Elliptic Calabi-Yau fourfolds and 4D F-theory vacua

Dave Day
F-theory at 20 conference
Burke Institute, Caltech

February 25, 2016

Washington (Wati) Taylor, MIT

Based in part on arXiv: 1201.1943, 1204.0283, 1204.3092, 1205.0952,
1404.6300, 1405.2074, 1406.0514, 1409.8295, 1412.6112, 1504.07689, 1506.03204 1510.04978, 1511.03209, 16xx.xxxxx

Written in collaboration with various subsets of:
L. Anderson, A. Grassi, T. Grimm, J. Halverson, S. Johnson, G. Martini,
D. Morrison, J. Shaneson, Y. Wang

Dave and I began working together in the summer of 2009 in Aspen

We had a common interest in understanding 6D supergravity and F-theory models and explaining the connection between these

Since then we have written roughly one paper a year. Gone from 6D to 4D, and explored lots of fascinating physics and math; it has been an ongoing adventure!

I have learned a tremendous amount from Dave about geometry and how it encodes beautiful and fascinating structure and physics.

This has been the most fun, productive, and exciting extended collaboration and

Dave and I began working together in the summer of 2009 in Aspen

We had a common interest in understanding 6D supergravity and F-theory models and explaining the connection between these

Since then we have written roughly one paper a year. Gone from 6D to 4D, and explored lots of fascinating physics and math; it has been an ongoing adventure!

I have learned a tremendous amount from Dave about geometry and how it encodes beautiful and fascinating structure and physics.

This has been the most fun, productive, and exciting extended collaboration and

Dave and I began working together in the summer of 2009 in Aspen

We had a common interest in understanding 6D supergravity and F-theory models and explaining the connection between these

Since then we have written roughly one paper a year. Gone from 6D to 4D, and explored lots of fascinating physics and math; it has been an ongoing adventure!

I have learned a tremendous amount from Dave about geometry and how it encodes beautiful and fascinating structure and physics.

This has been the most fun, productive, and exciting extended collaboration and friendship in my physics career, with several more papers on the way!

Goal: a global picture of the set of elliptic Calabi-Yau fourfolds relevant to the 4D F-theory landscape

Warm-up: Elliptic Calabi-Yau threefolds/6D models

 Recent work: Ellintic Calabi-Yau fourfolds/4D models Philosophy: need the big picture to figure out how our world fits inGoal: a global picture of the set of elliptic Calabi-Yau fourfolds relevant to the 4D F-theory landscape

Warm-up: Elliptic Calabi-Yau threefolds/6D models
Recent work: Elliptic Calabi-Yau fourfolds/4D models

Philosophy: need the big picture to figure out how our world fits in

Goal: a global picture of the set of elliptic Calabi-Yau fourfolds relevant to the 4D F-theory landscape

Warm-up: Elliptic Calabi-Yau threefolds/6D models
Recent work: Elliptic Calabi-Yau fourfolds/4D models

Philosophy: need the big picture to figure out how our world fits in

Summary: 6D F-theory and elliptic Calabi-Yau threefolds
Using tools from algebraic geometry and physics intuition, we have a systematic approach to constructing elliptic Calabi-Yau threefolds and understanding 6D F-theory models

Classifying elliptic CY threefolds

Elliptic CY3 $\pi: X_{3} \rightarrow B_{2}$
Weierstrass model $y^{2}=x^{3}+f x+g$,
$f \in \Gamma\left(O\left(-4 K_{B}\right)\right), g \in \Gamma\left(O\left(-6 K_{B}\right)\right)$

- Basic idea: classify bases B, then tune Weierstrass for each base Focus on Weierstrass models on smooth bases (e.g. not SCFT)
- Minimal models + work of Grassi: $B=\mathbb{P}^{2}, \mathbb{F}_{m}$ or blowup thereof (or Enriques)
- "Non Higgsable clusters" give lower bound on normal bundle of divisors

Summary: 6D F-theory and elliptic Calabi-Yau threefolds
Using tools from algebraic geometry and physics intuition, we have a systematic approach to constructing elliptic Calabi-Yau threefolds and understanding 6D F-theory models

Classifying elliptic CY threefolds

Elliptic CY3 $\pi: X_{3} \rightarrow B_{2}$

Weierstrass model $y^{2}=x^{3}+f x+g$, $f \in \Gamma\left(\mathcal{O}\left(-4 K_{B}\right)\right), g \in \Gamma\left(\mathcal{O}\left(-6 K_{B}\right)\right)$

- Basic idea: classify bases B, then tune Weierstrass for each base Focus on Weierstrass models on smooth bases (e.g. not SCFT)
- Minimal models + work of Grassi: $B=\mathbb{P}^{2}, \mathbb{F}_{m}$ or blowup thereof (or Enriques)
- "Non-Higgsable clusters" give lower bound on normal bundle of divisors

Summary: 6D F-theory and elliptic Calabi-Yau threefolds

Using tools from algebraic geometry and physics intuition, we have a systematic approach to constructing elliptic Calabi-Yau threefolds and understanding 6D F-theory models

Classifying elliptic CY threefolds

Elliptic CY3 $\pi: X_{3} \rightarrow B_{2}$
Weierstrass model $y^{2}=x^{3}+f x+g$, $f \in \Gamma\left(\mathcal{O}\left(-4 K_{B}\right)\right), g \in \Gamma\left(\mathcal{O}\left(-6 K_{B}\right)\right)$

- Basic idea: classify bases B, then tune Weierstrass for each base Focus on Weierstrass models on smooth bases (e.g. not SCFT)
- Minimal models + work of Grassi:
$B=\mathbb{P}^{2}, \mathbb{F}_{m}$ or blowup thereof (or Enriques)
- "Non-Higgsable clusters" give lower bound on normal bundle of divisors

Geometry of non-Higgsable groups

The base B_{2} is a complex surface.
Contains homology classes of complex curves C_{i}

For $C \cong \mathbb{P}^{1} \cong S^{2}$, local geometry encoded by normal bundle $\mathcal{O}(m)$
$C \cdot C=m ; \quad$ e.g., $N_{C} \cong \mathcal{O}(2) \cong T C$: deformation has 2 zeros, $C \cdot C=+2$

If $N_{C} \cong \mathcal{O}(-n), n>0, C$ is rigid (no deformations)

For $\mathcal{O}(-n), n>2$, base space is so curved that singularities must pile up to preserve Calabi-Yau structure on total space \Rightarrow non-Higgsable gauge group

Geometry of non-Higgsable groups

The base B_{2} is a complex surface.
Contains homology classes of complex curves C_{i}

For $C \cong \mathbb{P}^{1} \cong S^{2}$, local geometry encoded by normal bundle $\mathcal{O}(m)$
$C \cdot C=m ; \quad e . g ., N_{C} \cong \mathcal{O}(2) \cong T C$: deformation has 2 zeros, $C \cdot C=+2$

For $\mathcal{O}(-n), n>2$, base space is so curved that singularities must pile up to preserve Calabi-Yau structure on total space

Geometry of non-Higgsable groups

The base B_{2} is a complex surface.
Contains homology classes of complex curves C_{i}

For $C \cong \mathbb{P}^{1} \cong S^{2}$, local geometry encoded by normal bundle $\mathcal{O}(m)$
$C \cdot C=m ; \quad$ e.g., $N_{C} \cong \mathcal{O}(2) \cong T C$: deformation has 2 zeros, $C \cdot C=+2$
If $N_{C} \cong \mathcal{O}(-n), n>0, C$ is rigid (no deformations)

For $\mathcal{O}(-n), n>2$, base space is so curved that singularities must pile up to preserve Calabi-Yau structure on total space \Rightarrow non-Higgsable gauge group

Classification of 6D "Non-Higgsable Clusters" (NHC's) [Morrison/WT]

Clusters of curves imposing generic nontrivial codimension one singularities:

- Any other combination including -3 or below $\Rightarrow(4,6)$ at point/curve

NHC's a useful tool in classifying bases B_{2} for EF CY3's

- Also useful in classifying 6D SCFT's, LST's (cf. Heckman, Rudelius talks)

Classifying bases I: toric B_{2}

Start with $\mathbb{P}^{2}, \mathbb{F}_{m}$, blow up torically

- 61,539 toric bases (some not strictly toric: $-9,-10,-11$ curves)
- Reproduces large subset of Kreuzer-Skarke database of CY3 Hodge \#'s Boundary of "shield" from generic elliptic fibrations over blowups of \mathbb{E}_{12}.

Beyond toric: approach allows construction of general (non-toric) bases

- Computed all 162, 404 "semi-toric" bases w/ $1 \mathbb{C}^{*}$-structure [Martini/WT]

Generally: Keep track of cone of effective divisors as combinatorial data

- All bases for EF CY threefolds w/ $h^{2,1}(X) \geq 150$ [WT/Wang]

Technical issues at large $h^{1,1}(X)$, small $h^{2,1}(X)$:
Infinite generators for cone, Multiply intersecting - 1 curves
Upshot: modest expansion of possibilities beyond toric, semi-toric

EFCY3's w/ $h^{2,1} \geq 350, \mathbb{F}_{m}+$ tuning \rightarrow full WM classification [Johnson/WT]

- Matches KS; non-toric + toric at $(19,355)$; new non-toric below 350
- Empirical data on Calabi-Yau's suggests: "most" (known) CY's are elliptic, particularly at large Hodge numbers (cf. [Gray/Haupt/Lukas])

EFCY3's w/ $h^{2,1} \geq 350, \mathbb{F}_{m}+$ tuning \rightarrow full WM classification [Johnson/WT]

- Matches KS; non-toric + toric at (19, 355); new non-toric below 350
- Empirical data on Calabi-Yau's suggests: "most" (known) CY's are elliptic, particularly at large Hodge numbers (cf. [Gray/Haupt/Lukas])

Elliptic Calabi-Yau threefolds: upshot

- Systematic approach to construction
- Complete control at large $h^{2,1}(X)\left(\right.$ e.g., proof $\left.h^{2,1} \leq 491\right)$
- Toric bases give good representative global picture, capture boundary
- Finite number of bases, minimal $\mathbb{P}^{2}, \mathbb{F}_{m}$ on left boundary
- "Most" bases B_{2} have non-Higgsable G_{NA} (all but weak Fano $=g d P$)

- Difficult regime: large $h^{1,1}(X)$, small $h^{2,1}(X)$ (cf. Park talk)
\qquad (cf. Anderson, Klevers, Morrison, Raghuram talks)
- Mordell-Weil (cf. Morrison talk)

Elliptic Calabi-Yau threefolds: upshot

- Systematic approach to construction
- Complete control at large $h^{2,1}(X)\left(\right.$ e.g., proof $\left.h^{2,1} \leq 491\right)$
- Toric bases give good representative global picture, capture boundary
- Finite number of bases, minimal $\mathbb{P}^{2}, \mathbb{F}_{m}$ on left boundary
- "Most" bases B_{2} have non-Higgsable G_{NA} (all but weak Fano $=$ gdP)

Some outstanding issues:

- Difficult regime: large $h^{1,1}(X)$, small $h^{2,1}(X)$ (cf. Park talk)
- Classifying matter/codim. 2 tuning + transitions (cf. Anderson, Klevers, Morrison, Raghuram talks)
- Mordell-Weil (cf. Morrison talk)

Possible further issues: singular bases, Enriques

4D F-theory compactifications
Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base $B_{3}=$ complex threefold
- Empirical data suggest similar structure (though less complete for CY4's)

No proof of finiteness
Mori thenry threefold analog of minimal model bases more subtle
All evidence so far: moduli space of CY 4's quite parallel to CY3 story

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base $B_{3}=$ complex threefold
- Empirical data suggest similar structure (though less complete for CY4's)

No proof of finiteness
Mori theory threefold analog of minimal model bases more subtle
All evidence so far: moduli space of CY 4's quite parallel to CY3 story

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base $B_{3}=$ complex threefold
- Empirical data suggest similar structure (though less complete for CY4's)

No proof of finiteness
Mori theory threefold analog of minimal model bases more subtle
All evidence so far: moduli space of CY 4's quite parallel to CY3 story

4D F-theory compactifications

Story parallel in many ways:

- Compactify on Calabi-Yau fourfold, base $B_{3}=$ complex threefold
- Empirical data suggest similar structure (though less complete for CY4's)

No proof of finiteness
Mori theory threefold analog of minimal model bases more subtle
All evidence so far: moduli space of CY 4's quite parallel to CY3 story

4D non-Higgsable clusters [Morrison/WT]

(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT, cf. Halverson talk)
At level of geometry/complex structure, similar to 6D but more complicated
Expanding in coordinate z, around divisor (surface) $S=\{z=0\}$,

Compute using geometry of surfaces: up to leading non-vanishing term,
Single group clusters: $\operatorname{SU} U(2), S U(3), G_{2}, S O(7), S O(8), F_{4}, E_{6}, E_{7}, E_{8}$
(cannot have: non-Higgsable $\operatorname{SU}(5), S O(10)$
the only 2 -factor products that can appear are:

4D clusters can have chains, loops, branching

4D non-Higgsable clusters [Morrison/WT]
(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT, cf. Halverson talk)
At level of geometry/complex structure, similar to 6D but more complicated
Expanding in coordinate z, around divisor (surface) $S=\{z=0\}$,

$$
f=f_{0}+f_{1} z+f_{2} z^{2}+\cdots
$$

Compute using geometry of surfaces: up to leading non-vanishing term,
Single group clusters: $\operatorname{SU}(2), S U(3), G_{2}, S O(7), S O(8), F_{4}, E_{6}, E_{7}, E_{8}$
(cannot have: non-Higgsable $\operatorname{SU}(5), S O(10)$
the only 2 -factor products that can appear are:

4D clusters can have chains, loops, branching

4D non-Higgsable clusters [Morrison/WT]

(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT, cf. Halverson talk)
At level of geometry/complex structure, similar to 6D but more complicated
Expanding in coordinate z, around divisor (surface) $S=\{z=0\}$,

$$
f=f_{0}+f_{1} z+f_{2} z^{2}+\cdots
$$

Compute using geometry of surfaces: up to leading non-vanishing term,
Single group clusters: $\operatorname{SU}(2), S U(3), G_{2}, S O(7), S O(8), F_{4}, E_{6}, E_{7}, E_{8}$
(cannot have: non-Higgsable $S U(5), S O(10)$
the only 2-factor products that can appear are:

$$
\begin{array}{cll}
G_{2} \times S U(2), & S O(7) \times S U(2), & S U(2) \times S U(2), \\
S U(3) \times S U(2), & S U(3) \times S U(3) & \\
\hline
\end{array}
$$

4D clusters can have chains, loops, branching ...

Classification of elliptic Calabi-Yau fourfolds

Mathematical minimal models \rightarrow Mori theory. No proofs, but finite classification seems manageable. Rough "physicist's" picture - ignore various subtleties Focus on classifying bases B_{3}, apparently finite number
"minimal models" $\sim \mathbb{F}_{m}$ but more complex - populate LHS of Hodge plot Roughly, $\min B_{3}=\left\{\mathbb{P}^{1}\right.$ (conic) bundle over B_{2}, B_{2} bundle over \mathbb{P}^{1}, Fano $\}$

Blow un curves, points: $h^{3,1} \downarrow h^{1,1} \uparrow$; finite \# of options on each minimal B_{3}
w/Halverson: \mathbb{P}^{1} bundles over toric bases B_{2}
(w/Anderson: $B_{2}=\mathrm{gdP}$, smooth heterotic dual)
Finite \# \mathbb{P}^{l} bundles over fixed B_{2} (cf. 2015 talk)
w/Wang: B_{2} bundles over \mathbb{P}^{1}, B_{2} supports EF CY3, finite $\# B_{2}$, bundles $\operatorname{Max} h^{3,1}=303,148$ (cf. Wang talk)

Fano: 105 Fano bases $<\infty$
Possible issue: irrational bases

Classification of elliptic Calabi-Yau fourfolds

Mathematical minimal models \rightarrow Mori theory. No proofs, but finite classification seems manageable. Rough "physicist's" picture - ignore various subtleties Focus on classifying bases B_{3}, apparently finite number "minimal models" $\sim \mathbb{F}_{m}$ but more complex - populate LHS of Hodge plot Roughly, $\min B_{3}=\left\{\mathbb{P}^{1}\right.$ (conic) bundle over B_{2}, B_{2} bundle over \mathbb{P}^{1}, Fano $\}$ Blow up curves, points: $h^{3,1} \downarrow, h^{1,1} \uparrow$; finite \# of options on each minimal B_{3}
w/Halverson: \mathbb{P}^{1} bundles over toric bases B_{2}
(w/Anderson: $B_{2}=\mathrm{gdP}$, smooth heterotic dual)
Finite \# \mathbb{P}^{l} bundles over fixed B_{2} (cf. 2015 talk)
w/Wang: B_{2} bundles over \mathbb{P}^{1}, B_{2} supports EF CY3, finite \# B_{2}, bundles $\operatorname{Max} h^{3,1}=303,148$ (cf. Wang talk)

Fano: 105 Fano bases $<\infty$

Classification of elliptic Calabi-Yau fourfolds

Mathematical minimal models \rightarrow Mori theory.
No proofs, but finite classification seems manageable.
Rough "physicist's" picture - ignore various subtleties
Focus on classifying bases B_{3}, apparently finite number
"minimal models" $\sim \mathbb{F}_{m}$ but more complex - populate LHS of Hodge plot
Roughly, $\min B_{3}=\left\{\mathbb{P}^{1}\right.$ (conic) bundle over B_{2}, B_{2} bundle over \mathbb{P}^{1}, Fano $\}$
Blow up curves, points: $h^{3,1} \downarrow, h^{1,1} \uparrow$; finite \# of options on each minimal B_{3}
w/Halverson: \mathbb{P}^{1} bundles over toric bases B_{2}
(w/Anderson: $B_{2}=\mathrm{gdP}$, smooth heterotic dual)
Finite $\# \mathbb{P}^{1}$ bundles over fixed B_{2} (cf. 2015 talk)
w/Wang: B_{2} bundles over \mathbb{P}^{1}, B_{2} supports EF CY3, finite $\# B_{2}$, bundles
$\operatorname{Max} h^{3,1}=303,148$ (cf. Wang talk)
Fano: 105 Fano bases $<\infty$
Possible issue: irrational bases

Monte Carlo on threefold bases for EF CY4's (w/ Yinan Wang)

Random walk on a graph: $p_{i} \propto \nu_{i}=\#$ of neighbors, e.g.

Explore connected toric threefold bases from \mathbb{P}^{3} by blow-up, -down transitions

Estimate number of connected toric threefold bases $\sim 10^{48 \pm 2}$

Monte Carlo on threefold bases for EF CY4's (w/ Yinan Wang)

Random walk on a graph: $p_{i} \propto \nu_{i}=\#$ of neighbors, e.g.

Explore connected toric threefold bases from \mathbb{P}^{3} by blow-up, -down transitions

Estimate number of connected toric threefold bases $\sim 10^{48 \pm 2}$

Structure of elliptic fourfold over "typical" toric base B_{3} (note: in connected set, misses most w/ E_{8} divisors)

- $h^{1,1}(B) \cong 82 \pm 6$
- \# flops ~ 20
- Codimension 1 Kodaira singularity $\Rightarrow G_{\mathrm{NA}}$:
$\sim 14 \times \mathrm{SU}(2), \sim 10 \times G_{2}, \sim 3 \times F_{4}, \sim 2 \times \mathrm{SU}(3), \sim 1 \times \mathrm{SO}(8)$
- Connected products:
$\sim 14 \times\left(G_{2} \times S U(2)\right), \sim 8 \times(S U(2) \times S U(2)), \sim 2.4 \times(S U(3) \times S U(2))$
$\sim 10 \%$ of NH products are $\mathrm{SU}(3) \times \mathrm{SU}(2)$!
- <Biggest cluster>: ~16, max found: 37
- Typical base has several codim 2 singularities w/o smooth CY resolution (?)

Structure of elliptic fourfold over "typical" toric base B_{3} (note: in connected set, misses most w/ E_{8} divisors)

- $h^{1,1}(B) \cong 82 \pm 6$
- \# flops ~ 20
- Codimension 1 Kodaira singularity $\Rightarrow G_{\mathrm{NA}}$:
$\sim 14 \times \mathrm{SU}(2), \sim 10 \times G_{2}, \sim 3 \times F_{4}, \sim 2 \times \mathrm{SU}(3), \sim 1 \times \mathrm{SO}(8)$
- Connected products:
$\sim 14 \times\left(G_{2} \times S U(2)\right), \sim 8 \times(S U(2) \times S U(2)), \sim 2.4 \times(S U(3) \times S U(2))$
$\sim 10 \%$ of NH products are $\mathrm{SU}(3) \times \mathrm{SU}(2)$!
- <Biggest cluster>: ~ 16, max found: 37
- Typical base has several codim 2 singularities w/o smooth CY resolution (?)

Structure of elliptic fourfold over "typical" toric base B_{3} (note: in connected set, misses most w/ E_{8} divisors)

- $h^{1,1}(B) \cong 82 \pm 6$
- \# flops ~ 20
- Codimension 1 Kodaira singularity $\Rightarrow G_{\mathrm{NA}}$:
$\sim 14 \times \mathrm{SU}(2), \sim 10 \times G_{2}, \sim 3 \times F_{4}, \sim 2 \times \mathrm{SU}(3), \sim 1 \times \mathrm{SO}(8)$
- Connected products:
$\sim 14 \times\left(G_{2} \times S U(2)\right), \sim 8 \times(S U(2) \times S U(2)), \sim 2.4 \times(S U(3) \times S U(2))$
$\sim 10 \%$ of NH products are $\mathrm{SU}(3) \times \mathrm{SU}(2)$!
- <Biggest cluster>: ~16, max found: 37
- Typical base has several codim 2 singularities w/o smooth CY resolution (?)

Structure of elliptic fourfold over "typical" toric base B_{3} (note: in connected set, misses most w/ E_{8} divisors)

- $h^{1,1}(B) \cong 82 \pm 6$
- \# flops ~ 20
- Codimension 1 Kodaira singularity $\Rightarrow G_{\mathrm{NA}}$:
$\sim 14 \times \mathrm{SU}(2), \sim 10 \times G_{2}, \sim 3 \times F_{4}, \sim 2 \times \mathrm{SU}(3), \sim 1 \times \mathrm{SO}(8)$
- Connected products:
$\sim 14 \times\left(G_{2} \times S U(2)\right), \sim 8 \times(S U(2) \times S U(2)), \sim 2.4 \times(S U(3) \times S U(2))$
$\sim 10 \%$ of NH products are $\mathrm{SU}(3) \times \mathrm{SU}(2)$!
- <Biggest cluster>: ~ 16, max found: 37

- Typical base has several codim 2 singularities w/o smooth CY resolution (?)

Structure of elliptic fourfold over "typical" toric base B_{3} (note: in connected set, misses most w/ E_{8} divisors)

- $h^{1,1}(B) \cong 82 \pm 6$
- \# flops ~ 20
- Codimension 1 Kodaira singularity $\Rightarrow G_{\mathrm{NA}}$:
$\sim 14 \times \mathrm{SU}(2), \sim 10 \times G_{2}, \sim 3 \times F_{4}, \sim 2 \times \mathrm{SU}(3), \sim 1 \times \mathrm{SO}(8)$
- Connected products:
$\sim 14 \times\left(G_{2} \times S U(2)\right), \sim 8 \times(S U(2) \times S U(2)), \sim 2.4 \times(S U(3) \times S U(2))$
$\sim 10 \%$ of NH products are $\mathrm{SU}(3) \times \mathrm{SU}(2)$!
- <Biggest cluster>: ~16, max found: 37

- Typical base has several codim 2 singularities w/o smooth CY resolution (?)

Irrational F-theory models (w/Morrison, 16xx.xxxxx)
For 6D F-theory/elliptic CY3's, all B_{2} rational (birational to \mathbb{P}^{2})
Not true for 4D/elliptic CY4's!

Clemens-Griffiths ('72): cubic threefold (in \mathbb{P}^{4}) is not birational to \mathbb{P}^{3}.

can build EF CY4's over B

Irrational F-theory models (w/Morrison, 16xx.xxxxx)
For 6D F-theory/elliptic CY3's, all B_{2} rational (birational to \mathbb{P}^{2})
Not true for 4D/elliptic CY4's!

Clemens-Griffiths (' 72): cubic threefold (in \mathbb{P}^{4}) is not birational to \mathbb{P}^{3}.

$$
\begin{aligned}
B & =\left\{\left[x_{1}: \cdots: x_{5}\right] \in \mathbb{P}^{4}, f_{3}\left(x_{1}, \ldots, x_{5}\right)=0\right\} \\
f_{3} & =\sum_{i \leq j \leq k} c_{i j k} x_{i} x_{j} x_{k}=c_{111} x_{1}^{3}+c_{112} x_{1}^{2} x_{2}+\cdots
\end{aligned}
$$

can build EF CY4's over B

Elliptic Calabi-Yau fourfolds over the cubic threefold
Need $f \in \Gamma(\mathcal{O}(-4 K)), g \in \Gamma(\mathcal{O}(-6 K))$
By adjunction $K_{B}=\left(K_{\mathbb{P}^{4}}+B\right)_{B}=\left.(-5 H+3 H)\right|_{B}=-\left.2 H\right|_{B}$
$\Rightarrow f, g$ from homogeneous degree 8,12 polynomials on \mathbb{P}^{4}
Fano $\Rightarrow X$ generically smooth (no NHC's)
Hodge numbers:
$h^{1,1}(B)=1$, w/no generic $\mathrm{U}(1)$'s $\Rightarrow h^{1,1}(X) \cong 2$
count c 's $\in \mathcal{O}(3 H): 35$
f^{\prime} ': $0 \rightarrow \mathcal{O}_{\mathbb{m}_{4}}(5 H) \rightarrow \mathcal{O}_{\text {ma }}(8 H) \rightarrow \mathcal{O}_{X}(8 H) \rightarrow 0: 330-126=204$
g's: $1365-495=870$
$h^{3,1} \cong 870+204+35-24=1085$
Compare Fano $\mathbb{P}^{3}, h^{3,1}=3878$, Max $h^{3,1}=303,148$

Elliptic Calabi-Yau fourfolds over the cubic threefold

Need $f \in \Gamma(\mathcal{O}(-4 K)), g \in \Gamma(\mathcal{O}(-6 K))$
By adjunction $K_{B}=\left(K_{\mathbb{P}^{4}}+B\right)_{B}=\left.(-5 H+3 H)\right|_{B}=-\left.2 H\right|_{B}$
$\Rightarrow f, g$ from homogeneous degree 8,12 polynomials on \mathbb{P}^{4}
Fano $\Rightarrow X$ generically smooth (no NHC's)
Hodge numbers:
$h^{1,1}(B)=1$, w/no generic $\mathrm{U}(1)$'s $\Rightarrow h^{1,1}(X) \cong 2$
count c 's $\in \mathcal{O}(3 H): 35$
f 's: $0 \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(5 H) \rightarrow \mathcal{O}_{\mathbb{P}^{4}}(8 H) \rightarrow \mathcal{O}_{X}(8 H) \rightarrow 0: 330-126=204$
g's: $1365-495=870$
$h^{3,1} \cong 870+204+35-24=1085$
Compare Fano $\mathbb{P}^{3}, h^{3,1}=3878$, Max $h^{3,1}=303,148$

Upshot: cubic threefold $B_{3} \rightarrow$ simple base for 4D F-theory

- Seems relatively unremarkable despite irrational nature
- Relatively small $h^{3,1}, h^{1,1}$
- No NHC's
- Can blow up points and curves $e . g$. by blowing up in ambient \mathbb{P}^{4}
- Can connect to rational by multiple conifold transitions
- Could do similar analysis on other irrational Fano threefolds

Conclusions

- Getting a birds eye view of the 4D F-theory landscape
- Apparently a finite number (but $>10^{50}$) of bases B_{3}
- Finite tunings over each base
- NHC's generic

Next problem: systematics of fluxes, moduli stabilization in typical vacua

 w/NHC's (cf. Weigand talk)
Several possible scenarios for standard model:

- Typical GUT tuning: seems expensive [Braun/Watari]
- Typical base: NHC's may contribute to nonabelian SM group [Grassi/Halverson/Shaneson/WT]
- Fluxes: favor large $h^{3,1}$? (cf. Wang talk)

In all scenarios: NHC's promising source of dark matter.

Conclusions

- Getting a birds eye view of the 4D F-theory landscape
- Apparently a finite number (but $>10^{50}$) of bases B_{3}
- Finite tunings over each base
- NHC's generic

Next problem: systematics of fluxes, moduli stabilization in typical vacua w/NHC's (cf. Weigand talk)

Several possible scenarios for standard model:

- Typical GUT tuning: seems expensive [Braun/Watari]
- Typical base: NHC's may contribute to nonabelian SM group [Grassi/Halverson/Shaneson/WT]
- Fluxes: favor large $h^{3,1}$? (cf. Wang talk)

In all scenarios: NHC's promising source of dark matter.

Happy Birthday to F-theory and to Dave!

