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Dave and I began working together in the summer of 2009 in Aspen

We had a common interest in understanding 6D supergravity and F-theory
models and explaining the connection between these

Since then we have written roughly one paper a year. Gone from 6D to 4D, and
explored lots of fascinating physics and math; it has been an ongoing adventure!

I have learned a tremendous amount from Dave about geometry and how it
encodes beautiful and fascinating structure and physics.

This has been the most fun, productive, and exciting extended collaboration and
friendship in my physics career, with several more papers on the way!
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6D: Calabi-Yau threefolds
4D: Calabi-Yau fourfolds

Goal: a global picture of the set of elliptic Calabi-Yau fourfolds relevant to the
4D F-theory landscape

Warm-up: Elliptic Calabi-Yau threefolds/6D models

Recent work: Elliptic Calabi-Yau fourfolds/4D models

Philosophy: need the big picture to figure out how our world fits in
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Summary: 6D F-theory and elliptic Calabi-Yau threefolds

Using tools from algebraic geometry and physics intuition, we have a
systematic approach to constructing elliptic Calabi-Yau threefolds and
understanding 6D F-theory models

Classifying elliptic CY threefolds

Elliptic CY3 π : X3 → B2

Weierstrass model y2 = x3 + fx + g,
f ∈ Γ(O(−4KB)), g ∈ Γ(O(−6KB))

• Basic idea: classify bases B, then tune Weierstrass for each base
Focus on Weierstrass models on smooth bases (e.g. not SCFT)

•Minimal models + work of Grassi:
B = P2,Fm or blowup thereof (or Enriques)

• “Non-Higgsable clusters” give lower bound on normal bundle of divisors
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6D: Calabi-Yau threefolds
4D: Calabi-Yau fourfolds

Geometry of non-Higgsable groups

The base B2 is a complex surface.

Contains homology classes of complex curves Ci

For C ∼= P1 ∼= S2, local geometry encoded by normal bundle O(m)

C · C = m; e.g., NC ∼= O(2) ∼= TC : deformation has 2 zeros, C · C = +2

If NC ∼= O(−n), n > 0,C is rigid (no deformations)

For O(−n), n > 2, base space is so curved that singularities must pile up to
preserve Calabi-Yau structure on total space ⇒ non-Higgsable gauge group
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Classification of 6D “Non-Higgsable Clusters” (NHC’s) [Morrison/WT]

Clusters of curves imposing generic nontrivial codimension one singularities:

−m
(m = 3, 4, 5, 6, 7, 8, 12)

su(3), so(8), f4
e6, e7, e8
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• Any other combination including -3 or below⇒ (4, 6) at point/curve

NHC’s a useful tool in classifying bases B2 for EF CY3’s
– Also useful in classifying 6D SCFT’s, LST’s (cf. Heckman, Rudelius talks)
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Classifying bases I: toric B2

Start with P2,Fm, blow up torically

Generic EF Hodge #’s [Morrison/WT, WT]
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h110
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500
h21

• 61,539 toric bases (some not strictly toric: -9, -10, -11 curves)

• Reproduces large subset of Kreuzer-Skarke database of CY3 Hodge #’s
Boundary of “shield” from generic elliptic fibrations over blowups of F12.
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Beyond toric: approach allows construction of general (non-toric) bases

– Computed all 162, 404 “semi-toric” bases w/ 1 C∗-structure [Martini/WT]

Generally: Keep track of cone of effective divisors as combinatorial data

• All bases for EF CY threefolds w/ h2,1(X) ≥ 150 [WT/Wang]

Kreuzer-Skarke

Our list

h1,1

h2,1

Technical issues at large h1,1(X), small h2,1(X):
Infinite generators for cone, Multiply intersecting −1 curves

Upshot: modest expansion of possibilities beyond toric, semi-toric
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EFCY3’s w/ h2,1 ≥ 350, Fm+ tuning→ full WM classification [Johnson/WT]

untuned Weierstrass

+ SUH2L

+ SUH2L x SUH2L

+ SUH3L x SUH2L or

+ G_2 x SUH2L

+ SUH2L x SUH2L x SUH2L

H11, 491L

H12, 462L

H10, 376L

H19, 355L
H20, 350L

[cf. Berglund/Huang/Smith/WT to appear]

•Matches KS; non-toric + toric at (19, 355); new non-toric below 350
• Empirical data on Calabi-Yau’s suggests: “most” (known) CY’s are elliptic,

particularly at large Hodge numbers (cf. [Gray/Haupt/Lukas])
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Elliptic Calabi-Yau threefolds: upshot

• Systematic approach to construction

• Complete control at large h2,1(X) (e.g., proof h2,1 ≤ 491)

• Toric bases give good representative global picture, capture boundary

• Finite number of bases, minimal P2,Fm on left boundary

• “Most” bases B2 have non-Higgsable GNA

(all but weak Fano = gdP)
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Some outstanding issues:

• Difficult regime: large h1,1(X), small h2,1(X) (cf. Park talk)

• Classifying matter/codim. 2 tuning + transitions
(cf. Anderson, Klevers, Morrison, Raghuram talks)

•Mordell-Weil (cf. Morrison talk)

Possible further issues: singular bases, Enriques
W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 10 / 20
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4D F-theory compactifications

Story parallel in many ways:

– Compactify on Calabi-Yau fourfold, base B3 = complex threefold

– Empirical data suggest similar structure (though less complete for CY4’s)

No proof of finiteness
Mori theory threefold analog of minimal model bases more subtle

All evidence so far: moduli space of CY 4’s quite parallel to CY3 story
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6D: Calabi-Yau threefolds
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4D non-Higgsable clusters [Morrison/WT]
(see also: Anderson/WT, Grassi/Halverson/Shaneson/WT, cf. Halverson talk)

At level of geometry/complex structure, similar to 6D but more complicated

Expanding in coordinate z, around divisor (surface) S = {z = 0},

f = f0 + f1z + f2z2 + · · ·

Compute using geometry of surfaces: up to leading non-vanishing term,

Single group clusters: SU(2), SU(3),G2, SO(7), SO(8),F4,E6,E7,E8

(cannot have: non-Higgsable SU(5), SO(10)

the only 2-factor products that can appear are:

G2 × SU(2), SO(7)× SU(2), SU(2)× SU(2),

SU(3)× SU(2), SU(3)× SU(3)

4D clusters can have chains, loops, branching . . .
W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 12 / 20
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Classification of elliptic Calabi-Yau fourfolds

Mathematical minimal models→Mori theory.
No proofs, but finite classification seems manageable.
Rough “physicist’s” picture – ignore various subtleties
Focus on classifying bases B3, apparently finite number

“minimal models” ∼ Fm but more complex – populate LHS of Hodge plot
Roughly, min B3 = {P1 (conic) bundle over B2, B2 bundle over P1, Fano}

Blow up curves, points: h3,1 ↓, h1,1 ↑; finite # of options on each minimal B3

w/Halverson: P1 bundles over toric bases B2
(w/Anderson: B2 = gdP, smooth heterotic dual)
Finite # P1 bundles over fixed B2 (cf. 2015 talk)

w/Wang: B2 bundles over P1, B2 supports EF CY3, finite # B2, bundles
Max h3,1 = 303,148 (cf. Wang talk)

Fano: 105 Fano bases <∞

Possible issue: irrational bases

W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 13 / 20
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Monte Carlo on threefold bases for EF CY4’s (w/ Yinan Wang)

Random walk on a graph: pi ∝ νi = # of neighbors, e.g.

Explore connected toric threefold bases from P3 by blow-up, -down transitions

Estimate number of connected toric threefold bases ∼ 1048±2
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Structure of elliptic fourfold over “typical” toric base B3
(note: in connected set, misses most w/ E8 divisors)

• h1,1(B) ∼= 82± 6

• # flops ∼ 20

• Codimension 1 Kodaira singularity⇒ GNA:
∼ 14× SU(2), ∼ 10× G2, ∼ 3× F4, ∼ 2× SU(3), ∼ 1× SO(8)

• Connected products:
∼ 14× (G2 × SU(2)),∼ 8× (SU(2)× SU(2)), ∼ 2.4× (SU(3)× SU(2))
∼ 10% of NH products are SU(3) × SU(2)!

• <Biggest cluster>: ∼ 16, max found: 37

• Typical base has several codim 2 singularities w/o smooth CY resolution (?)

W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 15 / 20
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Irrational F-theory models (w/Morrison, 16xx.xxxxx)

For 6D F-theory/elliptic CY3’s, all B2 rational (birational to P2)

Not true for 4D/elliptic CY4’s!

Clemens-Griffiths (’72): cubic threefold (in P4) is not birational to P3.

B = {[x1 : · · · : x5] ∈ P4, f3(x1, . . . , x5) = 0}

f3 =
∑

i≤j≤k

cijkxixjxk = c111x3
1 + c112x2

1x2 + · · ·

can build EF CY4’s over B

W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 16 / 20



6D: Calabi-Yau threefolds
4D: Calabi-Yau fourfolds

Irrational F-theory models (w/Morrison, 16xx.xxxxx)

For 6D F-theory/elliptic CY3’s, all B2 rational (birational to P2)

Not true for 4D/elliptic CY4’s!

Clemens-Griffiths (’72): cubic threefold (in P4) is not birational to P3.

B = {[x1 : · · · : x5] ∈ P4, f3(x1, . . . , x5) = 0}

f3 =
∑

i≤j≤k

cijkxixjxk = c111x3
1 + c112x2

1x2 + · · ·

can build EF CY4’s over B

W. Taylor Elliptic Calabi-Yau fourfolds and 4D F-theory vacua 16 / 20
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Elliptic Calabi-Yau fourfolds over the cubic threefold

Need f ∈ Γ(O(−4K)), g ∈ Γ(O(−6K))

By adjunction KB = (KP4 + B)B = (−5H + 3H)|B = −2H|B
⇒ f , g from homogeneous degree 8, 12 polynomials on P4

Fano⇒ X generically smooth (no NHC’s)

Hodge numbers:

h1,1(B) = 1, w/no generic U(1)’s⇒ h1,1(X) ∼= 2

count c’s ∈ O(3H): 35

f ’s: 0→ OP4(5H)→ OP4(8H)→ OX(8H)→ 0: 330− 126 = 204

g’s: 1365− 495 = 870

h3,1 ∼= 870 + 204 + 35− 24 = 1085

Compare Fano P3, h3,1 = 3878, Max h3,1 = 303, 148
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Upshot: cubic threefold B3 → simple base for 4D F-theory

– Seems relatively unremarkable despite irrational nature

– Relatively small h3,1, h1,1

– No NHC’s

– Can blow up points and curves e.g. by blowing up in ambient P4

– Can connect to rational by multiple conifold transitions

– Could do similar analysis on other irrational Fano threefolds
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Conclusions

• Getting a birds eye view of the 4D F-theory landscape

• Apparently a finite number (but > 1050) of bases B3

• Finite tunings over each base

• NHC’s generic

Next problem: systematics of fluxes, moduli stabilization in typical vacua
w/NHC’s (cf. Weigand talk)

Several possible scenarios for standard model:

– Typical GUT tuning: seems expensive [Braun/Watari]

– Typical base: NHC’s may contribute to nonabelian SM group
[Grassi/Halverson/Shaneson/WT]

– Fluxes: favor large h3,1? (cf. Wang talk)

In all scenarios: NHC’s promising source of dark matter.
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Happy Birthday to F-theory and to Dave!
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