Noether's Theorem

A relationship exists between symmetries and conservation laws. For example, conservation of energy is associated with the translation invariance of the system with respect to spatial translation invariance.

Suppose we consider a change in the fields

\[\phi^a(x) \rightarrow \phi^a(x) + \alpha \Delta \phi^a(x) \]

with \(\alpha \) an infinitesimal parameter. \(\Delta \phi \) some deformation of the fields. If this is a symmetry, it doesn't change the equations of motion. This is true if Lagrangian changes by \(\alpha \) modulo a total derivative term in action give a surface term which cancels out.

\[L(x) \rightarrow L(x) + \alpha \int_{\Sigma} \left(\Delta \phi(x) \right) \]

might require some terms in action

\[L \rightarrow L + \frac{\partial L}{\partial \phi^a} (\alpha \Delta \phi^a) + \frac{\partial L}{\partial (\partial \phi^a)} \partial_m (\alpha \Delta \phi^a) \]

\[\Rightarrow \partial_m \left[L^\Sigma \right] = \partial_m \left[\frac{\partial L}{\partial (\partial \phi^a)} \Delta \phi^a \right] \]
So we have a current \(j^m \):

\[
j^m = \frac{\partial L}{\partial (\partial_0 \phi)} - \frac{\partial L}{\partial (\partial_0 \phi^*)}
\]

\[
\partial^m j^m = 0 \implies \frac{2}{a^+} j^0 + \nabla^m j^m = 0
\]

\[
Q = \int d^3x j^0
\]

\[
\frac{\partial Q}{\partial t} = 0
\]

Example 1: \(L = \frac{1}{2} m \dot{\phi}^2 \phi \) \(\phi \) real

Symmetry \(\phi \rightarrow \phi + \alpha \). Lagrange density invariant \(\implies J^m = 0 \)

\[
j^m = \frac{\partial L}{\partial (\partial_0 \phi)}
\]

Example 2: \(L = \partial_0 \phi^* \partial_0 \phi - m^2 \phi^* \phi \)

\(\phi - \phi^* = e^{i\phi} \phi^* = (\phi + i\phi^*) \) \(\dot{\phi} = i\phi \) \(\dot{\phi^*} = -i\phi^* \)

Lagrange density invariant \(\implies J^m = 0 \)

\[
j^m = \frac{\partial L}{\partial (\partial_0 \phi)} + \frac{\partial L}{\partial (\partial_0 \phi^*)}
\]

\[
= j^m \phi^* \phi - j^m \phi^* \phi^* = i (\phi \phi^* - \phi^* \phi)
\]
\[\mathcal{L}_m = \dot{\phi}^2 - m^2 \phi^2 \]

\[= \dot{\phi}^2 (m^2 \phi^2) = 0 \]

Space-Time Translations

So far we have considered only symmetries that are not connected to space-time. Noether's Theorem also works for space-time symmetries. Consider translations

\[x'^m = x^m - a^m \]

\[\phi'(x') = \phi(x) \Rightarrow \phi'(x-a) = \phi(x) \]

\[\Rightarrow \phi'(x) = \phi(x+a) \]

\[= \phi(x) + a^m \delta_{m}^k \phi(x) + \ldots \]

Suppose density is a scalar \[\rho'(x') = \rho(x) \]

\[\rho'(x') = \rho(x+a) = \rho(x) + a^m \partial_m \]

\[= \rho(x) + a^m \partial_m \left(\rho \phi^2 \right) \]
Note for each $a^r\quad r = 0,1,2,3$ a symmetric tensor J^{μ} and the super symmetric case discussed above.

\[J^{\mu} = \eta^{\mu \nu} \chi \]

\[T^\nu = \frac{\partial}{\partial \phi} - \eta^\nu \chi \]

\[\eta^\nu \chi \]

\[T^\nu = 0 \]

\[H = \int d^3x T^{00} = \int d^3x [\frac{\partial \phi^0}{\partial \phi} - \chi] \]

\[= \int d^3x [\pi \phi^0 - \chi] \]

\[P^c = \int d^3x T^{0i} = \int d^3x \frac{\partial \phi}{\partial \phi} \]

\[P^c = -\int d^3x (\frac{\partial \phi}{\partial \phi}) \]

Note this is physical momentum not $\pi \phi^0$.
\[
\phi_{(x_1)} = \frac{\partial}{\partial x_1} - i \frac{\partial}{\partial t}
\]

\[
\phi_{(x_2)} = \frac{\partial}{\partial x_2} - i \frac{\partial}{\partial t}
\]

\[
\phi_{(x_3)} = \frac{\partial}{\partial x_3} - i \frac{\partial}{\partial t}
\]

\[
L_0(x_1, t) = 0
\]

\[
L_0(x_2, t) = 0
\]

\[
L_0(x_3, t) = 0
\]

Heisenberg picture field

\[
\phi^\dagger_0 = \phi_0
\]

\[
H = \frac{\hbar}{2} \left(-\frac{\partial^2}{\partial x^2} + \frac{1}{4} x^4 - \frac{1}{2} \right)
\]

Deal with Heisenberg picture... To look at variances

Diagnosis: Quantizing M.R. Free Field Theory

\[
\frac{\partial^2 \phi}{\partial t^2} - \frac{1}{2} \phi
\]
When the commutation relation 1 b's

\[[\phi(x, 0), \phi(\xi, 0)] = \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k}{(2\pi)^3} \left[\hat{b}(k) \hat{b}(\xi) \right] \]

\[= \delta^3(x-\xi) \]

We have:

\[[\hat{b}(x), \hat{b}(\xi)] = \frac{1}{(2\pi)^3} \delta^3(x-\xi) \]

\[[\hat{b}(x), \hat{b}^+(x')] = [\hat{b}^+(x), \hat{b}(x')] = 0 \]

From Hamilton's proof

\[H = \int \frac{d^3k}{(2\pi)^3} \frac{E_\xi}{\hbar} \hat{b}(k) \hat{b}^+(k) \]

So we state again \(|0\rangle = \hat{b}^+(x) |0\rangle \) and equivalent to another, same as before. But why call abelian this? Just label here.

\[\bar{P} = -\int d^3x \frac{\partial}{\partial x} \nabla \phi \]

\[= -\int d^3x \frac{\partial}{\partial x} \nabla \phi(x) \]

\[= -\int d^3x \int \frac{d^3k}{(2\pi)^3} e^{-i(k \cdot x)} \int \frac{d^3k}{(2\pi)^3} e^{i(k \cdot x)} \hat{b}(k) \hat{b}^+(k) \]

\[= -\int d^3x \int \frac{d^3k}{(2\pi)^3} e^{-i(k \cdot x)} \int \frac{d^3k}{(2\pi)^3} e^{i(k \cdot x)} \hat{b}(k) \hat{b}^+(k) \]
\[\int \frac{d^3k}{(2\pi)^3} \rho b^\dagger(k) b(k) \]

\[\vec{P}\ket{1R} = \vec{t}\ket{1R} \]

so its momentum!
Lorentz Transformations

A Lorentz transformation of space-time coordinates is a linear transformation

\[x' = \Lambda x \]

where the interval \(ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu \) is invariant.

\[ds'^2 = \eta_{\mu\nu} dx'^\mu dx'^\nu = \eta_{\alpha\beta} \Lambda^\alpha_\mu \Lambda^\beta_\nu dx^\mu dx^\nu \]

\[= ds^2 = \eta_{\alpha\beta} dx^\alpha dx^\beta \]

So we have

\[\eta_{\alpha\beta} \Lambda^\alpha_\mu \Lambda^\beta_\nu = \eta_{\alpha\beta} \]

Let us write the equation in matrix form

\[\mathbf{\eta} = \mathbf{\Lambda}^T \mathbf{\eta} \mathbf{\Lambda} \]

Taking the determinant

\[\det \mathbf{\Lambda}^2 = 1 \Rightarrow \det \mathbf{\Lambda} = \pm 1 \]

Transformations with \(\det \mathbf{\Lambda} = 1 \) are called proper Lorentz transformations. They can be continuously connected to the identity. Since \(\eta^2 = 1 \)

\[1 = \mathbf{\eta}^T \mathbf{\eta} \]

\[\Rightarrow \mathbf{\Lambda}^{-1} = \mathbf{\eta} \mathbf{\eta}^T \mathbf{\eta} \]

\[\Rightarrow 1 = \mathbf{\eta} \mathbf{\Lambda}^{-1} \mathbf{\eta} \]

\[\Rightarrow \mathbf{\eta} = \mathbf{\eta} \mathbf{\Lambda}^{-1} \mathbf{\eta} \]

\[\mathbf{\eta} = \Lambda^\alpha_\mu \eta_{\alpha\beta} \Lambda^\beta_\nu \]
Consider a Lorentz transformation infinitesimally close to the identity transformation

\[A^\alpha = \eta^\alpha + \omega^\alpha \]

\[\left(\text{Note: } \eta^\alpha = \delta^\alpha_\nu \right) \]

Now we have

\[\eta_{\alpha \nu} \eta^{\alpha \beta} = \eta_{\nu \beta} \]

\[\eta_{\alpha \nu} \left(\eta^\alpha_\alpha + \omega^\alpha_\alpha \right) \left(\eta^\nu_\beta + \omega^\nu_\beta \right) = \eta_{\alpha \beta} \]

\[\eta_{\alpha \beta} + \omega_{\beta \alpha} + \omega_{\alpha \beta} = \eta_{\alpha \beta} \]

\[\omega_{\beta \alpha} = -\omega_{\alpha \beta} \quad \frac{16-4}{2} = 6 \text{ parameters} \]

\[3 \text{ rotations} \quad 3 \text{ boosts} \]

\[\eta_{ij} \text{ rotations} \]

\[\omega_{ij} \text{ boosts} \]

Now let's apply Nöller procedure to Lorentz transformation. Suppose a scalar field

\[\phi'(x) = \phi(x) \]

\[\phi(x) = \phi(\Lambda^{-1} x) = \phi(x^{\mu} - \omega^{\mu}_{\nu} x^{\nu}) \]

\[= \phi(x) - \omega^{\mu}_{\nu} x^{\nu} \partial_{\nu} \phi \]

\[- \phi(x) - \frac{\omega^{\alpha \beta} (\eta^{\alpha}_{\mu} x^{\mu} - \eta^{\alpha}_{\beta} x^{\beta}) \partial_{\nu} \phi}{2} \]

\[\Delta \phi_{\alpha \beta} = (x_{\alpha} \partial_{\beta} \phi - x_{\beta} \partial_{\alpha} \phi) \]

Similarly, upon imposing closure, we can states \(2'(x) = x(x) \).
\[Z'(x) = Z(x) \]
\[Z'(x) = Z(x) - \frac{\omega^2}{2} \ln \left[\frac{\left(\eta^a x^a - \eta^b x^b \right)^2}{2} \right] \]
\[\left(J^a \right)_{\mu} = \left(-\eta^a x^b - \eta^b x^a \right) X^\mu \]

So current current

\[J^a_{\mu} = \left(x^a \partial_\mu \phi - x^b \partial_\mu 2\phi \right) \frac{1}{2} + \left(\eta^a x^b - \eta^b x^a \right) X^\mu \]

Recall our formula for stress tensor

\[j^a_{\mu} = \left(x^a T^\beta_\mu - x^b T^\beta_\mu \right) \]

Conserved charges are Lorentz transformed

\[Q_{\mu} = \int d^3x \ j^0_{\mu} \]

\[0 = \frac{dQ_{\mu}}{dt} = \{ Q_{\mu}, H \} + \frac{dQ_{\mu}}{dt} \]

For Q\mu explicit time dependence so last term does not vanish. This in QM \{ p_\beta, L \} and we do not have commutators vanishing. But for Q\mu

\[\partial\phi / \partial t = 0 \Rightarrow \{ \phi, H \} = 0 \] and the quantum numbers associated with position, time are angle momentum and \(T_i \sim \epsilon_i k Q_k \).