T-branes and 3d Mirror Symmetry

Roberto Valandro

University of Trieste

Caltech, 22 February 2016

Based on 1602.0XXXX with A. Collinucci, S. Giacomelli and R. Savelli

Introduction

F-theory: connection between geometry and gauge theory (+ sugra):

IIB/IIA gauge theory on D7/D6 $\leftrightarrow \mathrm{F} / \mathrm{M}$-theory on (singular) T^{2} / S^{1} fibrations
Eg, $N=4$ D-branes: $G=U(4) \leftrightarrow \quad u \cdot v=z^{4}: A_{3}$ sing

Vev for complex adj Φ deform of D -br config
$\Phi=\left(\begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 \\ 0 & 0 & 0 & \lambda_{4}\end{array}\right) \quad \leftrightarrow$
D-branes split: $G=U(1)^{4} \quad \leftrightarrow \quad$ No singularity (deformed away)

Introduction

IIB/IIA gauge theory on D7/D6 $\leftrightarrow \mathrm{F} / \mathrm{M}$-theory on (singular) T^{2} / S^{1} fibrations
Eg, $N=4$ D-branes: $G=U(4) \leftrightarrow \quad u \cdot v=z^{4}: A_{3}$ sing

$$
\begin{array}{ccc}
\begin{array}{c}
\text { Vev for complex adj } \Phi \\
\text { deform of D-br config }
\end{array} & \leftrightarrow & u \cdot v=\operatorname{det}\left(z \mathbf{1}_{N}-\Phi\right) \\
\text { deform of sing }
\end{array}
$$

$$
\Phi=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \leftrightarrow \quad u \cdot v=z^{4}
$$

Bound state $G=U(1) \times U(2) \quad \leftrightarrow$
Geometry untouched

Introduction

IIB/IIA gauge theory on D7/D6 $\leftrightarrow \mathrm{F} / \mathrm{M}$-theory on (singular) T^{2} / S^{1} fibrations
Eg, $N=4$ D-branes: $G=U(4) \leftrightarrow \quad u \cdot v=z^{4}: A_{3}$ sing

$$
\begin{array}{ccc}
\begin{array}{l}
\text { Vev for complex adj } \Phi \\
\text { deform of D-br config }
\end{array} & \leftrightarrow & u \cdot v=\operatorname{det}\left(z \mathbf{1}_{N}-\Phi\right) \\
\text { deform of sing }
\end{array}
$$

$$
\Phi=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
u \cdot v=z^{4}
$$

Bound state $G=U(1) \times U(2) \quad \leftrightarrow$
Geometry untouched

T-brane
\leftrightarrow ???
[Cecotti, Cordova, Heckman, Vafa; Heckman, Tachikawa, Vafa, Wecht; Donagi, Wijnholt]
Geometry does not see all possible vevs: sensible only to Casimirs

Introduction

T-brane is vev for Φ (strinas between D6/D7s). What is M-theory lift?

* Φ_{11} and Φ_{22} lift to geometric c.s. deformations,
* Φ_{12} lift to M2-brane wrapping the vanishing cycle.

T-brane (vev for Φ_{12}) \rightsquigarrow coherent state of M2-branes on vanishing cycles.
In absence of formulation for microscopic M2, find a framework that allows to describe this extra data in M-theory. [Anderson, Heckman, Katz; Collinucci, Savelli]

Here we turn to the 3d perspective of a probe M2-brane that see this effect.

Theory A

Let's start by considering a stack of N D6-branes and we probe them by a D2.

$$
\begin{array}{c|cccccccccc}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
N \times \text { D6 } & \times & & & \\
\text { D2 } & \times & \times & \times & & & & & &
\end{array}
$$

$\mathcal{N}=4 d=3 U(1)$ theory with

* One Abelian vector multiplet

$$
A_{\mu}, \quad \phi_{3}, \quad \varphi \equiv \phi_{1}+i \phi_{2}
$$

\star N flavors hypermultiplets

$$
Q_{l}, \tilde{Q}^{\prime} \quad \text { with } I=1, \ldots, N
$$

* Superpotential

$$
W_{A}=\varphi \sum_{l} \tilde{Q}^{\prime} Q_{l}
$$

* Moduli space separates into two branches.

Theory A - Higgs Branch

Coordinates: gauge invariant mesons. $M_{l}{ }^{J} \equiv Q_{l} \tilde{Q}^{J}(I=1, \ldots, N)$ s.t.

$$
\text { rk } M=1 \quad \text { and } \quad \operatorname{Tr} M=0 \quad\left(\operatorname{dim}_{\mathbb{C}}=2 N-2\right)
$$

\rightarrow It has manifest $U(N)$ global symmetry.

Deformations (lift some directions):

- comolex masses $\delta W=m_{c} Q_{1} \tilde{Q}^{1}$
- real masses $\int d^{4} \theta Q_{1}^{\dagger} e^{m_{r} \theta \bar{\theta}} Q_{1}$
$\left(m_{c}, m_{r}\right)$ are the vev for the D6-brane scalars: move D6s apart from D2.

Theory A - Higgs Branch

Coordinates: gauge invariant mesons. $M_{l}^{J} \equiv Q_{l} \tilde{Q}^{J}(I=1, \ldots, N)$ s.t.

$$
\text { rk } M=1 \quad \text { and } \quad \operatorname{Tr} M=0 \quad\left(\operatorname{dim}_{\mathbb{C}}=2 N-2\right)
$$

\rightarrow It has manifest $U(N)$ global symmetry.

Deformations (lift some directions):

- complex masses $\delta W=m_{c} Q_{1} \tilde{Q}^{1}$
- real masses $\int d^{4} \theta Q_{1}^{\dagger} e^{m_{r} \theta \bar{\theta}} Q_{1}$
(m_{c}, m_{r}) are the vev for the D6-brane scalars: move D6s apart from D2.

Theory A - Coulomb Branch

Photon can be dualised: $* F=d \gamma\left(=J_{T}\right)$

$$
A_{\mu}, \phi_{1}, \phi_{2}, \phi_{3} \quad \hookrightarrow \quad V_{ \pm} \sim e^{ \pm\left(\phi_{3}+i \gamma\right)}, \varphi \equiv \phi_{1}+i \phi_{2}
$$

Coordinates: $V_{ \pm}$and φ s.t.

$$
V_{+} V_{-}=\varphi^{N} \quad\left(\operatorname{dim}_{\mathbb{C}}=2\right)
$$

A_{N-1} singularity (dual photon $\leftrightarrow M$-theory circle)

Deformations:

- $m_{c} \Rightarrow$ deformations of $\mathrm{CB}: \varphi^{N} \mapsto \varphi^{N-1}\left(\varphi+m_{c}\right)$
$\Rightarrow m_{r} \Rightarrow$ resolutions of CB.

Theory A - Coulomb Branch

Photon can be dualised: $* F=d \gamma\left(=J_{T}\right)$

$$
A_{\mu}, \phi_{1}, \phi_{2}, \phi_{3} \quad \hookrightarrow \quad V_{ \pm} \sim e^{ \pm\left(\phi_{3}+i \gamma\right)}, \varphi \equiv \phi_{1}+i \phi_{2}
$$

Coordinates: $V_{ \pm}$and φ s.t.

$$
V_{+} V_{-}=\varphi^{N} \quad\left(\operatorname{dim}_{\mathbb{C}}=2\right)
$$

A_{N-1} singularity (dual photon $\leftrightarrow M$-theory circle)

Deformations:

- $m_{c} \Rightarrow$ deformations of $\mathrm{CB}: \varphi^{N} \mapsto \varphi^{N-1}\left(\varphi+m_{c}\right)$
- $m_{r} \Rightarrow$ resolutions of CB.

Theory A

T-brane deformation:
(For 4D analog, see [Heckman, Tachikawa, Vafa, Wecht])

$$
\left\langle\Phi_{D 6}\right\rangle=m_{T}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
m & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & & 0
\end{array}\right) \quad \rightsquigarrow \quad \delta W=m Q_{1} \tilde{Q}^{2}
$$

* It breaks $U(N)$ flavor symmetry to $U(1) \times U(N-2)$ and makes two chiral multiplets massive.
* What about Coulomb branch? Integrating out massive flavors, obtain $N-2$ flavors with couplings $\varphi Q_{l} \tilde{Q}^{\prime}$ and one with $\frac{\varphi^{2}}{m} Q^{\prime} \tilde{Q}^{\prime}$. Hence

$$
V_{+}^{\prime} V_{-}^{\prime}=\varphi^{N-2} \frac{\varphi^{2}}{m}
$$

A_{N-1} singularity untouched. [Benini,Closset,Cremonesi]

This description is ok and we could proceed and study T-brane from this p.o.v., but intrinsically perturbative and hard to generalise to more interesting groups.

Theory A

T-brane deformation:
(For 4D analog, see [Heckman, Tachikawa, Vafa, Wecht])

$$
\left\langle\Phi_{D 6}\right\rangle=m_{T}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
m & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \\
0 & 0 & & 0
\end{array}\right) \quad \rightsquigarrow \quad \delta W=m Q_{1} \tilde{Q}^{2}
$$

* It breaks $U(N)$ flavor symmetry to $U(1) \times U(N-2)$ and makes two chiral multiplets massive.
* What about Coulomb branch? Integrating out massive flavors, obtain $N-2$ flavors with couplings $\varphi Q_{l} \tilde{Q}^{\prime}$ and one with $\frac{\varphi^{2}}{m} Q^{\prime} \tilde{Q}^{\prime}$. Hence

$$
V_{+}^{\prime} V_{-}^{\prime}=\varphi^{N-2} \frac{\varphi^{2}}{m}
$$

A_{N-1} singularity untouched. [Benini,Closset,Cremonesi]

This description is ok and we could proceed and study T-brane from this p.o.v., but intrinsically perturbative and hard to generalise to more interesting groups.

3d mirror symmetry [Intriligator, Seiberg]

Theory A (3d SQED with N flav) dual to another 3d theory, Theory B.
String theory interpretation: TST composition or through '9-11' flip

Theory B: completely different theory, but

* on the same singular space of M-theory: form that can be generalized;
* string theory at sing: power of quiver techniques.
\Rightarrow Map T-brane deformations here.

Theory B

$\mathcal{N}=4 U(1)^{N}$ gauge theory

* Each node comes with a vector multiplet \rightsquigarrow dualize photon: $\left(\varphi_{i}, W_{i, \pm}\right)$
* N hypermultiplets (q_{i}, \tilde{q}^{i}), connecting the nodes.
* Superpotential

$$
W=\sum_{i=1}^{N} s_{i} q_{i} \tilde{q}^{i} \quad\left(s_{i} \equiv \varphi_{i}-\varphi_{i+1}\right)
$$

* Again, HB and CB.

Theory B - Higgs Branch

Coordinates: gauge inv comb's $q_{i} \tilde{q}_{i}, B \equiv q_{1} q_{2} \ldots q_{N}$ and $\tilde{B} \equiv \tilde{q}_{1} \tilde{q}_{2} \ldots \tilde{q}_{N}$

- Superpotential $W=\sum_{i=1}^{N} S_{i} q_{i} \tilde{q}^{i}-\Psi \sum_{i=1}^{N} S_{i} \rightarrow$ F-terms:

$$
q_{i} \tilde{q}_{i}=\psi \forall i \quad \Rightarrow \quad B \tilde{B}=\psi^{N} \quad\left(A_{N-1} \text { sing }\right)
$$

Deformations

- complex FI-terms $\delta W=\zeta S_{1} \Rightarrow q_{1} \tilde{q}_{1}=\psi-\zeta \rightsquigarrow$ deform.
- real Fl-terms $\xi \int d^{4} \theta V_{i} \rightsquigarrow$ blow-up.

Theory B - Higgs Branch

Coordinates: gauge inv comb's $q_{i} \tilde{q}_{i}, B \equiv q_{1} q_{2} \ldots q_{N}$ and $\tilde{B} \equiv \tilde{q}_{1} \tilde{q}_{2} \ldots \tilde{q}_{N}$

- Superpotential $W=\sum_{i=1}^{N} S_{i} q_{i} \tilde{q}^{i}-\Psi \sum_{i=1}^{N} S_{i} \rightarrow$ F-terms:

$$
q_{i} \tilde{q}_{i}=\psi \forall i \quad \Rightarrow \quad B \tilde{B}=\Psi^{N} \quad\left(A_{N-1} \text { sing }\right)
$$

Deformations

- complex Fl-terms $\delta W=\zeta S_{1} \Rightarrow q_{1} \tilde{q}_{1}=\Psi-\zeta \rightsquigarrow$ deform.
- real FI-terms $\xi \int d^{4} \theta V_{i} \rightsquigarrow$ blow-up.

Theory B - Coulomb Branch

Coordinates: $\left(\varphi_{i}, W_{i, \pm}\right)$ s.t.

$$
W_{i,+} W_{i,-}=S_{i} S_{i-1} \quad\left(S_{i} \equiv \varphi_{i}-\varphi_{i+1}\right)
$$

Theory B - Coulomb Branch

Coordinates: $\left(\varphi_{i}, W_{i, \pm}\right)$ s.t.

$$
W_{i,+} W_{i,-}=S_{i} S_{i-1} \quad\left(S_{i} \equiv \varphi_{i}-\varphi_{i+1}\right)
$$

Symmetries

* $U(1)^{N-1}$ topological sym: $\gamma_{i} \mapsto \gamma_{i}+c_{i} \rightsquigarrow$ currents: $J_{U(1)_{i}}=* F_{i}=d \gamma_{i}$.
* $W_{i, \pm} \sim e^{ \pm\left(\varphi_{i}+i \gamma_{i}\right)}$ have $q_{i}= \pm 1 \rightsquigarrow$ in supermultiplets with currents $J_{i, \pm}$.
\Rightarrow enhanced global sym: $S U(N)$.

3d Mirror Map [Intriligator, Seiberg; Aharony, Hanany, Intriligator, Strassler, Seiberg]

Map between gauge invariant coord defining $\mathrm{CB}_{A} \leftrightarrow \mathrm{HB}_{B}$ and $\mathrm{HB}_{A} \leftrightarrow \mathrm{CB}_{B}$:
$\mathrm{CB}_{A} \leftrightarrow \mathrm{HB}_{B}:$

$$
\begin{gathered}
\varphi \leftrightarrow \Psi=q_{i} \tilde{q}_{i} \quad V_{+} \leftrightarrow B \quad V_{-} \leftrightarrow \tilde{B} \\
V_{+} V_{-}=\varphi^{N} \leftrightarrow B \tilde{B}=\psi^{N}
\end{gathered}
$$

$\mathrm{HB}_{A} \leftrightarrow \mathrm{CB}_{B}:$

$$
\begin{gathered}
M_{i}^{i} \leftrightarrow S_{i} \quad M_{i-1}^{i} \leftrightarrow W_{i,+} \quad M_{i}^{i-1} \leftrightarrow W_{i,-} \\
\operatorname{rk} M=1 \rightsquigarrow M_{i-1}^{i-1} M_{i}^{i}-M_{i-1}^{i} M_{i}^{i-1} \leftrightarrow S_{i-1} S_{i}=W_{i,+} W_{i,-} \\
\operatorname{Tr} M=0 \quad \leftrightarrow \quad \sum_{i} S_{i}=0 \\
(S U(N) \text { symmetry })
\end{gathered}
$$

T-brane

Theory A: off-diagonal mass term $+m Q_{1} \tilde{Q}^{2}$

$$
W=\varphi \sum_{l} Q_{l} \tilde{Q}^{\prime}+\sum_{l, J}\left(m_{T}\right)_{J}^{\prime} Q_{l} \tilde{Q}^{\prime} \quad \text { with } \quad m_{T}^{k}=0
$$

F-terms:

$$
\left(\varphi \mathbf{1}+m_{T}\right) \cdot Q=0 \quad \tilde{Q} \cdot\left(\varphi \mathbf{1}+m_{T}\right)=0
$$

Construct gauge invariant F -term:

Theory B: by mirror map obtain how $+m W_{2,+}$ should modify F-terms

T-brane

Theory A: off-diagonal mass term $+m Q_{1} \tilde{Q}^{2}$

$$
W=\varphi \sum_{l} Q_{l} \tilde{Q}^{\prime}+\sum_{l, J}\left(m_{T}\right)_{J}^{\prime} Q_{l} \tilde{Q}^{\prime} \quad \text { with } \quad m_{T}^{k}=0
$$

F-terms:

$$
\left(\varphi \mathbf{1}+m_{T}\right) \cdot Q=0 \quad \tilde{Q} \cdot\left(\varphi \mathbf{1}+m_{T}\right)=0
$$

Construct gauge invariant F -term:

$$
\left(\varphi \mathbf{1}+m_{T}\right) \cdot M=0 \quad M \cdot\left(\varphi \mathbf{1}+m_{T}\right)=0
$$

Theory B: by mirror map obtain how $+m W_{2,+}$ should modify F-terms

T-brane

Theory A: off-diagonal mass term $+m Q_{1} \tilde{Q}^{2}$

$$
W=\varphi \sum_{l} Q_{l} \tilde{Q}^{\prime}+\sum_{l, J}\left(m_{T}\right)_{J}^{\prime} Q_{l} \tilde{Q}^{\prime} \quad \text { with } \quad m_{T}^{k}=0
$$

F-terms:

$$
\left(\varphi \mathbf{1}+m_{T}\right) \cdot Q=0 \quad \tilde{Q} \cdot\left(\varphi \mathbf{1}+m_{T}\right)=0
$$

Construct gauge invariant F -term:

$$
\left(\varphi \mathbf{1}+m_{T}\right) \cdot M=0 \quad M \cdot\left(\varphi \mathbf{1}+m_{T}\right)=0
$$

Theory B: by mirror map obtain how $+m W_{2,+}$ should modify F-terms

$$
\left(\Psi \mathbf{1}+m_{T}\right) \cdot\left(\begin{array}{ccc}
S_{1} & W_{2,+} & \\
W_{2,-} & S_{2} & \\
& & \ddots
\end{array}\right)=0
$$

m_{T} breaks $S U(N)$ symmetry

T-brane in theory B

Example $N=3, \delta W=m W_{2,+}$:

$$
\varphi_{2}, W_{2, \pm}
$$

$$
\left(\begin{array}{ccc}
\Psi & 0 & 0 \\
m & \Psi & 0 \\
0 & 0 & \Psi
\end{array}\right) \cdot\left(\begin{array}{ccc}
S_{1} & W_{2,+} & W_{1,-} \\
W_{2,-} & S_{2} & W_{3,+} \\
W_{1,+} & W_{3,-} & S_{3}
\end{array}\right)=0
$$

One can apply a bi-unitary transformation to bring into the form:

T-brane in theory B

Example $N=3, \delta W=m W_{2,+}$:

$$
\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & \frac{\psi^{2}}{m} & 0 \\
0 & 0 & \Psi
\end{array}\right) \cdot\left(\begin{array}{ccc}
* & * & * \\
* & S_{2}^{\prime} & W_{3,+} \\
* & W_{3,-}^{\prime} & S_{3}
\end{array}\right)=0
$$

T-brane in theory B

Example $N=3$:

$$
\tilde{q}^{\prime}, q_{3}
$$

$$
\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & \frac{\psi^{2}}{m} & 0 \\
0 & 0 & \Psi
\end{array}\right) \cdot\left(\begin{array}{ccc}
* & * & * \\
* & S^{\prime} & W_{3,+}^{\prime} \\
* & W_{3,-}^{\prime} & S_{3}
\end{array}\right)=0
$$

New F-terms captured by effective superpotential:

$$
W_{\text {eff }}=S^{\prime} q^{\prime} \tilde{q}^{\prime}+S_{3} q_{3} \tilde{q}^{3}-\frac{\psi^{2}}{m} S^{\prime}+\psi S_{3}
$$

$\mathrm{HB}_{B}: \quad q_{3} \tilde{q}^{3}=\psi \quad q^{\prime} \tilde{q}^{\prime}=\frac{\psi^{2}}{m} \quad \Rightarrow B^{\prime} \tilde{B}^{\prime}=\frac{\psi^{3}}{m} \quad A_{2}$ sing
$\mathrm{CB}_{B}: \quad W_{3,+}^{\prime} W_{3,-}^{\prime}=S^{\prime} S_{3}$

Effective quiver and effective superpotential

(Check: if add $m W_{2,-}=m S^{\prime}$, nodes 1 and 3 fuse togehter and sing becomes A_{N-3} \rightarrow consistent with mirror of diagonalisable mass deform)

Effective quiver: non-minimal T-brane

$S U(4) \rightarrow S U(2)$

$$
m_{T}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
m & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & m & 0
\end{array}\right) \quad \rightsquigarrow \quad \delta W=m W_{2,+}+m W_{4,+}
$$

$$
W=\sum_{i=1}^{N} S_{i}\left(q_{i} \tilde{q}^{i}-\Psi\right) \quad \rightarrow \quad W_{\mathrm{eff}}=S^{\prime}\left(q^{\prime} \tilde{q}^{\prime}-\frac{\Psi^{2}}{m}\right)+S^{\prime \prime}\left(q^{\prime \prime} \tilde{q}^{\prime \prime}-\frac{\Psi^{2}}{m}\right)
$$

Obstruction of blow-up by T-brane

Theory A:

* Blow-up \leftrightarrow real mass ($m_{r} \in$ bkgr vector-multiplet)

$$
\int d^{4} \theta\left(Q_{i}^{\dagger} e^{m_{r}^{i} \theta \bar{\theta}} Q_{i}-\tilde{Q}^{i \dagger} e^{m_{r}^{i} \theta \bar{\theta}} \tilde{Q}^{i}\right)
$$

* $\delta W=m Q_{1} \tilde{Q}^{2}$ breaks background sym $U(1)_{1-2}$
corresponding bckgrnd vector mult no more available $\Rightarrow m_{r}^{1}=m_{r}^{2}$
\Rightarrow mass terms with $m_{r}^{1} \neq m_{r}^{2}$ forbidden ($D 6_{1}$ and $D 6_{2}$ are bound together).
Theory B:
* Blow-up \leftrightarrow real FI-term $\int d^{4} \theta \xi_{b} V_{U(1)_{2}} \sim \int d^{4} \theta V_{b} \Sigma_{U(1)_{2}}$.
* $\delta W=m W_{2,+}$ breaks topological $U(1)_{2}$ symmetry
V_{b} has gone and the above coupling forbidden
\Rightarrow blow-up relative to node 2 is obstructed.
[Anderson,Heckman,Katz]

Conclusions

We find the mirror theory for D2-branes probing a stack of T-branes.

- On the A-side, off-diagonal mass deformation. On the B-side, via monopole operators.
\Rightarrow This provides us with definition of a T-brane directly in terms of a membrane probing a singularity.
- Found effects of T-brane on HB and CB on B-side: HB describing probed geometry does not change, CB is partially lifted and global symmetry broken.
- Effective description of probe theory by $W_{\text {eff }}$ and effective quiver.

Open problems:
What about other ADE grops?
Probing more complicated geometries (e.g. with matter curves)
Impact of T-brane on Hilbert series approach to 3d moduli spaces.

Conclusions

We find the mirror theory for D2-branes probing a stack of T-branes.

- On the A-side, off-diagonal mass deformation. On the B-side, via monopole operators.
\Rightarrow This provides us with definition of a T-brane directly in terms of a membrane probing a singularity.
- Found effects of T-brane on HB and CB on B-side: HB describing probed geometry does not change, CB is partially lifted and global symmetry broken.
- Effective description of probe theory by $W_{\text {eff }}$ and effective quiver.

Open problems:

* What about other ADE grops?
* Probing more complicated geometries (e.g. with matter curves).
* Impact of T-brane on Hilbert series approach to 3d moduli spaces.

Thank you!

