY for	quite	some	time,
and	6d	SCFTs	felt	familiar

A. 6d	is	the maximal dimension	where superconformal	groups	are
available. So, something	interesting	might	be	going	on.
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Sketch	of	the	proof	that 6d	is	the	maximal	dimension:

1 Superconformal	algebras	are simple.

2 Fermionic	parts	of	the	superconformal	algebras	are spinors.

3 Simple superalgebras	are	classified.

4 Fermionic	parts	of	almost	all	of	them	are	in	the fundamental.

5 Need	an	accidental	isomorphism spinors ≃ fundamental.

6 The	maximal	case	is	therefore so(8), or so(6, 2) for	our	purpose.
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6d N=(n, 0) SCFT corresponds	to osp(6, 2|2n).

Open	question

Show	that N=(n > 2, 0) SCFTs	don’t	exist.

cf. 5d N=1 SCFT corresponds	to F (4), whose	bosonic	part	is
so(7) ⊕ su(2) and	the	fermionic	part	is spinor ⊗ doublet.

There	simply	is	no	5d N>1 superconformal	algebra,
so	there’s	no	corresponding	open	question.

8	/	81



6d N=(n, 0) SCFT corresponds	to osp(6, 2|2n).

Open	question

Show	that N=(n > 2, 0) SCFTs	don’t	exist.

cf. 5d N=1 SCFT corresponds	to F (4), whose	bosonic	part	is
so(7) ⊕ su(2) and	the	fermionic	part	is spinor ⊗ doublet.

There	simply	is	no	5d N>1 superconformal	algebra,
so	there’s	no	corresponding	open	question.

8	/	81



Q. How	do	you	study	6d	SCFTs?

• Conformal	bootstrap.
• Analysis	of	the	Lagrangian	on	the	tensor	branch.
• Analysis	of	the	Lagrangian	of	the S1 compactification.
• Brane	constructions	in	M,	(massive)	type	IIA,	or	type	I
• F-theory!
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M-theory	constructions	and	F-theory

↓

structure	on	the	tensor	branch	and	F-theory

↓

massive	type	IIA constructions	and	F-theory
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A large	class	of	6d N=(1, 0) SCFTs	can	be	obtained
by	putting	M5-branes	on	the	ALE singularities:

R6 ×

R1

C2/�
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When Γ = Zk, we	have SU(k) gauge	fields	at	the	singularity,
and	an	M5	just	gives	a	bifundamental	of SU(k) × SU(k):

R6 ×

SU(k)

bifundamental

SU(k)
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But	surprising	things	happen	when Γ is	of	type Dk or Ek.
[del	Zotto-Heckman-Tomasiello-Vafa, 1407.6359]

For	example, take Γ of	type Dk and	put	1	M5:

R6 ×

SO(2k)

nontrivial
SCFT

SO(2k)

14	/	81

http://arxiv.org/abs/1407.6359


The	M5	becomes	two	fractional	M5s:

R6 ×

USp(2k−8)

bifund. bifund.

SO(2k)
SO(2k)

Somehow	the	middle	region	the	gauge	group	is USp(2k − 8),
and	each	half-M5	gives	a	bifundamental.
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Similarly, when Γ is	of	type E6, a	full	M5-brane	fractionates	...

R6 ×

E6

nontrivial
SCFT

E6
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Similarly, when Γ is	of	type E6, a	full	M5-brane	fractionates	...

R6 ×

E6
E6SU(3)

∅∅

into	4	fractional	M5s, and	the	gauge	groups	occur	in	the	sequence

E6, ∅, SU(3), ∅, E6.
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In	general, we	have

A : doesn’t	fractionate.

Dk : SO(2k), USp(2k − 8), SO(2k)

E6 : E6,∅, SU(3),∅, E6

E7 : E7,∅, SU(2), SO(7), SU(2),∅, E7

E8 : E8,∅,∅, SU(2), G2,∅, F4,∅, G2, SU(2),∅,∅, E8.

My	natural	reaction	was	this:
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What the hell are these
sequences of groups?
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M-theoretically, you	can	go	as	follows
[Ohmori-Shimizu-YT-Yonekura, 1503.06217, Sec. 3.1]:

To	study	the tensor	branch of	this	system,

R6 ×

G

M5

G
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We	can	instead	study	the Coulomb	branch of	its T 3 compactification:

R3 × ×

G

M5

G
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Reduce	it	to	IIA:

R3 × ×

G

D4

G
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Take	the	double	T-dual:

R3 × ×

G

D2

G
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Lift	it	back	to	M-theory:

R3 × ×

G

M2

G

We’re	now	interested	in	its Higgs	branch,
since	we’ve	effectively	taken	the	3d	mirror.
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An	M2	can	dissolve	into	the G gauge	field	as	an	instanton	on T 3 × R:

G

CS

0

1

The	plot	below	shows	the	evolution	of	the	Chern-Simons	invariant
on T 3 at	each	slice.
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When G = SO(2k), the	instanton	can	fractionate:

SO(2k)

CS

0

1

½
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In	an	extreme	situation, we	have	this:

SO(2k)

CS

0

1

½

The	bundle	is	flat	but	nontrivial.
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SO(2k)

Three	holonomies	are	known	to	be	given	by

diag(+,+,+,−,−,−,−,+2k−7)

diag(+,−,−,+,+,−,−,+2k−7)

diag(−,+,−,+,−,+,−,+2k−7)

Originally	noticed	by [Witten, hep-th/9712028].
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So	the	unbroken	gauge	group	is

SO(2k) → SO(2k−7)
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So	we	have

R3 × ×

½M2

SO(2k−7)SO(2k)
SO(2k)

½M2
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Going	back	the	duality	chain, we	have

R3 × ×

½M5

USp(2k−8)SO(2k)
SO(2k)

½M5

since	we	need	to	take	4d	S-duality	/	3d	mirror	symmetry:

SO(2k−7) ↔ USp(2k−8)
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The	analysis	can	be	carried	out	in	a	similar	manner	for	any G,
using	the	results	in [Borel,Friedman,Morgan math.GR/9907007].

What	needs	to	be	done	is	the	classification	of	flat G bundles	on T 3

and	the	computation	of	their	Chern-Simons	invariants.
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Example: G = E7.

You	can	construct	a	bundle	with CS = 1/2 as	follows. Take

diag(+,+,+,−,−,−,−)

diag(+,−,−,+,+,−,−)

diag(−,+,−,+,−,+,−)

in SO(7). In	fact	they	are	in G2.
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E7 has	a	maximal	subgroup G2 × USp(6). Therefore

CS

0

1

½

E7 USp(6) E7
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You	can	fractionate	further, since	the	allowed	CS invariants	are

CS = 0,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
.

We	have

CS

E7 USp(6) E7SU(2) SU(2) ∅∅

1

0

1/4
1/3
1/2
2/3
3/4
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In	the	original	duality	frame	we	have

E7

E7
SU(2)

∅

∅
SU(2)

SO(7)
1/4
M5

1/12
M5

1/6
M5 1/6

M5
1/12
M5

1/4
M5

Note	that	the	M5	charges	are not	equally	distributed.
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In	F-theory, the	analysis	is	done	as	follows
[Aspinwall-Morrison, hep-th/9705104]:

Recall	that	the	M-theory	configuration

R6 ×

G

M5

G

is	dual	to	...
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This	F-theory	configuration:

R6 ×

G

G

C2

where	two	F-theory	7-branes	intersect	transversally	at	a	point.
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I know	I don’t	have	to	review	the	following	in	this	workshop, but	anyway.

Let’s	say	we	put	the	elliptic	fibration	to	the	Weierstrass	form

y2 = x3 + fx + g

where f , g are	functions	on	the	base.

Let ∆ = 4f3 + 27g2 be	its	discriminant.
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g G ord(f) ord(g) ord(∆)

Ik

(
1 k
0 1

)
SU(k) 0 0 k

II

(
1 1
−1 0

)
∅ ≥ 1 1 2

III

(
0 1
−1 0

)
SU(2) 1 ≥ 2 3

IV

(
0 1
−1 −1

)
SU(3) ≥ 2 2 4

I∗
k

(
−1 −k
0 −1

)
SO(2k + 8) 2 3 k + 6

IV ∗
(
−1 −1
1 0

)
E6 ≥ 3 4 8

III∗
(
0 −1
1 0

)
E7 3 ≥ 5 9

II∗
(
0 −1
1 1

)
E8 ≥ 4 5 10
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So, suppose	two E7 7-branes	intersect.

E7

E7

(3, 5, 9)

(3, 5, 9)

Here (3, 5, 9) means	that (f, g,∆) vanish	to	these	orders	there.

At	the	intersection,

(3, 5, 9) + (3, 5, 9) = (6, 10, 18) ≥ (4, 6, 12).

A smooth	elliptic	fibration	can’t	exceed (4, 6, 12).

So	we	blow-up	the	intersection	point.
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We	now	get	this	configuration

E7

E7

(3, 5, 9)

(3, 5, 9)

(2, 4, 6)

where
(2, 4, 6) = (3, 5, 9) + (3, 5, 9) − (4, 6, 12).

Looking	up	the	table, this	corresponds	to I∗
0 with SO(8).
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A more	detailed	analysis	shows	that	there	is
an outer-automorphism action	of SO(8) around	this S2 of I∗

0 curve

E7

E7

(3, 5, 9)

(3, 5, 9)

(2, 4, 6)

SO(7)

giving SO(7).

The	intersection	of (2, 4, 6) and (3, 5, 9) is	still	singular	since

(2, 4, 6) + (3, 5, 9) ≥ (4, 6, 12).

We	need	to	blow	up, repeat	...
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We	end	up	with	this	final	configuration:

E7

E7SO(7)SU(2) SU(2)∅ ∅
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Recall	that	in	M-theory	this	was

E7

E7
SU(2)

∅

∅
SU(2)

SO(7)
1/4
M5

1/12
M5

1/6
M5 1/6

M5
1/12
M5

1/4
M5
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which	reflected	possible	choices	of	flat E7 connections	on T 3

CS

E7 USp(6) E7SU(2) SU(2) ∅∅

1

0

1/4
1/3
1/2
2/3
3/4
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The	correspondence	works	for	any G = Ak, Dk and E6,7,8.

E7

E7SO(7)SU(2) SU(2)∅ ∅

CS

E7 USp(6) E7SU(2) SU(2) ∅∅

1

0

1/4
1/3
1/2
2/3
3/4
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How	on	earth	does	the	F-theory	know	the	flat	connections	on T 3?

Note	that [Aspinwall-Morrison, hep-th/9705104] appeared
before [Borel,Friedman,Morgan math.GR/9907007].

F-theory	works	in	mysterious	ways.

Open	question

The	F-theory	should	know	the	CS invariants	of	the	flat	connections,
but	how?

48	/	81
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We’re	activating	scalars	in	the	tensor	multiplet.

E7

E7

E7

E7SO(7)SU(2) SU(2)∅ ∅

On	generic	points	on	the	tensor	branch, we	just	have

• tensor	multiplets
• vector	multiplets
• hypermultiplets

so	one	can	apply	a	more	traditional	field-theoretical	analysis.
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Caveat: we	are	assuming	that	all	nontrivial	SCFTs	have	tensor	branch.

Open	question

Show	that	if	a	6d	SCFT does	not	have	any	tensor	branch,
it	is	a	theory	of	free	hypermultiplets.

Open	question

Show	that	if	a	4d N=2 SCFT does	not	have	any	Coulomb	branch,
it	is	a	theory	of	free	hypermultiplets.

Comments:

• If	you	believe	every	6d	SCFT comes	from	F-theoretic	singularities,
then	the	answer	is	yes:
3-dim	CY singularities	can	always	be	resolved.

• Bootstrap?
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E7

E7SO(7)SU(2) SU(2)∅ ∅

In	F-theory, each P1 is	associated	to

• a tensor multiplet
• a string coming	from	D3	wrapped	there,
whose	tension	is	given	by	the	scalar	in	the	tensor	multiplet

• possibly	a gauge	multiplet, whose	inverse	coupling	squared	is
also	given	by	the	scalar	in	the	tensor	multiplet

• When ∃ gauge	multiplet, the string is	the instanton-string.
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E7

E7SO(7)SU(2) SU(2)∅ ∅

In	F-theory, each	intersection	of	two P1 supporting G1 and G2 gives	a
particular	hypermultiplet	charged	under G1 × G2.
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So	you	can	try	to	work bottom-up: what	is	the	possible	structure	of

• tensors Hi, i = 1, . . . , nT

• vectors	for Ga, a = 1, . . . , nV

• hypers	charged	under
∏

Ga

on	generic	points	of	the	tensor	branch	of	a	6d	SCFT?

Strong	constraints	come	from	the anomaly	cancellation.

An	important	role	is	played	by	the Dirac	pairing ⟨·, ·⟩
on	the	charge	lattice Λ ≃ ZnT of	the	strings.

Note	that	in	6d, the	pairing	is symmetric.

SCFT requires	it	to	be positive	definite.
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Before	getting	further, I should	say	the	analysis	that	follows
would	be rather	defective.

• There’s no	guarantee that	a	given	anomaly-free	combination
comes	from	a	6d	SCFT that	really	exists.

• The	analysis	does	not	tell	us	anything	about
the models	where	there	are	no	vectors.

I will	come	back	to	the	first	point	later.
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On	the	second	point:

There	should	be	a	way	to	understand	better	the models
that	do not	have	vector	multiplets	on	the	tensor	branch.

So	far, known	examples	are

• ADE N=(2, 0) theories, and
• E-string theory	and	its	higher-rank	analogues, which	are N=(1, 0).

Why	does N=(2, 0) theories	classified	by ADE?

Where	does	the E8 symmetry come	from, for N=(1, 0) examples?
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Why	does N=(2, 0) theories	classified	by	ADE?

There	is	a	nice	argument [Henningson, hep-th/0405056] showing	that
the anomaly	cancellation	on	the	string	worldsheet requires	that
the	charge	lattice	of	any N=(2, 0) theory	should	be
a simply-laced	root	lattice.
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Essential	points	of	his	idea	are	as	follows.

• Take	the	string	of	charge	vector q ∈ Λ.
• The	string	breaks	half	the	SUSY.
Nambu-Goldstone	modes	become	worldsheet	fields.
They	are	chiral, and	therefore	anomalous.

• It	also	couples	to	the	self-dual	fields	in	the	bulk.
This	gives	the	anomaly	inflow	proportional	to ⟨q, q⟩.

• The	cancellation	requires ⟨q, q⟩ = 2.
• So Λ is	an	integral	lattice	generated	by	elements	of (length)2 = 2.
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How	about N=(1, 0) examples?

Open	question

Give	an	argument	that	if	a	genuine N=(1, 0) SCFT does	not	have
any	vector	multiplet	on	generic	points	on	the	tensor	branch,
it	is	the	E-string	or	its	higher-rank	analogue.
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The	first	step	would	be	to	study	the	rank-1	case.

Assume	that	the	Dirac	pairing	of	the	charge	lattice Λ ≃ Z is	minimal.

Then	it	seems	that	the	cancellation	of	the	worldsheet	anomaly	requires
that ∃ a	left-moving c = 8 modular-invariant	sector,
showing	that	it	automatically	has E8 symmetry.

Anybody	interested	in	filling	in	the	gaps?

Or	is	it	already	given	in	the	literature?
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Let	us	come	back	to	the	setup:

• tensors Hi, i = 1, . . . , nT

• vectors	for Ga, a = 1, . . . , nV

• hypers	charged	under
∏

Ga

Let	us	further	assume nT = nV .
Instanton	strings	are	charged	under	the	tensors, so	we	have

dHa = c2(Ga).

This	contributes	to	the	anomaly	by

I tensor8 =
1

2
Ωabc2(Ga)c2(Gb)

where Ωab is	the	integral	Dirac	pairing	of	the	charge	lattice.
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A side	comment:

The	IIB F5 also	satisfies dF5 = (something), and	therefore	there	is

IGS12 =
1

2
(something)2

which	is	not	usually	discussed. Is	it	zero?

If	it	isn’t, it	ruins	the	anomaly	cancellation	of	IIB supergravity.

Yes, since (something) = H3 ∧ G3.
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Coming	back	to	6d, the	total	anomaly	should	vanish:

0 =
1

2
Ωabc2(Ga)c2(Gb) +

∑
a

Ivector8 (Ga) +
∑

I
hyper
8

First	analyzed	by	Seiberg [hep-th/9609161] for nV = nT = 1.

For SU(2) with 2Nf half-hypers	in	the	doublet, we	have

0 =
1

2
Ω c2

2 −
32 − 2Nf

24
c2

2

We	need 32 > 2Nf , because Ω > 0.
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For SU(2) with Nf half-hypers	in	the	doublet, we	have

0 =
1

2
Ωc2

2 −
32 − 2Nf

24
c2

2

We	need 32 > 2Nf , because Ω > 0.

Bershadsky	and	Vafa	in [hep-th/9703167] pointed	out	that
there	are	more	constraints.

• F-theory	constructions	only	gave Nf = 4 and = 10. Why?
• In	6d, there’s	a	global	anomaly	associated	to π6(SU(2)) = Z12,
and	it	requires 32 − 2Nf = 0 mod 12.

• Also, Ω needs	to	be	an	integer, which	gives	the	same	condition.
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How	on	earth	does	the	F-theory	know	the	global	anomaly	associated	to
the	subtle	homotopy	group π6(SU(2)) = Z12?

F-theory	works	in	mysterious	ways.
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We	can	extend	the	field-theoretical	analysis	to	general nT = nV ,
with	arbitrary

∏
Ga and	arbitrary	hypers.

[Heckman-Morrison-Rudelius-Vafa 1502.05405][Bhardwaj, 1502.06594]

One	example	is nT = nV = 2, G = su(2) × so(8),
with	a	half-hyper	in 2 ⊗ 8V and	full	spinors	in 8S ⊕ 8C .

This	is	free	of	both	local	and	global	anomalies, with	the	charge	pairing(
2 −1
−1 3

)

But this	is	never	realized	in	F-theory!
Is	there	a	field-theoretical	way	to	see	this?

Yes. [Ohmori-Shimizu-YT-Yonekura, 1508.00915, Appendix	A]
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This	model	tries	to	gauge	the so(8) flavor	symmetry	of	the	6d	model

su(2) and 4 doublets	on	the	tensor	branch.

The	point	is	that	this	SCFT only	has so(7) ⊂ so(8)
where	8	doublets	transform	as	a	spinor	of so(7).

So	you	can’t	gauge so(8).
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To	see	that	there	is	only so(7), compactify	on T 2 the	6d	model

su(2) and 4 doublets	on	the	tensor	branch.

You	get

4d N=2 su(2)G with 4 doublets

+ an	additional su(2)T coming	from	the	6d	tensor.

The	Weyl	group	of su(2)T is	the	S-duality	of	this
4d N=2 su(2)G with 4 doublets, and	maps 8V to 8S .

So, only	the so(7) ⊂ so(8) s.t. 8C → 7 + 1 is	compatible.
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Another	way	is	to	compactify	on S1 the	6d	model

su(2) and 4 doublets	on	the	tensor	branch.

You	get

5d N=1 su(2)G with 4 doublets

+ an	additional su(2)T coming	from	the	6d	tensor.

5d su(2)G with 4 doublets has	an	enhanced so(10) flavor	symmetry,
and	the su(2)T gauges	the so(3) subgroup,
which	comes	from	the	enhanced	instanton	number	symmetry.

The	commutant	is	clearly so(7), since so(3) ⊕ so(7) ⊂ so(10).
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How	does	the	F-theory	know	this	subtle	issue?

F-theory	works	in	mysterious	ways.

70	/	81



M-theory	constructions	and	F-theory

↓

structure	on	the	tensor	branch	and	F-theory

↓

massive	type	IIA constructions	and	F-theory
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We	can	also	use	(massive)	IIA to	engineer	6d	SCFTs.
[Brunner-Karch, hep-th/9712143] [Hanany-Zaffaroni, hep-th/9712145]

Two	examples:

n D6s

NS5
½NS5

O8−+ 16 D8s

n − 8 D6s

gives su(n) with	an antisymmetric and n + 8 fundamentals, and

n D6s

NS5
½NS5

O8+

n − 8 D6s

gives su(n) with	a symmetric and n − 8 fundamentals.
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They	are	free	from	anomalies, both	local	and	global.

However, it	so	happens	that	the	F-theoretic	atomic	classification
[Heckman-Morrison-Rudelius-Vafa, 1502.05405] includes

su(n) with	an antisymmetric and n + 8 fundamentals

but does	not	include

su(n) with	a symmetric and n − 8 fundamentals.
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This	conundrum	was	noticed	by	many	people	simultaneously,
in	the	US,	in	Canada, in	Japan, and	maybe	elsewhere	too.

I didn’t	notice	it	myself, but	I learned	about	it	from	multiple	sources.

Does	the	model

su(n) with	a symmetric and n − 8 fundamentals.

have	some	secret	inconsistency?

No. Classifications	in	F-theory	so	far	forgot	to	include O7+.
[work	in	progress, with	Bhardwaj, Morrison	and	Tomasiello]
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You	can	take	either

n D6s

NS5
½NS5

O8−+ 16 D8s

n − 8 D6s

or

n D6s

NS5
½NS5

O8+

n − 8 D6s

and	compactify	one	transverse	direction,
then	take	the	T-dual	to	go	to	the	IIB.
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You	get

O7−+ 8 D7s

n D7s

n − 8 D7s

transversetangent

or

O7+

n D7s

n − 8 D7s

transversetangent
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In	the	F-theory	language, we	have

In

transversetangent

I 4* In−8

or

transversetangent

In

In−8“ I4* ”

What’s	this “I∗
4”?
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The	point	is	that	in	F-theory, there	are two distinct	types
of I∗

n singularities	when n ≥ 4.

• I∗
n with so(2n + 8) symmetry, deformable	to	be	smooth.

• “I∗
n” with usp(2n − 8) symmetry, deformable	only	down	to “I∗

4”.

The	latter	is	frozen	by	a	mysterious	discrete	flux
[Witten, hep-th/9712028].

You	might	worry	that	other	Kodaira	types	might	have	frozen	versions,
but	that	doesn’t	happen[YT, 1508.06679].

F-theory	geometrizes	most	of	the	field	theory	phenomena,
but	it	still	needs	some	additional	data. cf. T-brane.
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Summary

• 6d	SCFTs	can	be	studied	in	many	ways.

• Various	subtle	field-theoretical	features	are	always
encoded	in	F-theory, but	in	mysterious	ways.

–	Properties	of ADE Instantons	on R × T 3

–	Global	anomaly π6(SU(2)) = Z12

–	Reduction	of	flavor	symmetry so(8) ⊃ so(7)
of nT = 1 su(2) with 4 doublets

–	Issues	on O+-planes

• There	are	many	open	questions.
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Open	question

Does	every	6d	SCFT come	from	F-theory?

Open	question

Does	every	4d N=2 SCFT come	from	string	theory?
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cf. As	far	as	I know, there	is	neither	a	stringy	realization	of

• 4d N=2 SU(7) or SU(8) with 3-index	antisymmetric
• 4d N=2 Sp(3) or Sp(4) with 3-index	antisymmetric
• 4d N=2 SO(13) or SO(14) with spinor

nor	the	Seiberg-Witten	solutions	to	them. Does	F-theory	help?

Note	that	almost	exactly	the	same	list	of	groups	were	given	by	Dave
on	the	1st	day	of	the	workshop, as	subtle	cases	in	Tate’s	algorithm.
Any	relation?
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