Representations of the Lorentz Group

Fields that transform linearly under Lorentz transformations form what is called a representation of the group (or basis for a representation).

\[\Phi_a'(x') = \sum_{b=1}^r M_{ab}(\lambda) \Phi_b(x) \]

(usually use summation convention)

Matrix for \(\Phi'(x') = M \Phi(x) \)

Two successive transformations:

\[\Phi' = M(\lambda_1) \Phi, \quad \Phi'' = M(\lambda_2) \Phi' \]

\[\Phi'' = M(\lambda_2) M(\lambda_1) \Phi = M(\lambda_2 \lambda_1) \Phi \]

So we have \(M(\lambda_2) M(\lambda_1) = M(\lambda_2 \lambda_1) \). Matrices have same composition rules as Lorentz transformations.

Call \(r \)-dimensional representation if it is impossible to find less than \(r \) linear combinations of the \(\Phi_a \) that transform amongst themselves under Lorentz transformations.

If we change basis \(\Phi_a = \sum_b c_{ab} \Phi_b \)
Then \(\Phi_i = \text{Mat} \Phi_0 \)

\(\text{Sac} \Phi_i = \text{Mat} \text{Sod} \Phi_0 \)

\(\Phi_i = \text{Sac}^{-1} \text{Mat} \text{Sod} \Phi_i \)

\[\Rightarrow M(n) = S \overline{M(n)} S \]

Two representations \(\Phi_i \), \(\Phi_i \) are equivalent.
Wells sometimes call the matrices \(\Phi_i \) the representation:
\(M_i \), \(\overline{M_i} \) are equivalent representations of the group.

Rotation Group and Its Representations: A Review

Rotations are a subgroup of Lorentz transformations and you already know all about their representations from undergraduate QM. We'll review these here, before going on to full Lorentz groups.

Can take a representation of rotation groups as 3x3 matrices:

\[X_{ij} = R_{jk} X_k \]

Rotations preserve the inner product or norm of vectors and angle between vectors.
\[x', y' = x - y \]

\[\Rightarrow R^t R = 1 \]

\(R \) is a 3x3 orthogonal matrix with \(\det R = +1 \). So rotation group is \(SO(3) \). Rotations are parameterized by the quantities, e.g. Euler angles.

For rotations about \(x \), once through angle \(\Theta' \)

\[R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Theta' & \sin \Theta' \\ 0 & -\sin \Theta' & \cos \Theta' \end{bmatrix} \]

\[\approx \text{small \ angle} \begin{bmatrix} 1 \\ \text{small} \\ \text{angle} \end{bmatrix} = 1 + i\Theta' \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix} \]

Similarly, for rotations about the other axes

\[R_2 = 1 + i\Theta^2 \begin{bmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix} \]

\[R_3 = 1 + i\Theta^3 \begin{bmatrix} 0 & -i & 0 \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix} \]

Matrices

\[J^1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{bmatrix}, \quad J^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix}, \quad J^3 = \begin{bmatrix} 0 & -i & 0 \\ 0 & 0 & 0 \\ i & 0 & 0 \end{bmatrix} \]

are called generators in 3-dim representation.
They are Hermitian traceless matrices. Obey commutation relations

\[
[J^i, J^j] = i \varepsilon^{ijk} J^k \quad (\varepsilon^{123} = 1)
\]

Eq. \[J^i J^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix}
\]

\[J^2 J^1 = \begin{bmatrix} 0 & i & 0 \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[[J^i, J^2] = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = i J^3 \quad \square
\]

An arbitrary 3x3 rotation matrix can be made from composing infinitesimal transformations. One useful form is the infinitesimal

\[R = \exp \left(\sum_{k=1}^{3} i \Theta^k J^k \right) \]

Suppose scalar field \(\phi \) rotate relations

\[\phi'(\tilde{x}) = \phi(x) \]

\[\Rightarrow \phi'(\tilde{x}) = \phi(R^{-1} \tilde{x}) = \frac{1}{4} (1 + i \Theta^k \hat{J}^k) \phi(x) \]

This is a differential operator

Let's work out \(\hat{J} \) explicitly.
\[R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \quad R_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -\theta' \\ 0 & \theta' & 1 \end{bmatrix} \]

\[R_1^{-1}(x, y, z) = (x', y', z') = \left(\frac{x}{z+\theta' y}, \frac{y-\theta' z}{z+\theta' y}, z+\theta' y \right) \]

\[\phi'(x') = \phi(x, y-\theta' z, z+\theta' y) \]

\[= \phi(x) + \theta' \left(\frac{-z}{dy} + \frac{y}{dz} \right) \frac{\partial \phi}{\partial z} \]

\[\hat{\mathbf{J}} = -i \begin{pmatrix} y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \\ z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \\ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \end{pmatrix} \]

Similarly,

\[\hat{\mathbf{J}}^2 = -i \begin{pmatrix} z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \\ x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \end{pmatrix}, \quad \hat{\mathbf{J}}^3 = \begin{pmatrix} x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \\ y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \end{pmatrix} \]

These are the angular momentum operators in QM:

\[\hat{\mathbf{J}} = \hat{\mathbf{r}} \times \hat{\mathbf{p}}, \quad \hat{\mathbf{p}} = -i \hbar \nabla. \]

Differential operators

generally rotate with acting on fields, and these differential quasars satisfy the same commutation relations as matrices \(\mathbf{J} \).

\[\{ \hat{J}^i, \hat{J}^j \} = i \epsilon^{ijk} \hat{J}^k \]
The algebra for generators $[J^i, J^j] = i\epsilon^{ijk} J^k$ doesn't depend on representation, it's a group property (SO(3)). We have found 3-dimensional representation for rotation group. Smallest representation is 2x2.

$$V = \exp \left[i \frac{\sigma^k \sigma^k}{2} \right]$$

Since $$\left[\frac{\sigma^i}{2}, \frac{\sigma^j}{2} \right] = i \epsilon^{ijk} \frac{\sigma^k}{2} \quad J^i = \sigma^i$$

Pauli matrices:

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Can express V more explicitly, in terms of angle θ. With

$$\theta^i = \hat{n}^i \quad \hat{n} \cdot \hat{n} = 1$$

$$V = \exp \left(i \frac{\sigma^k \sigma^k}{2} \right) = \exp \left(i \frac{\theta}{2} \hat{n} \cdot \sigma \right)$$

$$= \sum_{p=0}^{\infty} \frac{1}{(2p)!} \left(i \frac{\theta}{2} \hat{n} \cdot \sigma \right)^p = \sum_{p=0}^{\infty} \frac{1}{(2p)!} \left(\frac{1}{2} \right)^{2p} \theta^{2p} (\sigma \cdot \hat{n})^{2p}$$

$$= \sum_{p=0}^{\infty} \frac{1}{(2p+1)!} \left(\frac{1}{2} \right)^{2p+1} \theta^{2p+1} (\sigma \cdot \hat{n})^{2p+1}$$

Rot+
\[(\mathbf{\hat{c}} \cdot \mathbf{\hat{n}})^2 = \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} = \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \left(\mathbf{\hat{c}} \cdot \mathbf{\hat{n}} + \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \right) = \frac{\mathbf{\hat{c}} \cdot \mathbf{\hat{n}} (\mathbf{\hat{c}} \cdot \mathbf{\hat{n}})}{2} \]

\[\left[\mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \right] = 0 \mathbf{\hat{c}} + \mathbf{\hat{c}} \mathbf{\hat{n}} = 2 \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \]

\[\Rightarrow (\mathbf{\hat{c}} \cdot \mathbf{\hat{n}})^2 = 1 \quad \text{2x2 identity matrix} \]

\[(\mathbf{\hat{c}} \cdot \mathbf{\hat{n}})^2 \mathbf{\hat{n}} = \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \]

So,

\[U = \sum_{p=0}^{\infty} \frac{(-1)^p}{(2p)!} \left(\mathbf{\hat{n}} \right)^{2p} + i \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \sum_{p=0}^{\infty} \frac{(-1)^p}{(2p+1)!} \left(\mathbf{\hat{n}} \right)^{2p+1} \]

\[= \cos \left(\frac{\mathbf{\hat{c}} \cdot \mathbf{\hat{n}}}{2} \right) + i \mathbf{\hat{c}} \cdot \mathbf{\hat{n}} \sin \left(\frac{\mathbf{\hat{c}} \cdot \mathbf{\hat{n}}}{2} \right) \]

With \(i/ \mathbf{\hat{c}} = 2 \pi i \hbar \) and many directions \(\mathbf{\hat{n}} \), \(U^2 = -1 \)

We have a 2-component Pauli spinor. Sometimes called a multihole spin of rotating group.

At level 1 algebraic spin \(S_0) \), \(S_0 / 2 \) are the same (globally different). You already know everything about finite dimensional representations of the rotation group. They are states \(| j, m > \)

\[\mathbf{J}^2 \mid j, m > = j(j+1) \mid j, m > \quad \mathbf{J}^3 \mid j, m > = m \mid j, m > \]

From lowering and raising operators: \(\mathbf{J}^2 = \mathbf{J}^+ \mathbf{J}^- = \mathbf{I} \)

\[\mathbf{J}^+ \mid j, m > = \sqrt{j(j+1) - m (m+1)} \mid j, m+1 > \quad \text{demoted} \quad m \rightarrow \]

\[\mathbf{J}^- \mid j, m-1 > = \sqrt{j(j+1) - m (m+1)} \mid j, m > \quad \text{demoted} \quad m \rightarrow -j-1 \]