Ph 205a Problem Set 1

1. The Schrödinger Equation in occupation number basis is
 \[
i \frac{\partial}{\partial t} f(n_1, \ldots, n_\infty; t) = \sum_i \langle i|T|i \rangle n_i f(n_1, \ldots, n_i, \ldots, n_\infty; t) + \sum_{i \neq j} \langle i|T|j \rangle n_i^{1/2}(n_j + 1)^{1/2} f(n_1, \ldots, n_i - 1, \ldots, n_j + 1, \ldots, n_\infty; t) + \text{potential terms}
 \]

 Find the potential terms. Express your answer in terms of \(\langle ij|V|kl \rangle \). Use the result to show that
 \[
 \hat{V} = \frac{1}{2} \sum_{ijkl} b_i^\dagger b_i^\dagger (ij)|V|kl b_k b_l \text{ is a representation of the potential acting on the occupation number basis } [n_1 \ldots n_\infty].
 \]

2. Show that the number operator \(\hat{N} = \int d^3x \phi^\dagger(x) \phi(x) \) commutes with
 \[
 \hat{H} = \hat{T} + \hat{V}
 \]
 where
 \[
 \hat{T} = \int d^3x \phi^\dagger(x) T(x) \phi(x)
 \]
 \[
 \hat{V} = \frac{1}{2} \int d^3x d^3y \phi^\dagger(x) \phi^\dagger(y) V(x, y) \phi(x) \phi(y)
 \]

3. Calculate the transition matrix element
 \[
 \langle k_1', k_2'|\hat{V}|k_1, k_2 \rangle
 \]
 where \(|k_a, k_b \rangle = b^\dagger(k_a) b^\dagger(k_b) |0 \rangle \) is the two-particle state, \(\hat{V} \) is given in problem 2, and \(V(x, y) = \frac{e^2}{|x-y|} \), with \(e \) a constant.

 Express your answer in terms of \(k_1', k_2', k_1, \) and \(k_2 \). One of the spatial integrals you must do is rather tricky, because it does not have a well-defined limit; a standard way of regulating it (i.e. giving it a meaningful value) is to insert a factor of \(e^{-\mu|x-y|} \) and then, after integrating, take the limit \(\mu \rightarrow 0 \).

4. a) Work out the commutators \([\hat{N}, \phi(x)] \) and \([\hat{H}, \phi(x)] \), with \(\hat{H} \) as in problem 2.
 b) Let \(|\Psi_N(t)\rangle \) satisfy \(\hat{N} |\Psi_N(t)\rangle = N |\Psi_N(t)\rangle \) and \(i \frac{d}{dt} |\Psi_N(t)\rangle = \hat{H} |\Psi_N(t)\rangle \), \(\langle \Psi_N(t)|\Psi_N(t)\rangle = 1 \).

 Using the results of part (a), show that the function
 \[
 \Psi_N(x_1, \ldots, x_N, t) \equiv \frac{1}{\sqrt{N!}} \langle 0|\phi(x_1) \ldots \phi(x_N)|\Psi_N(t)\rangle
 \]
 satisfies
 \[
 \int (\prod_{i=1}^N d^3x_i) |\Psi_N(x_1, \ldots, x_N, t)|^2 = 1
 \]
 \[
 i \frac{\partial}{\partial t} \Psi_N(x_1, \ldots, x_N, t) = \left[\sum_{k=1}^N -\frac{1}{2m} \nabla_k^2 + \frac{1}{2} \sum_{k \neq l} V(x_k, x_l) \right] \Psi_N(x_1, \ldots, x_N, t)
 \]