F-theory in 4 Dimensions and Phenomenology

Timo Weigand

ITP, University of Heidelberg

20 years of joy

F-theory is perhaps the most general currently controlled framework to think about (non-perturbative) brane configurations in geometric regime

- beyond pert. Type II orientifolds due to [p,q]-branes
- still within (conformal) Calabi-Yau geometry and thus well-controlled
- ⇒ framework to understand geometric compactifications w/ branes

Geometric engineering of gauge theories in various dimensions - including coupling to gravity, such as

- 6d SCFTs
- 4d gauge theories
- 2d (0,2) theories
 [talk by Schäfer-Nameki]

Themes in F-theory pheno

This review will focus on 4d F-theory and applications to phenomenology, in particular application to F-theory GUTs

Hierarchy of localisation:

- $SU(5) \leftrightarrow 4$ -cycle
- matter ↔ 2-cycle
- Yukawa \leftrightarrow point

 $E_6 ext{-point}\leftrightarrow \mathbf{10}\,\mathbf{10}\,\mathbf{5}$

Pic: Cordova, 0910.2955

Two key ingredients of SU(5) GUT models in F-theory:

- Hypercharge flux induced GUT breaking
- Extra U(1)/discrete symmetries

The need to understand these has triggered tremendous technical progress in recent years.

Themes in F-theory pheno

1) GUT model building:

- \rightarrow mostly within TeV scale SUSY paradigm
- \rightarrow some extensions to intermediate scale SU(5) GUTs
 - Global models
 - \leftrightarrow fully fledged 4-fold and G_4 gauge background
 - (Semi)-local models
 - ↔ no known explicit realization, but guiding principle for consistency.
 - Ultra-local models
- 2) Non-GUT model building: direct $SU(3) \times SU(2) \times U(1)_Y$

Progress in 4d F-theory

Global models:

- fiber structure in codimension one, two, three
- explicit resolutions
- U(1) symmetries and discrete symmetries (Mordell-Weil & TS group)
- G_4 fluxes: construction, massless matter spectrum

Semi-local models:

- U(1) charges from fibre structures or from E_8 decompositions
- Anomalies as constraint on consistency, especially of hypercharge flux

Ultra-local models:

- Explicit and detailed computation of Yukawa couplings in local (T-brane) backgrounds
- Fitting of parameters to phenomenologically viable couplings

Outline

I) Developments in F-theory compactifications

- 1. Codimension one and two
- 2. Perturbative and non-perturbative couplings
- 3. Massless and massive U(1) symmetries
- 4. G_4 fluxes and massless spectra

II) F-theory phenomenology

- 1. Hypercharge flux, 3-2 splitting, proton decay
- 2. Challenges for hypercharge flux
- 3. Semi-global model scans
- 4. non-SUSY GUTs, direct MSSM

I) Developments in F-theory compactifications

The magic of F-theory

F-theory epitomises the geometrisation of physics

[Vafa][Morrison, Vafa]'96

IIB language:

7-branes wrap 4-cycle $S \in X_6/\sigma$

F-theory language:

S = locus of fiber degeneration

IIB picture

compactification space varying axio-dilaton $\tau(z) \iff$ 7-branes D(-1) corrections

F-theory picture

base of fibration complex structure of fibre codim.-one singular fibres e.g. $\tau(z)$ [Billo et al.'11-'13]

But not all physics is geometrised...

F-theory@20, Caltech 2016 - p.8

F-theory via M-theory

F-theory approachable via duality with M-theory [Vafa'96] [Witten'96]

- M-theory on elliptic 4-fold $o \mathcal{N}=2$ theory in $\mathbb{R}^{1,2}$
- F-theory limit = suitable limit of vanishing fibre volume $v_{T^2} o 0$

Effective action by dimensional reduction of 11D sugra coupled to M2/M5-branes in this very subtle F-theory limit see talk by T Grimm

M2-branes on $\mathbb{R}^{1,2}$ vertical M5-brane instantons G_4 -flux '1 leg along sing. fibres' G_4 -flux '1 leg along smooth fibres'

D3-branes on $\mathbb{R}^{1,3}$ D3-brane instantons gauge fluxes bulk fluxes

F-theory via M-theory

F-theory approachable via duality with M-theory [Vafa'96] [Witten'96]

- M-theory on elliptic 4-fold $o \mathcal{N}=2$ theory in $\mathbb{R}^{1,2}$
- F-theory limit = suitable limit of vanishing fibre volume $v_{T^2} \rightarrow 0$

Effective action by dimensional reduction of 11D sugra coupled to

M2/M5-branes in this very subtle F-theory limit see talk by T Grimm

M-theory on
$$Y_{n+1}$$
 $\xrightarrow{\operatorname{Vol}(\mathbb{E}_{\tau}) \to 0}$ F-theory on Y_{n+1} \downarrow $R_A \sim \frac{1}{\mathbb{E}_{\tau}} \to 0$

Effective action in $\mathbb{R}^{1,8-2n}$

$$\xrightarrow{R_A \sim \frac{1}{R_B} \to 0}$$

Effective action in $\mathbb{R}^{1,9-2n}$

A lot of recent progress in exploring 6D and 4D effective action

[Grimm'10][Grimm, Kerstan, Palti, TW'11][Bonetti, Grimm, (Hohenegger)'11,'12 &13],

including α' -corrections and warping:

[Hayashi, Garcia-Etxebarria, Savelli, Shiu'12]; [Grimm, Savelli, Weissenbacher] [Grimm, Pugh]'13; [Grimm, Garcia-Etxebarria, Savelli, Shiu'12]; [Grimm, Savelli, Weissenbacher] [Grimm, Pugh]'13; [Grimm, Garcia-Etxebarria, Savelli, Shiu'12]; [Grimm, Garcia-Etxebarria, Savelli, Savel

[Martucci14];[Grimm, Pugh, Weissenbacher14/15];[Minasian, Savelli, Pugh'15]

Non-abelian gauge symmetry

Singularity type in co-dim. $1_{\mathbb{C}} \leftrightarrow \text{gauge algebra } \mathfrak{g}$ on 7-brane

Strategies to study F-theory on singular fibration:

- 1) Resolve singularity = moving in Coulomb branch of 3d M-theory
- 2) Deform singularity = Higgsing of singularity [Grassi, Halverson, Shaneson'13/14]

Consider resolutions: (provided classical Columb branch unobstructed)

• resolve singular point in fibre by tree of \mathbb{P}^1_i $i=1,\ldots,\mathrm{rk}(\mathfrak{g})$

$$i = 1, \dots, \operatorname{rk}(\mathfrak{g})$$

• Group theory of $\mathfrak{g} \iff$

extended Dynkin diagram

 $\mathbb{P}^1_i \leftrightarrow \text{simple roots}$

- Each node of Dynkin diagram
 - $\equiv \mathfrak{g}$ -gauge bosons

Absence of Coulomb branch

Crepant resolutions are not available when the classical Coulomb branch in M-theory is obstructed.

Possible reasons:

- 1) Obstructing gauge data, e.g. discrete C_3 -backgrounds see talk by D.Morrison
- 2) T-brane data (= non-abelian scalar VEVs) see talks by R. Valandro and R.Savelli
- 3) Geometric Stückelberg-type mechanisms or other Higgsings of U(1)s
- At least 2) and 3) might play a crucial role in F-theory GUTs more later.

Algebra versus group

g-gauge bosons:

- non-Cartan part from M2-branes along chains of $\mathbb{P}^1_i \leftrightarrow \text{simple}$ roots [Witten'96]
- Cartan part from $C_3 = A_i \wedge [E_i]$

- fibre types on K3 classified by Kodaira in 1-1 with ADE up to a few low rank outliers (II, III, IV) [Kodaira'63][Néron,64]
- on CY₃ extra monodromies along discriminant imply foldings of diagrams and yield all simple gauge algebras [Tate] [Bershadsky et al.'96]
- on CY₄ no further novelties along codimension-one
- ⇒ Non-abelian gauge algebra is local data
- \Rightarrow Topological property of gauge group G is global data:

$$\pi_1(G) = \mathrm{MW}_{\mathrm{Tor}}$$
 [Aspinwall, Morrison'98] [Morrison, Mayrhofer, Till, TW'14]

Codimension two and matter

Enhancement in codimension 2

massless extra states M2-branes wrapped from

[Katz, Vafa'96] [Witten'96]

Assume for simplicity existence of a zero-section σ_0

- σ_0 generates KK U(1) in reduction 4d \rightarrow 3d $(C_3 = A_0 \wedge \sigma_0 + \ldots \rightarrow A_0 : \mathsf{KK-U}(1))$
- Massless state in 4d: KK zero mode ψ_0 plus tower of KK states ψ_n of KK charge $q_{KK}=n$

$$\psi_0 \leftrightarrow \text{holomorphic curves } C \text{ in fibre w}/$$

$$q_{KK} = C \cdot \sigma_0 = 0$$

Codimension two and matter

Mori cone of eff. curves increases in codim 2: [Intriligator, Morrison, Seiberg'97]

Simplest example: Fundamental of $\mathfrak{su}(\mathfrak{n})$

$$F_i \rightarrow C_+ + C_-$$
simple root N -weight \bar{N} -weight

$$\lambda_i(\mathbf{N}) = \epsilon(C_{\pm}) C_{\pm} \cdot E_i, \quad \epsilon(C_{\pm}) = \pm 1$$

'Box Graphs' [Hayashi, Lawrie, Morrison, Schäfer-Nameki'14] [Esole, Yau'14]

• Find $\dim(\mathbf{R})$ new effective curves by adding 'original' \mathbb{P}^1_i (roots)

$$C_{+} + \sum_{i} k_{i} F_{i} \rightarrow \mathbf{N}$$
 $\epsilon = 1$ (yellow) $C_{-} + \sum_{j} l_{j} F_{j} \rightarrow \mathbf{\bar{N}}$ $\epsilon = 1$ (blue)

- allowing for positive/negative wrappings of M2-branes recreates full weight lattice of ${f R}+{f ar R}$
- specific signs
 → phases of classical Coulomb branch
 of 3D field theory [DeBoer, Hori, Oz][Aharony et al.'97],
 [Grimm, Hayashi'11][Hayashi, Lawrie, Nameki'13]
- $F_{1} \rightarrow C_{1}^{+} + C_{2}^{-}$ $F_{2} \rightarrow C_{2}^{+} + C_{3}^{-}$ $F_{3} \rightarrow C_{3}^{+} + C_{4}^{-}$ $F_{4} \rightarrow C_{4}^{+} + C_{5}^{-}$ $F_{0} \rightarrow C_{5}^{+} + C_{1}^{-}$

 $F_0 \rightarrow C_1 + C_5$

group theoretical classification of all possible enhanced fiber types

Codimension two

Fibers in codimen.-two assuming [Hayashi, Lawrie, Morrison, Schäfer-Nameki'14]

- 1) rank-one enhancement $\mathfrak{g} \to \mathfrak{h}$
- 2) smooth non-abelian discriminant component:
 - affine Dynkin diagram of \mathfrak{h} if embedding via $\mathfrak{h} \to \mathfrak{g} \oplus \mathfrak{u}(1)$
 - monodromy reduced Dynkin diagram of $\mathfrak h$ if embedding via $\mathfrak h o \mathfrak g \oplus \mathfrak s u(2)$ cf [Morrison,Taylor'12]

Further results include:

- Systematic description of 6D matter points for smooth 7-brane curves [Grassi, Morrison, 11]
- Inclusion of self-intersecting 7-branes in $6D \rightarrow \text{higher tensor reps.}$ [Morrison,Taylor'12] [Cvetič,Klevers,Piragua,Taylor'15] see talk by D. Klevers
- Alternative description of matter via multi-pronged strings made visible through deformations [Grassi, Halverson, Shaneson'13/4]

Codimension three and couplings

Origin of unsuppressed Yukawa couplings in M/F-theory:

- Incoming M2-brane on fibral curve Σ^1
- Splitting $\Sigma_1 \to \Sigma_2 + \Sigma_3$ in fiber \mathfrak{f}_p over point p

$$-[\Sigma_1] + [\Sigma_2] + [\Sigma_3] = 0 \in H_2(\mathfrak{f}_p, \mathbb{Z})$$

• State $\Phi_i \leftrightarrow \mathsf{M2}$ on $[\Sigma^i]$ Coupling $\tilde{\Phi}_1\Phi_2\Phi_3$ from splitting of $\mathsf{M2}$ at point p of fiber 'enhancement'

- First application to GUT models [Beasley, Heckman, Vafa] [Donagi, Wijnholt]'08
- Fiber structure in codim.-3 [Esole, Yau] [Marsano, Schäfer-Nameki] [Krause, Mayrhofer, TW']'11
- Quantitative evaluation in local approach see talk by F. Marchesano [Font, Ibanez, Marchesano, Regalado'12] [Font, Marchesano, Regalado, Zoccarato] [Carta et al]'15

Non-perturbative couplings

$$\Sigma_1 + \Sigma_2 + \Sigma_3 = \partial \Gamma_{np}$$
 [Martucci,TW'15]

- Γ_{np} has 2 legs in base and 1 leg in fiber
- $vol(\Gamma_{np}) \neq 0$ in F-theory limit

Euclidean M2-brane on $x_0 \times \Gamma_{\rm np}$ + timelike M2-branes on $(-\infty, x_0] \times (\Sigma_1 + \Sigma_2 + \Sigma_3)$

F-term coupling requires M2-instanton to form BPS bound state with M5-instanton, i.e. **fluxed M5-instanton** $\Gamma_{np} \rightarrow T_3|_{M5}$

extra suppression by Kähler moduli in F-theory limit

non-perturbative homol. relation

 $\longleftrightarrow egin{array}{ll} ext{volume suppressed coupling} \ & \prod_i \Phi_i e^{-S_{ ext{M5}}} \end{array}$

Corrections to Yukawas

Example: 10 10 5 coupling in SU(5) GUT model [Martucci,TW'15]

- Pert. Yukawa requires $[\mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{5}}]_p = 0 \text{ in } Y_4$
- Pert. coupling is generically of rank one if exists only a single Yukawa point [Cecotti, Cheng, Heckman, Vafa'09]
- On instanton D generically $[\mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{5}}]_{D,p} \neq 0$
- $dT_3 = -\delta^4(\mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{10}} + \mathbb{P}^1_{\mathbf{5}})$ \Rightarrow correction $\mathcal{O}_{\mathbf{np}} = \mathbf{10} \, \mathbf{10} \, \mathbf{5} \, e^{-S}$

Summing up $\mathcal{O}_{\mathrm{p}} + \mathcal{O}_{\mathrm{np}}$ changes rank

Different to contribution considered in [Marchesano, Martucci'10] that needs to be evaluated

The quest for U(1)

Motivation to study non-Cartan U(1)s:

- desirable for phenomenology as extra selection rules (proton decay, flavour structure,...)
- charged singlets plays role in phenomenology e.g. as neutrinos or in SUSY breaking
- precursor to construction of large class of gauge fluxes
- U(1) symmetries and instantons have rich interplay in Type II and heterotic compactifications
 What's the analogue in F-theory?

General fact from expansion $C_3 = \sum_{i=1}^{n} A_i \wedge w_i$:

non-Cartan $U(1)s \leftrightarrow extra$ resolution divisors not fibered over base 4-cycle

These correspond to extra sections of the fibration. [Morrison, Vafa'96]

[Klemm, Mayr, Vafa'96]

Mordell-Weil group

1) Elliptic curve: $\mathcal{E} = \mathbb{C}/\Lambda$ \leftrightarrow addition of points

Rational points:

• have $\mathbb Q$ -rational coordinates (x,y,z) in Weierstrass model

$$y^2 = x^3 + fxz^4 + gz^6$$
, $[x:y:z] \in \mathbb{P}^2_{2,3,1}$

$$[x:y:z] \in \mathbb{P}^2_{2,3,1}$$

• form an abelian group under addition = Mordell-Weil group E

$$E = \mathbb{Z}^r \oplus \mathbb{Z}_{k_1} \oplus \cdots \oplus \mathbb{Z}_{k_n}$$

2) Elliptic fibration: $\pi: Y \to \mathcal{B}$ Rational section σ

$$\mathcal{B} \ni b \mapsto \sigma(b) = [x(b) : y(b) : z(b)]$$

- $\sigma(b)$ is a K-rational point in fiber
- degenerations in codimension allowed

Mordell-Weil group

Mordell-Weil group E(K)= group of rational sections

- zero-element = zero-section $\sigma_0: b \to [1:1:0]$ in $y^2 = x^3 + fxz^4 + gz^6$
- group law = fiberwise addition

$$E(K) = \underbrace{\mathbb{Z}^r}_{\mathbf{free \, part}} \oplus \underbrace{\mathbb{Z}_{k_1} \oplus \cdots \oplus \mathbb{Z}_{k_n}}_{\mathbf{torsion \, part}}$$

Physical significance:

• Free part $\leftrightarrow U(1)$ gauge symmetries

$$\sigma_i \xrightarrow{\mathrm{Shioda}} \mathsf{w}_i = [\sigma_0] - [\sigma_i] - (\mathrm{base\, class}) + \dots$$
 $C_3 = A_i \wedge \mathsf{w}_i$, A_i : $U(1)_i$ potential

• Torsion part \leftrightarrow Global structure of non-ab. gauge groups $(\pi_1(G))$ [Aspinwall, Morrison'98], [Mayrhofer, Till, Morrison, TW'14]

Systematic recent study of U(1)s via rational sections:

Anderson, Bizet, Borchmann, Braun, Braun, Choi, Collinucci, Cvetič, Etxebarria, Grassi, Grimm, Hayashi,

 $Keitel, Klevers, K\"{u}ntzler, Krippendorf, Oehlmann, Kapfer, Klemm, Lawrie, Lopes, Mayrhofer, Mayorga, Allender, Mayorga, Mayrhofer, Mayorga, Mayorga,$

Morrison, Park, Palti, Piragua, Rühle, S-Nameki, Song, Valandro, Taylor, TW, Wong. . .

F-theory@20, Caltech 2016 - p.22

Understanding U(1)s

Questions:

- 1. Which complex structure restrictions lead to extra sections and thus to extra U(1)s?
- 2. What is the fiber structure in codim 2 and 3, i.e. which charged matter and couplings exist?
- 3. How does one combine this with non-abelian gauge symmetry?

Different approaches:

1) Construct most generic fibration with at least n extra sections

see talks by M Cvetič and D. Klevers

- valid over any base such that fibration exists: $rk(MW)(Y) \ge n$
- includes full analysis of charged singlet sector
- 2) Construct full fibrations with concrete bases includes 'non-generic' base dependent U(1)s
- 3) Classify possible fibre structures without concrete realization

Towards classifying U(1) charges

[Lawrie, Schäfer-Nameki, Wong]

Classification of possible charges from structure of consistent fibre intersections

Assumptions:

- smooth rational section
- smooth divisors in base

Example for $SU(5) \times U(1)$:

$$U(1)$$
 charges of $\bar{\bf 5}$ matter for

$$U(1)$$
 charges of **10** matter for

$$U(1) \text{ charges of $\bar{\bf 5}$ matter for } \begin{cases} I_5^{(01)} \in \{-15, -10, -5, 0, +5, +10, +15\} \\ I_5^{(0|1)} \in \{-14, -9, -4, +1, +6, +11\} \\ I_5^{(0||1)} \in \{-13, -8, -3, +2, +7, +12\} \end{cases}$$

$$U(1) \text{ charges of $\bf 10$ matter for } \begin{cases} I_5^{(01)} \in \{-15, -10, -5, 0, +5, +10, +15\} \\ I_5^{(0|1)} \in \{-12, -7, -2, +3, +8, +13\} \\ I_5^{(0||1)} \in \{-9, -4, +1, +6, +11\} \end{cases}.$$

Discrete symmetry in F-theory

Discrete \mathbb{Z}_k gauge symmetry by Higgsing U(1) w/ particle of charge k:

- Higgs $\Phi = \varphi e^{ic}$: $A \to A + d\chi$, $c \to c + k\chi$
- After integrating out φ : $S \simeq \int (dc kA)^2 + \dots$

Translation into F/M-theory: [Camara, Marchesano, Ibanez] [Grimm, Kerstan, Palti, TW]'11

ullet massive \mathbb{Z}_k gauge field and Stückelberg axion c from expansion

$$C_3 = c \wedge \alpha_3 + A \wedge \mathbf{w}_2, \quad \mathbf{dw_2} = \mathbf{k} \alpha_3$$

• $\int_{11D} (dC_3)^2 \simeq \int_{11D} (dc \wedge \alpha_3 - A \wedge dw_2)^2 + \ldots \Longrightarrow \int (dc - kA)^2 + \ldots$

 $\mathbb{Z}_{\mathbf{k}}$ symmetry in F & M-theory $\leftrightarrow \operatorname{Tor} H^3(Y,\mathbb{Z}) = \mathbb{Z}_k$ Indeed confirmed in F/M-theory in [Mayrhofer,Palti,Till,TW'14]

k=1: [Braun, Collinucci, Valandro'14] [Martucci, TW'15] ightarrow terminal singularity (Coulomb branch obstructed by Stückelberg)

k > 1: Alternative description via smooth fibrations without sections

 $[Morrison, Taylor] [Anderson, Grimm, Etxebarria, Keitel] \ [Klevers, Mayorga, Oehlmann, Piragua, Reuter] \\ [Mayrhofer, Palti, Till, TW] \ [Cvetič, Klevers, Poretschkin] [Lin, Till, Mayrhofer, TW] \ '14/15 \\ F-theory@20, \ Caltech \ 2016 - p.25 \\ [Control of the control of t$

G_4 -Fluxes

(Gauge) fluxes described by $G_4 \in H^4(Y_4)$ with '1 leg along fiber'

a)
$$\int_{\hat{Y}_4} G_4 \wedge D_a \wedge D_b = 0$$

a)
$$\int_{\hat{Y}_4} G_4 \wedge D_a \wedge D_b = 0$$
 b) $\int_{\hat{Y}_4} G_4 \wedge D_a \wedge Z = 0$ $\forall D_i \in H^2(B), Z$: fibre

subject to following constraints:

- Quantisation: $G_4 + \frac{1}{2}c_2(\hat{Y}_4) \in H^4(\hat{Y}_4, \mathbb{Z})$ [Witten'96] [Collinucci, Savelli '10 & '12]
- D3/M2 tadpole: $N_{M_2}+\frac{1}{2}\int_{\hat{Y}_4}G_4\wedge G_4=\frac{1}{24}\chi(\hat{Y}_4)$ [Sethi, Vafa, Witten'96]
- F-term condition: $G_4 \in H^{2,2}(\hat{Y}_4)$ [Gukov, Vafa, Witten'99] \leftrightarrow superpotential $W=\int_{\hat{Y}_4}\Omega\wedge G_4$ for $h^{3,1}(\hat{Y}_4)$ compl. structure moduli
- D-term condition: $J \wedge G_4 = 0$ $\leftrightarrow U(1)_i$ D-term $D_i = -\frac{2}{\mathcal{V}_P} \int_{\hat{Y}_A} J_B \wedge G_4 \wedge \mathsf{w}_i$ from F/M- theory effective action [Grimm '10] [Grimm, Kerstan, Palti, TW '11] [Cvetič, Grimm, Klevers'13]

G_4 -Fluxes

Construction requires detailed knowledge of geometry of 4-fold Y_4

$$\mathbf{H^4(Y_4)} = \mathbf{H}^{\mathbf{2,2}}_{\mathrm{vert}}(\mathbf{Y_4}) \oplus \mathbf{H}^{\mathbf{4}}_{\mathrm{hor}}(\mathbf{Y_4}) \oplus \mathbf{H}^{\mathbf{2,2}}_{\mathrm{rest}}(\mathbf{Y_4})$$

- = decomposition orthogonal w.r.t. intersection form
- 1) $\mathbf{H}^{\mathbf{2,2}}_{\mathrm{vert}}(\mathbf{Y_4})$ generated by elements of $H^{1,1}(Y_4) \wedge H^{1,1}(Y_4)$: appears only in D-term, not in F-term
 - fluxes associated with massless U(1)s

```
[Grimm,TW '10] [Braun,Collinucci,Valandro] [Krause,Mayrhofer,TW'11] [Grimm,Hayashi]'11 if C_3=A\wedge {\sf w}\Rightarrow G_4=F\wedge {\sf w} F\in H^{1,1}(B_3)
```

- extra gauge fluxes e.g. 'spectral cover' fluxes [Marsano, Schäfer-Nameki'11]
- Systematics of $H^{2,2}_{\mathrm{vert.}}(\hat{Y}_4)$: find all independent linear combinations of $H^{1,1} \wedge H^{1,1}$ [Cvetič,Klevers,Grassi,Piragua'13] [Braun,Grimm,Keitel'13] [Bizet,Klemm,Lopez'14] [Lin,Mayrhofer,Till,TW'15]

G_4 -Fluxes

2) $\mathbf{H}_{\mathrm{hor}}^{4}(\mathbf{Y_{4}})$ obtained by variation of Hodge structure from $H^{4,0}(Y_{4})$ appears only in F-term, not in D-term [Greene, Morrison, Plesser'94]

```
[Grimm, Ha, Klemm, Klevers'09] [Braun, Collinucci, Valandro '11] 
[Intriligator, Jockers, Mayr, Morrison, Plesser'12] [Bizet, Klemm, Lopez'14]
```

- Poincaré dual to non-vertical 4-cycles algebraic for special complex structure e.g. of form [Braun, Collinucci, Valandro '11]
- applications to 'landscaping' and moduli stabilisation [Bizet,Klemm,Lopez'14] [Braun,Watari'15] [Taylor,Wang'15]
- 3) $H_{rest}^{2,2}(Y_4)$: the rest [Braun, Watari'14] appears neither in D-term, nor in F-term
 - non-vertical algebraic cycles available for generic complex structure
 - play crucial role in F-theory GUTs

Matter multiplicities in F-theory

of charged zero modes \leftrightarrow background gauge field C_3 with $G_4 = dC_3$

chiral index:

[Grimm, Hayashi]'11 . . .

$$\nu_+ - \nu_- = \int_{\mathcal{C}_4} G_4$$
 [Donagi, Wijnholt'09], [Braun, Collinucci, Valandro] [Marsano, S-Nameki], [Krause, Mayrhofer, TW],

- What is the spectrum of states beyond the chiral index?
 - \Longrightarrow need C_3 beyond its field strength [Curio, Donagi'98], ...

$$0 \longrightarrow \underbrace{J^{2}(\hat{Y}_{4})}_{\text{\oint C_{3} 'Wilson lines'$}} \longrightarrow \underbrace{H^{4}_{D}(\hat{Y}_{4}, \mathbb{Z}(2))}_{\text{$Deligne cohomology}} \xrightarrow{\hat{c}_{2}} \underbrace{H^{2,2}_{\mathbb{Z}}(\hat{Y}_{4})}_{\text{field strength G_{4}}} \longrightarrow 0$$

Framework for computation of non-chiral states: [Bies, Mayrhofer, Pehle, TW'14]

T-branes/Gluing data

In Higgs-bundle picture model intersecting 7-branes by varying VEV of scalar field $\Phi \in H^0(S, K_S)$ [Beasley, Heckman, Vafa] [Donagi, Wijnholt]'08

$$F^{(0,2)} = 0, \qquad \bar{\partial}_A \Phi = 0, \qquad J \wedge F + i \left[\Phi, \Phi^{\dagger}\right] = 0$$

- $\Phi(x) \leftrightarrow$ normal deformations in total space of $K_S \to S$
- location of branes given by spectral cover $\det(s-\Phi)=0$

T-brane data \leftrightarrow entries in Φ not affecting geometric location

[Cecotti, Cordova, Heckman, Vafa'10]

Equivalently described as gluing morphism [Donagi, Wijnholt'11]

Conceptual interest in 'T-branes/gluing':

Extra data not present in pure geometry as it does involve 'gauge flux' In particular, not accessible via Coulomb branch of resolution

Phenomenological relevance of 'T-branes/gluing':

Degrees of freedom affect matter spectrum and couplings

Gluing data/T-branes

How is gluing data captured in compactifications?

- 1) 6d approach of [Anderson, Heckman, Katz'13]
 - on X_{smth} in singular limit
 - Compensating flux captured in G_4 on resolved space

Encoded in element in 'singular limit' of Deligne cohomology

$$0 \longrightarrow \underbrace{J^2(X_{smth})}_{\text{\oint C_3 'Wilson lines'$}} \longrightarrow \underbrace{H^4_D(X_{smth},\mathbb{Z}(2))}_{\text{$Deligne cohomology}} \stackrel{\hat{c}_2}{\longrightarrow} \underbrace{H^{2,2}_{\mathbb{Z}}(X_{smth})}_{\text{field strength G_4}} \longrightarrow 0$$

2) Approach of [Collinucci, Savelli'14] see talks by Valandro, Savelli

Can be understood via certain matrix factorizations directly in singular limit

II) F-theory phenomenology

F-theory GUT Phenomenology

initiated by [Beasley, Heckman, Vafa; Donagi, Wijnholt'08]

- GUT breaking $SU(5) \to SU(3) \times SU(2) \times U(1)_Y$: hypercharge flux due to localisation of GUT brane in codimension
- Doublet-triplet (3-2) splitting (and μ -problem): localisation of $\bar{\bf 5}_m$, ${\bf 5}_{H^d}$ on separate curves
- Proton stability: U(1) symmetries and localisation
- Detailed Flavour structure: locally or via Froggatt-Nielsen/U(1)s

Almost all of these are by now known in global examples - with one crucial exception to be discussed momentarily.

SU(5) GUT breaking

SU(5) field strength on 7-brane

$$\mathcal{F} = \underbrace{\mathbb{F}}_{4 \, \mathrm{large \, dim.}} + \underbrace{F}_{\mathrm{along} \, S}$$

Decomposition:

$$F = \sum_{a} T_{SU(3)}^{a} F_{a} + \sum_{i} T_{SU(2)}^{i} F_{i} + T^{Y} F_{Y}$$

hyperchage generator
$$T_Y = \text{diag}(-2, -2, -2, 3, 3) \subset SU(5)$$

Vacuum expectation value $\langle F_Y \rangle = \langle dA_Y \rangle \neq 0$ on GUT brane S

- $SU(5) \longrightarrow SU(3) \times SU(2) \times U(1)_Y$ ${f 24}
 ightarrow ({f 8},{f 1})_{0_Y} + ({f 1},{f 3})_{0_Y} + ({f 1},{f 1})_{0_Y} + ({f 3},{f 2})_{{f 5}_Y} + ({f \overline{3}},{f 2})_{-{f 5}_Y}$ $\overline{\bf 5} \to (\overline{\bf 3}, {\bf 1})_{2_{\rm V}} + ({\bf 1}, {\bf 2})_{-3_{\rm V}}$ ${f 10}
 ightarrow ({f 3},{f 2})_{1_{f Y}} + ({f \overline 3},{f 1})_{-4_{f Y}} + ({f 1},{f 1})_{6_{f Y}}$,
 - $\mathbf{5}_{H} \
 ightarrow (\mathbf{3},\mathbf{1})_{-2_{Y}} + (\mathbf{1},\mathbf{2})_{3_{Y}}, \ \ \overline{\mathbf{5}}_{H} \
 ightarrow (\overline{\mathbf{3}},\mathbf{1})_{2_{Y}} + (\mathbf{1},\mathbf{2})_{-3_{Y}}$
- offers way to project out exotic states $(3,2)_{5_Y} + (\overline{3},2)_{-5_Y}$ from 24 for certain twisted embeddings [BHV'08]
- globally described by $G_4 = {}'F_Y \wedge w_Y'$, $w_Y = \sum_i l_i E_i$

Global constraints

- Naively, GUT breaking by $\langle F_Y \rangle \neq 0$ on GUT brane S is a local effect.
- Challenge: $U(1)_Y$ must remain massless by avoiding Stückelberg mass

Masslessness constraint:

[Buican et al.'06] [BHV'08][DW'08]

 $\int_C F_Y \neq 0$ only if curve $C \subset S$ has

'contribution' homologically trivial on $B_{
m 3}$

- Stückelberg couplings $\int_{\mathbb{R}^{1,3}} F_Y \wedge c_2^{\alpha}$ from $\int_{M^{11}} C_3 \wedge G_4^{\mathrm{4D}} \wedge G_4^{\mathrm{int.}}$
- c_2^{α} dual to c_1^{α} from $C_3 = c_1^{\alpha} \wedge w_{\alpha}$ $w_{\alpha} \in H^{1,1}(B_3)$
- $G_4^{\mathrm{4D}} = \mathbf{F}_Y \wedge \mathsf{w}_Y \Rightarrow \int_{\hat{Y}_4} G_4^{\mathrm{int.}} \wedge \mathsf{w}_Y \wedge \mathsf{w}_\alpha \stackrel{!}{=} 0 \qquad \forall \; \mathsf{w}_\alpha \in H^{1,1}(B_3)$

$$\int_{S} F_{Y} \wedge \iota^{*} \mathsf{w}_{\alpha} \stackrel{!}{=} 0 \qquad \forall \mathsf{w}_{\alpha} \in H^{1,1}(B_{3})$$

• Note: associated $G_4 \in H^{2,2}_{rest}(Y_4)$ [Braun, Watari'14] [Mayrhofer, Palti, TW'13]

Explicit realizations in compact Calabi-Yau fourfolds are known:

[Marsano, Saulina, S-Nameki] [Blumenhagen, Grimm, Jurke, TW]'09

Proton Decay

Conventional SU(5) GUTs suffer from too large proton decay

Dimension 4: $W \supset \lambda 10 \overline{5}_{m} \overline{5}_{m}$

- \bullet gives rise to R-parity violating $u^c_R\,d^c_R\,d^c_R$, $L\,L\,e^c_R$, $Q\,L\,d^c_R$
- Experimental bound: $\lambda \leq 10^{-12}$
- Solution: Global U(1) to distinguish $\overline{\bf 5}_{\bf m}$ and $\overline{\bf 5}_{\bf H}$ [Watari et al.'09] implies: $C_{\bf 5_m}$, $C_{\bf 5_H}$ are different curves [BHV, DW '08]

Dimension 5: focus on effective terms of type $W \supset \frac{c^2}{M_{\rm eff}} {\bf 10\,10\,10\,\bar{5}_m}$

• via triplet exchange, e.g. $\mathbf{5_H} = (T_u, H_u), \overline{\mathbf{5}_H} = (T_d, H_d):$ $QQT_u + QLT_d + M_{KK}T_uT_d \rightarrow \frac{1}{M_{KK}}QQQL$ $\leftrightarrow \text{ present if } T_u, T_d \text{ on same curve } C_{5_H}$

• Solution: U(1) charge must distinguish also ${\bf 5}_{H_u}$ and ${\bf \overline{5}}_{H_d}$ implies: $C_{{\bf 5}_{H_u}}$ and $C_{{\bf \overline{5}}_{H_d}}$ are different curves [BHV, DW '08]

The need for U(1) symmetries

Sufficient criterion for stable proton:

- Extra U(1) selection rules must distinguish between matter curves
- Example $SU(5) \times U(1)$: $\mathbf{10}_{q_1}$ $(\mathbf{\bar{5}_m})_{q_2}$ $(\mathbf{\bar{5}_{H^u}})_{q_3}$ $(\mathbf{\bar{5}_{H^d}})_{q_4}$ $\mathbf{10}\,\mathbf{\bar{5}_m}\,\mathbf{\bar{5}_H}: q_1 + q_2 + q_4 \stackrel{!}{=} 0$ $\mathbf{10}\,\mathbf{10}\,\mathbf{\bar{5}_H}: \,2q_2 + q_3 \stackrel{!}{=} 0$ $\mathbf{10}\,\mathbf{10}\,\mathbf{\bar{5}_m}: \,q_1 + 2q_2 \stackrel{!}{\neq} 0$
- $q_{\mathbf{5}_{H_u}} \neq -q_{\overline{\mathbf{5}}_{H_d}}$ dubbed 'Peccei-Quinn' U(1)

Further benefits: [BHV '08], ...

- \checkmark automatically forbids leading order μ term $\mu H_u H_d$
- ✓ window to addressing doublet-triplet splitting via hypercharge flux
- Studied first semi-locally in spectral covers [Marsano, Saulina, S.-Nameki '09-12] Geometry globally realized in minimal form in [Mayrhofer, Palti, TW] '12

$SU(5) \times U(1) \times U(1)$

[Borchmann, Mayrhofer, Palti, TW] [Cvetič, Klevers, Grassi, Piragua]'13

Explicit description of Y_4 as hypersurface in $\mathbb{P}^2[3]$:

5 inequivalent toric $SU(5) \times U(1) \times U(1)$ realisations

Example:

$$0 = b_{0,2}w^2s_0^2\mathsf{v}^2\mathsf{u} + c_{2,1}ws_0\mathsf{w}\mathsf{v}^2 + d_{0,2}w^2\mathsf{v}s_0^2s_1\mathsf{u}^2 + b_1s_0s_1\mathsf{w}\mathsf{v}\mathsf{u} + c_1\mathsf{w}^2\mathsf{v}s_1 + d_{2,2}w^2s_0^2s_1^2\mathsf{u}^3 + d_1s_0s_1^2\mathsf{w}\mathsf{u}^2 + b_2s_1^2\mathsf{w}^2\mathsf{u}$$

Curve on $\{w=0\}$	Matter representation	
$\{b_1=0\}$	$\mathbf{10_{-1,2}}$	10
$\{b_{0,2} = 0\}$	${f 5}_{-3,1}$	_
$\{c_{2,1}=0\}$	$\mathbf{5_{2,-4}}$	$5{ m H}^{ m u}$
$\{c_1=0\}$	$\mathbf{5_{2,6}}$	$\mathbf{5_{m}}$
$\{b_1b_2 - d_1c_1 = 0\}$	${f 5}_{-3,-4}$	$\mathbf{5_{H^d}}$
${d_{2,2}b_1^2 + d_1(b_{0,2}d_1 - d_{0,2}b_1 = 0}$	$\mathbf{5_{2,1}}$	_

In addition: 6 charged singlet curves, including ${f 1_{5,10}}\equiv N_R^c$

Hypercharge - Models (I)

Two types of approaches:

• All 3 families on one ${f 10}$ and ${f ar 5}_m$ curve - no further U(1)s required ultra-local versions studied by

```
[Font, Ibanez, Marchesano, Regalado'12], [Font, Marchesano, Regalado, Zoccarato'], \\ [Carta, Marchesano, Zoccarato]'15
```

Extra U(1)s can be present to distinguish individual family curves

```
[Dudas, Palti'09/10] [Krippendorf, S-Nameki, Wong'15], ...
```

Flavour structure via Froggatt-Nielsen mechanism (singlet VEVs)

However:

Two generic problems remain - both indirectly related to our as yet incomplete understanding of 'massive U(1)s' and their realization in F-theory

Hypercharge - Models (II)

Prior to SU(5): GUT universal gauge flux F

$$\mathbf{10} \leftrightarrow \text{ bundle on } C_{10} \text{ .w/curvature } F_{10} : \chi_{\mathbf{10}} = \int_{C_{10}} F_{10}$$

$$\mathbf{5} \leftrightarrow \text{bundle on } C_5 \text{ w/curvature } F_5: \qquad \chi_{\mathbf{5}} = \int_{C_5} F_5$$

After SU(5):

•
$$\mathbf{10} \to (\mathbf{3}, \mathbf{2})_{1_Y} + (\overline{\mathbf{3}}, \mathbf{1})_{-4_Y} + (\mathbf{1}, \mathbf{1})_{6_Y}$$

 $\chi_{(\mathbf{3}, \mathbf{2})_1} = \int_{C_{10}} (F_{10} + F_Y), \qquad \chi_{(\overline{\mathbf{3}}, \mathbf{1})_{-4}} = \int_{C_{10}} (F_{10} - 4F_Y),$
 $\chi_{(\mathbf{1}, \mathbf{1})_6} = \int_{C_{10}} (F_{10} + 6F_Y)$

• 5
$$\rightarrow$$
 (3,1)₋₂ $+$ (1,2)₃ $\chi_{(\mathbf{3},\mathbf{1})_{-2}} = \int_{C_{\mathbf{5}}} F_5 - 2F_Y$, $\chi_{(\mathbf{1},\mathbf{2})_3} = \int_{C_{\mathbf{5}}} F_5 + 3F_Y$

Curve	MSSM	Chirality	Curve	MSSM	Chirality
$\boxed{ \ 10_a \ }$	$(3,2)_{1}$	M_a	5_i	$(3,1)_{-2}$	M_i
	$({f ar 3},{f 1})_{-4}$	$M_a - N_a$		$(1, 2)_3$	$M_i + N_i$
	$(1,2)_{6}$	$M_a + N_a$			

Hypercharge - Models (III)

Curve	MSSM	Chirality	Curve	MSSM	Chirality
$\overline{f 10}_a$	$({f 3},{f 2})_{f 1}$	M_a	5_i	$(3,1)_{-2}$	M_i
	$({f ar 3},{f 1})_{-{f 4}}$	$M_a - N_a$		$(1, 2)_3$	$M_i + N_i$
	$({f 1},{f 2})_{f 6}$	$M_a + N_a$			

Minimal would-be scenario: Complete matter multiplets from curves

$$1 \times C_{10}$$

$$1 \times C_{\mathbf{\bar{5}_m}}$$
,

$$1 \times C_{\mathbf{10}}, \qquad 1 \times C_{\mathbf{\bar{5}_m}}, \qquad 1 \times C_{\mathbf{\bar{5}_{H_d}}}, \qquad 1 \times C_{\mathbf{5_{H_u}}}$$

$$1 \times C_{\mathbf{5}_{\mathbf{H_{u}}}}$$

• No exotics:
$$M_{10} \stackrel{!}{=} 3$$
, $N_{10} \stackrel{!}{=} 0$ $M_{\bar{5}_m} \stackrel{!}{=} 3$, $N_{\bar{5}_m} \stackrel{!}{=} 0$

$$M_{\bf \bar{5}_m} \stackrel{!}{=} 3$$
, $N_{\bf \bar{5}_m} \stackrel{!}{=} 0$

Doublet-triplet splitting:

$$M_{\mathbf{5}_{H_{u}}} \stackrel{!}{=} 0 \stackrel{!}{=} M_{\mathbf{5}_{H_{d}}}, \qquad N_{\mathbf{5}_{H_{u}}} \stackrel{!}{=} 1 \stackrel{!}{=} -N_{\mathbf{5}_{H_{d}}}$$

$$N_{\mathbf{5}_{H_u}} \stackrel{!}{=} 1 \stackrel{!}{=} -N_{\mathbf{5}_{H_d}}$$

forbidden by $U(1)_Y$ anomalies:

$$\sum_{i} q_{i} N_{i} + \sum_{a} q_{a} N_{a} = 0, \quad \sum_{i} N_{i} = \sum_{a} N_{a} = 0, \quad \sum_{i} q_{i}^{\alpha} q_{i}^{\beta} N_{i} + 3q_{a}^{\alpha} q_{a}^{\beta} N_{a} = 0$$

excludes just $N_{\mathbf{5}_{H^u}} = 1 = -N_{\mathbf{5}_{H^d}}$ unless $q_{\mathbf{5}_{H^u}} = q_{\mathbf{5}_{H^d}}$

Hypercharge anomalies

[Marsano], [Dudas, Palti]'11, [Palti, 12]

No couplings $F_Y \wedge c_{lpha}^2 \implies$ no Green-Schwarz terms can cancel specific hypercharge anomalies

→ No proper hypercharge anomalies must occur in field theory!

In presence of extra U(1) symmetry:

1.
$$\mathcal{A}_{U(1)_Y^2 - U(1)} \overset{!}{\propto} \mathcal{A}_{\mathbf{SU(5)^2} - U(1)}$$

2.
$$A_{U(1)_Y^2-U(1)_Y} \overset{!}{\propto} A_{SU(5)^2-SU(5)}$$

3.
$$\mathcal{A}_{U(1)_Y-U(1)_A-U(1)_B} \stackrel{!}{=} 0$$

For models with $q_{H_u} \neq -q_{H_d}$ 1. - 3. leave two options:

- Either allow for vector-like exotics
- or for incomplete GUT multiplets from different matter curves

A challenge

In all explicit F-theory models known so far*: matter curve $C = \mathsf{GUT}$ divisor $S \cap \mathsf{divisor}\ b = 0$ on B_3

- restriction $F_Y|_C \stackrel{!}{=} 0$ for massless $U(1)_Y$ boson
- clashes with chiral doublet triplet splitting on split Higgs curves

$$\chi_{(\mathbf{3},1)_{-2Y}} = \int_{C_{\mathbf{5_H}}} (F - 2F_Y) = 0, \qquad \chi_{(1,\mathbf{2})_{3Y}} = \int_{C_{\mathbf{5_H}}} (F + 3F_Y) = \pm 1$$

⇒ need new class of fibrations?

Investigation in better-understood Type IIB models (no E6-coupling!) shows:

[Mayrhofer, Palti, TW'13]

- Well-defined Type IIB models with massless hypercharge and $F_Y|_{C_H} \neq 0$ exist thanks to orientifold odd components of Higgs curve
- All anomalies are automatically cancelled
- Can even relax anomaly constraints if extra U(1) is geometrically massive!

A challenge

Current global models realize doublet triplet-splitting with $q_{H_u}=-q_{H_d}$

- non-split ${\bf 5}_H$ curve and arrange for line bundle cohomologies appropriately not done yet, but in principle possible
- or: Split $C_H o C_{H_u} + C_{H_d}$ without changing the charges [Braun, Collinucci, Valandro'14]

Drawback:

- no U(1) available to suppress dim 5 proton decay
- ok with bounds with intermediate SUSY [Ibanez, Marchesano et al.'13]

Semi-global model building

Study phenomenology in absence of full compact models Need criterion for possible U(1) charges and consistent flux configurations

- 1) Spectral cover models [Marsano, Saulina, S-Nameki, 09-, 12], ...
 - correctly describes charged matter and SU(5) sector, but not completely reliable for U(1) symmetries
 - Mixed abelian hypercharge anomalies not automatically cancelled [Palti'12]
 → consistency less clear
- 2) Classify all possible Higgsing chains $E_8 \to SU(5) \times U(1)^5$ impose absence of hypercharge anomalies [Dudas, Palti'09-'10] [Baume, Palti'15] [Palti'12, '16]
- 3) U(1) charges from consistent <u>smooth</u> fibers
 [Lawrie, S-Nameki, Wong] [Krippendorf, S-Nameki, Wong] '15
 - This is a proper subset of all possible configurations.
 - Contains all possible Higgsing chains $E_8 \to SU(5) \times U(1)^5$ of 2)
 - ullet In addition impose absence of $U(1)_Y$ anomalies on spectrum

An exhaustive scan

over all such SU(5) GUT models with up to 2 U(1)s within class 3)

Constraints:

[Krippendorf, S-Nameki, Wong'15]

- 1. Absence of anomalies and of exotics ightarrow allow for incomplete GUT multiplets from curves
- 2. Absence of dim 4 and 5 proton decay operators by U(1)s (Superpotential and Kahler potential) and of tree-level μ -term
- 3. Rank 1 top Yukawa coupling, rank 1 or rank 0 down Yukawa coupling
- 4. Generation of subleading Yukawas by suitable singlet VEVs without re-generating terms in 2) (Froggatt-Nielsen)
- 5. Phenomenologically viable flavour hierarchy patterns

Best results: see talk by J.Wong

- 1) New geometrically realized $SU(5) \times U(1) \times U(1)$ model satisfying 1) 4) based on [Cvetič, Klevers, Piragua, Taylor, 15]
- 2) Charge configuration for models with 1) 5) without known geometric realization

Complete GUT multiplets

Necessarily includes vectorlike exotics

Strategy prior to Dec 2015:

- Decouple these by $\mathcal{O}(1)$ singlet VEVs $\langle S \rangle \Phi_1 \Phi_2$
- Problem: Danger of re-generating too big unwanted couplings such as proton decay, μ -terms etc.

New strategy in view of LHC 750 excess: [Palti'16]

- ullet Breaking of U(1) around TeV scale to keep singlets and vectorlike pairs light
- Links TeV singlet mass to smallness of μ -term and thus SUSY

Resulting singlet and vectorlike fermions of the right form to fit 750 diphoton excess (in broad brushes)

Other stringy interpretations:

Complete GUT multiplets

Unification preserved provided singlets effectively behave like complete

multiplets [Marsano, Saulina, S-Nameki, 09]

Example: [Palti'16]

GUT Field	U(1) Charge	U(1) Flux	Hyper Flux	MSSM	Exotics
10_E	-2	-1	-1		$(\bar{3},2)_{-\frac{1}{6}} + 2 \times (1,1)_{-1}$
10_M	3	4	1	3×10	$(3,2)_{\frac{1}{6}} + 2 \times (1,1)_1$
5_{H_d}	4	0	-1	$(1,2)_{-\frac{1}{2}}$	
5_M	-1	-4	1	$3 \times \overline{5}$	$(\bar{3},1)_{\frac{1}{3}}$
5_{Hu}	-6	1	0	$(1,2)_{\frac{1}{2}}$	$(3,1)_{-\frac{1}{3}}$
S_1	5				$(1,1)_0$
S_2	10				$(1,1)_0$

at 1-loop level of β -function:

$$[(\mathbf{3},\mathbf{2})_{1/6} + (\overline{\mathbf{3}},\mathbf{1})_{1/3} + 2(1,1)_1] \sim [(\mathbf{3},\mathbf{2})_{1/6} + (\overline{\mathbf{3}},\mathbf{1})_{-2/3} + (1,1)_1] = \mathbf{10}$$

Ultra-local Yukawa textures

Yukawas ↔ overlap of matter wavefunction at curve intersection point

Approach: All families from the same curve

- For single Yukawa point, mass matrix of rank 1 [BHV'08], [Cecotti, Cheng, Heckman, Vafa'10]
- Subleading non-pert corrections from D3/M5-instantons

S_{up}

S_{up}

S_{up}

Font et al.,1307.8089

[Marchesano, Martucci'09] [Font, Ibanez, Marchesano13]
$$M_i \simeq (1,\epsilon,\epsilon^2)$$
 with $\epsilon \simeq e^{-S_{\rm inst}}$

Computation of holomorphic and physical Yukawa couplings by unfolding of bulk superpotential

$$W = M_*^4 \int_S F \wedge \Phi + \epsilon \frac{\theta_0}{2} \text{Tr}(F \wedge F) + \mathcal{O}(\epsilon^2)$$

 E_7 [Carta, Marchesano, Zoccarato] or E_8 patches [Marchesano, Regalado, Zoccarato] Realistic flavour structures matched to flux/geometric parameters How to embed into global models?

Gauge coupling unification

To leading order

$$S_{\text{YM}} = M_*^4 \int_{\mathbb{R}^{1,3} \times S} F^2 \Rightarrow \alpha_{GUT}^{-1} = M_*^4 \text{Vol}(S)$$

Complication: [Donagi, Wijnholt; Blumenhagen'08]

Non-GUT universal contribution to $\alpha_{\rm GUT}$ from hypercharge flux

Effect still hard to quantify in fully-fletched F-theory

Reliable computation in Type IIB limit [Blumenhagen'08]

- classical contribution from $S_{CS} \supset \int C_0 \mathrm{tr} \, F^4$ $f_{SU(3)} \simeq T \frac{1}{2}\tau \int_S F_a^2 \qquad \qquad f_{SU(2)} \simeq T \frac{1}{2}\tau \int_S (F_a^2 + F_Y^2)$ $f_{U(1)} \simeq T \frac{1}{2}\tau \int_S (F_a^2 + \frac{3}{5}F_Y^2) \Rightarrow \frac{1}{\alpha_1} = \frac{1}{\alpha_2} + \frac{2}{3}\frac{1}{\alpha_3} \text{ at } M_{\mathrm{GUT}}$
- size depends on quantization of F_Y and other gauge fluxes F_a
- $\delta \alpha_{\rm GUT} \simeq (0-1)\% \, \alpha_{\rm GUT}$ [Blumenhagen'08; Mayrhofer, Palti, TW'13]

Largely open:

- Further contributions from KK-states and D(-1) instantons?
- Precise analogue of specific flux quantization in F-theory?

Intermediate-SUSY GUTs

[Ibanez, Marchesano, Regalado, Valenzuela'12]

- Push $M_{\rm SUSY}$ up to 10^{11} GeV, where quartic Higgs coupling $\lambda=0$.
- Standard gauge coupling unification is destroyed.
- Effect can be cancelled in principle against hypercharge-flux correction of [Blumenhagen',08]

Scenario:

$$M_{\rm SUSY} = 10^{11} {\rm GeV}$$

$$M_{
m GUT}=~10^{14}{
m GeV}$$

Claim: see, however, [Hebecker, Unwin'14]

Dimension 6 proton decay from X-Y boson exchange can be suppressed due to wavefunction distortion via hypercharge flux

Non-GUT model building

Direct approaches to Standard Model might be phenomenologically preferred if TeV scale SUSY were to be excluded

- Classification of toric $SU(3) \times SU(2) \times U(1)_Y \times U(1)$
 - classical realizations of SU(3) and SU(2) and including dim 4/5 proton decay operator analysis [Lin,TW]'14
 - inclusion of fluxes [Lin,TW] to appear
- Spot-on toric $SU(3) \times SU(2) \times U(1)_Y$ with 3 generations via fluxes [Cvetič, Klevers, Oehlmann, Reuter, '14] but no extra U(1) to forbid R-parity violation
- Weierstrass model with non-classical Type III and Type IV realizations of $SU(3) \times SU(2)$ [Grassi, Halverson, Shaneson, Taylor'14] non-Higgsable SU(3) particularly attractive

Summary

F-theory GUTs exploit 2 key properties of F-theory

- 1) Localisation on 7-brane
- \leftrightarrow

GUT breaking with hyper flux

2) Exceptional symmetry E_6

Yukawa points $10\,10\,5_H$

Fruitful interplay

local model building ideas ↔ global constraints of geometry

- triggers formal progress, e.g. U(1) selection rules \leftrightarrow multi-section fibrations
- distinguishes landscape from swampland, e.g. Massless $U(1)_Y \to F_Y$ on trivial cycles \to no new anomalies

Frontiers:

fluxes
gluing/recombination
M5-instantons

hypercharge anomalies, unification→ VEVs in Froggatt-Nielsen

Yukawa couplings