Ph 205a Problem Set 2

1. The first lecture discussed many-particle systems of bosons; problem 1 on the previous homework asked you to extend the results derived in lecture. This problem concerns an analogous treatment of fermions, for which $\Psi(...,x_i,...,x_j,...,t) = -\Psi(...,x_j,...,x_i,...,t)$. Ψ can be expanded as

$$\Psi(x_1, ..., x_N, t) = \sum_{q_1...q_N} C(q_1, ..., q_N, t) \psi_{q_1}(x_1) ... \psi_{q_N}(x_N)$$

$$= \sum_{n_1, ..., n_{\infty} = 0}^1 f(n_1, ..., n_{\infty}, t) \Phi_{n_1...n_{\infty}}(x_1, ..., x_N)$$

where

$$\Phi_{n_1...n_{\infty}}(x_1, ..., x_N) = \begin{pmatrix}
\psi_{q_1}(x_1) & \psi_{q_2}(x_N) \\
\vdots & \ddots \\
\psi_{q_{n_1}}(x_1) & \psi_{q_{n_{\infty}}}(x_N)
\end{pmatrix}$$

Just as in the bosonic case, we may write

$$|\Psi(t)\rangle = \sum_{n_1, ..., n_{\infty}} f(n_1, ..., n_{\infty}; t) |n_1, ..., n_{\infty}\rangle$$

The only difference here is that the occupation numbers $n_1, ..., n_{\infty}$ are restricted to the values 0 and 1; this is the Pauli exclusion principle. The Schrödinger equation for fermions is just like the one for bosons, except that various phase factors appear due to the antisymmetry of the wavefunction. For example, consider the kinetic-energy term in the Schrödinger equation in the particle basis:

$$i \frac{\partial}{\partial t} C(q_1, ..., q_N, t) = \sum_{k=1}^{N} \sum_{Q} \langle q_k|T|Q \rangle C(q_1, ..., q_{k-1}, Q, q_{k+1}, ..., q_N, t) + ...$$

We would like to reorder the quantum numbers q_k, Q so that they are in the same sequence on each side of the equation. q_k on the left has been replaced by Q on the right; when we move Q into its proper place in the order, a phase factor will arise. For values of Q that should come before q_k, this factor is $(-1)^{n_{q_1}+n_{q_2}+...+n_{q_{k-1}}}$; if Q comes after q_k, the factor is $(-1)^{n_{q_{k+1}}+n_{q_{k+2}}+...+n_{q_{\infty}}-1}$. When we change variables and go over to the f coefficients, the phase factors will remain:

$$i \frac{\partial}{\partial t} |\Psi(t)\rangle = ... + \sum_{n_1'...n_{\infty}'} \sum_{i < j} |i|T|j\rangle f(..., n_i', ..., n_j', ..., t)(n_i' + 1)^{1/2}(n_j')^{1/2} \delta_{n_i,0} \delta_{n_j,0'}$$

$$\times (-1)^{n_{i+1}'+n_{i+2}'+...+n_{j-1}'} |...n_i'+1...n_j'-1...\rangle + ...$$

Creation and annihilation operators for fermions satisfy anticommutation relations

$$\{a_r, a_s^\dagger\} \equiv a_r a_s^\dagger + a_s^\dagger a_r = \delta_{rs}$$

$$\{a_r, a_s\} = \{a_r^\dagger, a_s^\dagger\} = 0$$

and act on states in the occupation number basis as follows:

$$a_s |...n_s...\rangle = \begin{cases} (-1)^{S_s} (n_s)^{1/2} |...n_s - 1...\rangle & \text{if } n_s = 1 \\
0 & \text{otherwise}
\end{cases}$$

$$a_s^\dagger |...n_s...\rangle = \begin{cases} (-1)^{S_s} (n_s + 1)^{1/2} |...n_s + 1...\rangle & \text{if } n_s = 0 \\
0 & \text{otherwise}
\end{cases}$$

$$a_s^\dagger a_s |...n_s...\rangle = n_s |...n_s...\rangle$$

$n_s = 0, 1$
where the phase factor S_a is defined by

$$S_a = n_1 + n_2 + \ldots + n_{s-1}$$

Write the Schrödinger equation for fermions just as you did the one for bosons, in terms of $\langle i|T|j \rangle$ and $\langle ij|V|kl \rangle$, carefully keeping track of all phase factors. Show that the Hamiltonian can be represented as $\hat{T} + \hat{V} = \sum_{ij} a_i^\dagger \langle i|T|j \rangle a_j + \sum_{ijkl} a_i^\dagger a_j^\dagger \langle ij|V|kl \rangle a_k a_l$. (Note the ordering of the last two annihilation operators.)

2. Consider a field theory with N real scalar fields $\phi^a, a = 1, \ldots N$. The Lagrange density is

$$\mathcal{L} = \frac{1}{2} (\partial_\mu \phi^a \partial^\mu \phi^a - m^2 \phi^a \phi^a) - \frac{\lambda}{4} (\phi^a \phi^a)^2$$

where repeated indices a are summed over $1, \ldots N$.

a) What are the equations of motion?

b) Show that the transformations $\phi^a \to \phi'^a = \phi^a + \omega^{ab} \phi^b$ leave the Lagrangian density invariant provided that the infinitesimal parameters ω^{ab} satisfy

$$\omega^{ab} = -\omega^{ba}.$$

c) What are the conserved currents associated with these symmetries?

3. For Klein-Gordon theory, $\mathcal{L} = \frac{1}{2} (\partial_\mu \phi \partial^\mu \phi - m^2 \phi^2)$, show that the stress tensor is

$$T^{\mu \nu} = \partial_\mu \phi \partial^\nu \phi - \frac{\eta^{\mu \nu}}{2} (\partial_\alpha \phi \partial^\alpha \phi - m^2 \phi^2).$$