Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

CERN & ETH Zurich

collaboration with M.Mariño, R. Schiappa
to appear

31.10.2007
Outline

Introduction and Motivation
 Non-perturbative effects & large order
 The B-model matrix formalism

Instantons & Large Order: The Anharmonic Oscillator

Matrix Models in $\frac{1}{N}$ Expansion
 Review
 Instanton analysis

Examples
 The quartic matrix model
 2d gravity
 The local curve
 Hurwitz Theory

Conclusion and Outlook
Introduction

Topological strings

Consider the \textbf{A-model} on a Calabi-Yau X

$$F(Q, g_s) = \sum_{d,g} N_{d,g} Q^d g_s^{2g-2}, \quad Q = e^{-t}$$

- count worldsheet instantons
- perturbative in Q, g_s

\[\downarrow\text{mirror symmetry}\downarrow\]

\textbf{B-model} on $X_{\text{mirror}} \rightarrow \text{compute } F_g(Q) \text{ exactly in } Q$

...but can we go beyond perturbation theory in g_s?
Introduction

Topological strings

Consider the A-model on a Calabi-Yau X

\[F(Q, g_s) = \sum_{d,g} N_{d,g} Q^d g_s^{2g-2}, \quad Q = e^{-t} \]

- count worldsheet instantons
- perturbative in \(Q, g_s \)

\[\downarrow \text{mirror symmetry} \downarrow \]

B-model on \(X_{\text{mirror}} \) \(\rightarrow \) compute \(F_g(Q) \) exactly in \(Q \)

...but can we go beyond perturbation theory in \(g_s \)?
Introduction

Topological strings

Consider the A-model on a Calabi-Yau X

$$F(Q, g_s) = \sum_{d,g} N_{d,g} Q^d g_s^{2g-2}, \quad Q = e^{-t}$$

- count worldsheet instantons
- perturbative in Q, g_s

↓ mirror symmetry ↓

B-model on $X_{\text{mirror}} \rightarrow$ compute $F_g(Q)$ exactly in Q

...but can we go beyond perturbation theory in g_s?
Introduction

Topological strings

Consider the **A-model** on a Calabi-Yau X

$$F(Q, g_s) = \sum_{d, g} N_{d,g} Q^d g_s^{2g-2}, \quad Q = e^{-t}$$

- count worldsheet instantons
- perturbative in Q, g_s

↓ mirror symmetry ↓

B-model on $X_{mirror} \rightarrow$ compute $F_g(Q)$ exactly in Q

...but can we go beyond perturbation theory in g_s?
Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
 - instanton effects → dynamics?
 - new topological invariants?
- Compute *perturbative* amplitudes using non-perturbative methods?
 - WKB-like tools?

Large Order behavior & Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series
- Asymptotics of $\frac{1}{N}$-expansion of gauge theories controlled by nonperturbative corrections $\sim e^{-N}$
 \uparrow
- D-brane instanton effects in string dual

[Alexandrov Kazakov Kutasov]
Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
 - instanton effects → dynamics?
 - new topological invariants?
- Compute perturbative amplitudes using non-perturbative methods?
 - WKB-like tools?

Large Order behavior & Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series
- Asymptotics of \(\frac{1}{N} \)-expansion of gauge theories controlled by nonperturbative corrections \(\sim e^{-N} \)
 \[\uparrow \]
- D-brane instanton effects in string dual

[Alexandrovan Kazakov Kutasov]
Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
 - instanton effects \to dynamics?
 - new topological invariants?
- Compute *perturbative* amplitudes using non-perturbative methods?
 - WKB-like tools?

Large Order behavior & Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series
- Asymptotics of $\frac{1}{N}$-expansion of gauge theories controlled by nonperturbative corrections $\sim e^{-N}$
- D-brane instanton effects in string dual

[Alexandrov Kazakov Kutasov]
Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
 - instanton effects \rightarrow dynamics?
 - new topological invariants?
- Compute *perturbative* amplitudes using non-perturbative methods?
 - WKB-like tools?

Large Order behavior & Nonperturbative effects

- QM, QFT: Standard relation between *instanton effects* and *large-order behavior* of the perturbation series
 - Asymptotics of $\frac{1}{N}$-expansion of gauge theories controlled by nonperturbative corrections $\sim e^{-N}$

[Alexandrov Kazakov Kutasov]
Non-perturbative and Large Order

Why going non-perturbative?

- A better understanding of (topological) strings
 - instanton effects \rightarrow dynamics?
 - new topological invariants?
- Compute *perturbative* amplitudes using non-perturbative methods?
 - WKB-like tools?

Large Order behavior & Nonperturbative effects

- QM, QFT: Standard relation between instanton effects and large-order behavior of the perturbation series
- Asymptotics of $\frac{1}{N}$-expansion of gauge theories controlled by nonperturbative corrections $\sim e^{-N}
- D$-brane instanton effects in string dual

[Alexandrov Kazakov Kutasov]
Applications to Topological String Theory

If the gauge theory has a string dual:

- Instanton effect in gauge theory \leftrightarrow asymptotics of string amplitudes

 - Natural non-perturbative completion
 - Can be tested with asymptotics of string amplitudes!
 - Information about analytic structure of topological string free energy
 - Nontrivial check of conjectural dualities
 - New conjectures about asymptotics of enumerative invariants

We consider

- Matrix models in double-scaling limit \leftrightarrow noncritical string theory
- Matrix models off criticality \leftrightarrow topological strings
Applications to Topological String Theory

If the gauge theory has a string dual: instanton effect in gauge theory ↔ asymptotics of string amplitudes

- Natural non-perturbative completion
- Information about analytic structure of topological string free energy
- Nontrivial check of conjectural dualities
- New conjectures about asymptotics of enumerative invariants

We consider
- matrix models in double-scaling limit ↔ noncritical string theory
- matrix models off criticality ↔ topological strings
Applications to Topological String Theory

If the gauge theory has a string dual: instanton effect in gauge theory ↔ asymptotics of string amplitudes

- Natural non-perturbative completion
 ⚫️ can be tested with asymptotics of string amplitudes!
- Information about analytic structure of topological string free energy
- Nontrivial check of conjectural dualities

We consider

- matrix models in double-scaling limit ↔ noncritical string theory
- matrix models off criticality ↔ topological strings
Applications to Topological String Theory

If the gauge theory has a string dual:

instanton effect in gauge theory ↔ **asymptotics** of string amplitudes

- Natural non-perturbative completion
 - can be tested with asymptotics of string amplitudes!
- Information about **analytic structure** of topological string free energy
- Nontrivial **check** of conjectural dualities
- New conjectures about asymptotics of enumerative invariants

We consider

- matrix models in **double-scaling limit** ↔ noncritical string theory
- matrix models **off criticality** ↔ topological strings
Matrix Models and Topological Strings

B-model on some local CYs $\overset{\text{large } N \text{ dual}}{\longleftrightarrow}$ Matrix model

[Dijkgraaf Vafa]

This also works for mirrors of toric geometries!

[Mariño; Bouchard Klemm Mariño Pasquetti]

new formalism to compute open & closed B-model amplitudes:

Topological string amplitudes F_g behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1/N$-expansion: all information encoded in spectral curve

[Eynard Orantin]

- Spectral curve for TS on mirror of toric CY: mirror curve
 $$\Sigma_t(u,v) = w^+ w^-$$

- recursive matrix model formalism \rightarrow generate TS amplitudes

- no holomorphic ambiguity

- at large radius: mirror to topological vertex, but valid anywhere in moduli space
Matrix Models and Topological Strings

B-model on some local CYs\quad \text{large N dual} \quad \text{Matrix model}

This also works for mirrors of toric geometries!

New formalism to compute open & closed B-model amplitudes:

\begin{align*}
\text{Topological string amplitudes } F_g & \quad \text{behave like matrix model correlators} \\
\text{Recursive, geometric reformulation of matrix model } \frac{1}{N} \text{-expansion: all information encoded in spectral curve}
\end{align*}

- Spectral curve for TS on mirror of toric CY: mirror curve
 \Sigma_t(u, v) = w^+ w^-
- Recursive matrix model formalism \rightarrow generate TS amplitudes
- No holomorphic ambiguity
- At large radius: mirror to topological vertex, but valid anywhere in moduli space
Matrix Models and Topological Strings

B-model on some local CYs \(\leftrightarrow \) Matrix model

This also works for mirrors of toric geometries!

\[\text{large N dual} \]

\[\text{[Dijkgraaf Vafa]} \]

\[\text{new formalism to compute open \& closed B-model amplitudes:} \]

\[\begin{align*}
\text{Topological string amplitudes} & \quad F_g \quad \text{behave like matrix model correlators} \\
\text{Recursive, geometric reformulation of matrix model} & \quad 1/N\text{-}expansion: \text{all information encoded in spectral curve}
\end{align*} \]

\[\text{[Eynard Orantin]} \]

- Spectral curve for TS on mirror of toric CY: mirror curve \(\Sigma_1(u, v) = w^+ w^- \)
- recursive matrix model formalism \(\rightarrow \) generate TS amplitudes
- no holomorphic ambiguity
- at large radius: mirror to topological vertex, but valid anywhere in moduli space
Matrix Models and Topological Strings

B-model on some local CYs \leftrightarrow Matrix model

This also works for mirrors of toric geometries!

New formalism to compute open & closed B-model amplitudes:

Topological string amplitudes F_g behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1/N$-expansion: all information encoded in spectral curve

Spectral curve for TS on mirror of toric CY: mirror curve

$\Sigma_1(u, v) = w^+ w^-$

Recursive matrix model formalism \rightarrow generate TS amplitudes

No holomorphic ambiguity

At large radius: mirror to topological vertex, but valid anywhere in moduli space
Matrix Models and Topological Strings

B-model on some local CYs \leftrightarrow Matrix model

This also works for mirrors of toric geometries!

New formalism to compute open & closed B-model amplitudes:

Topological string amplitudes F_g behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1/N$-expansion: all information encoded in spectral curve

Spectral curve for TS on mirror of toric CY: mirror curve

$\Sigma_1(u, v) = w^+ w^-$

Recursive matrix model formalism → generate TS amplitudes

No holomorphic ambiguity

At large radius: mirror to topological vertex, but valid anywhere in moduli space

[Dijkgraaf Vafa]

[Mariño; Bouchard Klemm Mariño Pasquetti]

[Eynard Orantin]
Matrix Models and Topological Strings

Non-perturbative effects in Matrix Models and Topological Strings

Marlene Weiss

Introduction and Motivation

Non-perturbative effects & large order
The B-model matrix formalism

Instantons & Large Order: The Anharmonic Oscillator
Matrix Models in $\frac{1}{N}$ Expansion
Examples
Conclusion and Outlook

B-model on some local CYs \leftrightarrow Matrix model

This also works for mirrors of toric geometries!

new formalism to compute open & closed B-model amplitudes:

Topological string amplitudes F_g behave like matrix model correlators

Recursive, geometric reformulation of matrix model $1/N$-expansion: all information encoded in spectral curve

Spectral curve for TS on mirror of toric CY: mirror curve

\[\Sigma_t(u, v) = w^+ w^- \]

recursive matrix model formalism \rightarrow generate TS amplitudes

no holomorphic ambiguity

at large radius: mirror to topological vertex, but valid anywhere in moduli space
Matrix Models and Topological Strings

B-model on some local CYs \(\leftrightarrow \) Matrix model

This also works for mirrors of toric geometries!

new formalism to compute open & closed B-model amplitudes:

- Topological string amplitudes \(F_g \) behave like matrix model correlators
- Recursive, geometric reformulation of matrix model \(1/N \)-expansion: all information encoded in spectral curve

- Spectral curve for TS on mirror of toric CY: mirror curve
 \(\Sigma_t(u, v) = w^+ w^- \)
- recursive matrix model formalism \(\rightarrow \) generate TS amplitudes
- no holomorphic ambiguity
- at large radius: mirror to topological vertex, but valid anywhere in moduli space

[Dijkgraaf Vafa]

[Mariño; Bouchard Klemm Mariño Pasquetti]
Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda x^4}{4}. \]

Take the perturbative expansion of the ground-state energy,

\[S_E(\lambda) = \sum_k E_k \lambda^k. \]

- \(S_E \) is in principle expected to have zero radius of convergence, \(R = 0! \)
 [Dyson]

- Indeed here: \(R > 0 \) would imply that the perturbative series describes the physics also for \(\lambda < 0 \), where the state is unstable and the particle escapes.
Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

$$H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda x^4}{4}.$$

Take the perturbative expansion of the ground-state energy,

$$S_E(\lambda) = \sum_k E_k \lambda^k.$$

- S_E is in principle expected to have zero radius of convergence, $R = 0!$ [Dyson]
- Indeed here: $R > 0$ would imply that the perturbative series describes the physics also for $\lambda < 0$, where the state is unstable and the particle escapes.
Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda x^4}{4}. \]

Take the **perturbative expansion** of the ground-state energy,

\[S_E(\lambda) = \sum_{k} E_k \lambda^k. \]

- \(S_E \) is in principle expected to have zero radius of convergence, \(R = 0! \)

[Dyson]

- Indeed here: \(R > 0 \) would imply that the perturbative series describes the physics also for \(\lambda < 0 \), where the state is unstable and the particle escapes →
A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda x^4}{4}. \]

Take the perturbative expansion of the ground-state energy,

\[S_E(\lambda) = \sum_k E_k \lambda^k. \]

- \(S_E \) is in principle expected to have zero radius of convergence, \(R = 0! \)

 [Dyson]

- Indeed here: \(R > 0 \) would imply that the perturbative series describes the physics also for \(\lambda < 0 \), where the state is unstable and the particle escapes → 🛩️

\[E(\lambda) \]
Instanton effects and Large Order behavior

A Quantum mechanics example

Consider the anharmonic oscillator with Hamiltonian

\[H = \frac{p^2}{2} + \frac{x^2}{2} + \frac{\lambda x^4}{4}. \]

Take the perturbative expansion of the ground-state energy,

\[S_E(\lambda) = \sum_k E_k \lambda^k. \]

- \(S_E \) is in principle expected to have zero radius of convergence, \(R = 0! \)

- Indeed here: \(R > 0 \) would imply that the perturbative series describes the physics also for \(\lambda < 0 \), where the state is unstable and the particle escapes → ⚔

\[\text{Re}(E(\lambda)) \]

\[\text{Im}(E(\lambda)) \]

\[\text{lifetime} \]
The anharmonic oscillator

Let $S_E(\lambda) = \sum_{k \geq 0} E_k \lambda^k$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane.
- $S_E(\lambda)$ is asymptotic to $E(\lambda)$.
The anharmonic oscillator

Let $S_E(\lambda) = \sum_{k \geq 0} E_k \lambda^k$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane

- $S_E(\lambda)$ is asymptotic to $E(\lambda)$
The anharmonic oscillator

Let $S_E(\lambda) = \sum_{k \geq 0} E_k \lambda^k$ be the formal, divergent expansion of the ground state energy $E(\lambda)$.

- $E(\lambda)$ is an analytic function of the coupling λ in the cut complex plane

- $S_E(\lambda)$ is asymptotic to $E(\lambda)$
The anharmonic oscillator

Let \(S_E(\lambda) = \sum_{k \geq 0} E_k \lambda^k \) be the formal, divergent expansion of the ground state energy \(E(\lambda) \).

- \(E(\lambda) \) is an **analytic function** of the coupling \(\lambda \) in the cut complex plane

- \(S_E(\lambda) \) is asymptotic to \(E(\lambda) \)

\[
E(\lambda) = \frac{1}{2\pi i} \oint d\lambda' \frac{E(\lambda')}{\lambda' - \lambda}
\]

→ We can deform the Cauchy representation to the dispersion relation

\[
E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda' \frac{\text{Disc}(E(\lambda'))}{\lambda'^{k+1}}
\]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \).
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2+\lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

![Diagram of complex plane with contours C_+ and C_- and saddle points S_1 and S_2]

\[E_k \sim \frac{\mu_1}{2\pi} \mathcal{A}_{\text{inst}}^{-k-b} \Gamma(k + b)(1 + \frac{\mathcal{A}_{\text{inst}}}{(b+k-1)} \mu_2 + O(\frac{1}{k^2})) \rightarrow \]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma(k + \frac{1}{2}) \) [Bender Wu]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is \textit{rigorous and exact}
- The perturbation coefficients are related to the \textit{lifetime of the state in the unstable potential} with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[
\text{Disc}(E(\lambda)) = ?
\]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2+\lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

\[
E_k \sim \frac{\mu_1}{2\pi} A_{\text{inst}}^{-k-b} \Gamma(k+b)(1 + \frac{A_{\text{inst}}}{(b+k-1)} \mu_2 + O\left(\frac{1}{k^2}\right)) \rightarrow
\]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma\left(k + \frac{1}{2}\right) \) [Bender Wu]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

\[E_k \sim \frac{\mu_1}{2\pi} A_{\text{inst}}^{-k-b} \Gamma(k + b)(1 + \frac{A_{\text{inst}}}{(b+k-1)} \mu_2 + O(\frac{1}{k^2})) \rightarrow \]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma(k + \frac{1}{3}) \) [Bender Wu]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

\[\text{Analogously, Disc}(E(\lambda)) = \frac{Z_{1-\text{inst}}}{Z_{0-\text{inst}}} \]

\[= i\mu_1 \lambda^{-b-1} e^{-\frac{A_{\text{inst}}}{\lambda}} (1 + \lambda \mu_2 + O(\lambda^2)) \]

\[\uparrow 1\text{-loop} \]

\[E_k \sim \frac{\mu_1}{2\pi}A_{\text{inst}}^{-k-b} \Gamma(k + b)(1 + \frac{A_{\text{inst}}}{(b+k-1)\mu_2} + O(\frac{1}{k^2})) \rightarrow \]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma(k + \frac{1}{3}) \) [Bender Wu]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

\[= i\mu_1 \lambda^{-b-1} e^{-\frac{\mathcal{A}_{\text{inst}}}{\lambda}} \left(1 + \lambda \mu_2 + O(\lambda^2) \right), \]

\[\text{saddle-point expansion} \]

\[E_k \sim \frac{\mu_1}{2\pi} \mathcal{A}_{\text{inst}}^{-k-b} \Gamma(k+b) \left(1 + \frac{\mathcal{A}_{\text{inst}}}{(b+k-1)} \mu_2 + O\left(\frac{1}{k^2}\right) \right) \rightarrow \]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma\left(k + \frac{1}{2}\right) \) [Bender Wu]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is rigorous and exact
- The perturbation coefficients are related to the lifetime of the state in the unstable potential with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]

Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-(x^2 + \lambda x^4)} dx \): Analytic continuation to \(\lambda < 0 \) →

\[\text{Analogously, Disc}(E(\lambda)) = \frac{Z^{1-\text{inst}}}{Z^{0-\text{inst}}} = i\mu_1 \lambda^{-b-1} e^{-\frac{\mathcal{A}_{\text{inst}}}{\lambda}} \left(1 + \lambda \mu_2 + O(\lambda^2) \right), \]

\[\mathcal{A}_{\text{inst}} = 2 \int_{0}^{x_0} \sqrt{2V(x)} dx = -\frac{1}{3} \rightarrow \text{action of tunneling-instanton} \]

\[E_k \sim \frac{\mu_1}{2\pi} \mathcal{A}_{\text{inst}}^{k-b} \Gamma(k+b)(1 + \frac{\mathcal{A}_{\text{inst}}}{b+k-1})\mu_2 + O\left(\frac{1}{k^3}\right) \rightarrow \text{anharmonic oscillator: } E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{3} 3^{k/2} (k - \frac{1}{2}) \]
\[E_k = \frac{1}{2\pi i} \int_{-\infty}^{0} d\lambda \frac{\text{Disc}(E(\lambda))}{\lambda^{k+1}} \]

- This result is **rigorous and exact**
- The perturbation coefficients are related to the *lifetime of the state in the unstable potential* with negative coupling ↔ instanton effect at \(\lambda < 0 \)

\[\text{Disc}(E(\lambda)) = ? \]
Consider \(I(\lambda) = \int_{-\infty}^{\infty} e^{-x^2+\lambda x^4} dx \): Analytic continuation to \(\lambda < 0 \rightarrow \)

Analogously, \(\text{Disc}(E(\lambda)) = \frac{Z_{1-\text{inst}}}{Z_{0-\text{inst}}} \)

\[= i\mu_1 \lambda^{-1-b} e^{-\frac{\mathcal{A}_{\text{inst}}}{\lambda}} (1 + \lambda \mu_2 + O(\lambda^2)) , \]

\[E_k \sim \frac{\mu_1}{2\pi} \mathcal{A}_{\text{inst}}^{-1-b} \Gamma(k+b)(1 + \frac{\mathcal{A}_{\text{inst}}}{b+k-1}) \mu_2 + O\left(\frac{1}{k^2}\right) \rightarrow \]

anharmonic oscillator: \(E_k \sim (-1)^{k+1} \frac{\sqrt{6}}{\pi^2} 3^k \Gamma(k + \frac{1}{2}) \) [Bender Wu]
Matrix models in $1/N$ expansion

- **Partition function**

 $$Z = \frac{1}{\text{vol}(U(N))} \int dM e^{-\frac{1}{g_s} \text{Tr} V(M)} = \frac{1}{N!} \int \prod_{i=1}^{N} \frac{dz_i}{2\pi} e^{N^2 V_{\text{eff}}(z_i)}$$

- **Effective potential**

 $$V_{\text{eff}}(z_i) = V(z_i) - 2 \frac{t}{N} \sum_{i \neq j} \log |z_i - z_j| \rightarrow \text{Coulomb repulsion} \rightarrow \text{eigenvalues spread out over interval } C$$

- The object we are interested in is the free energy;

 $$F(t) = \sum_{g \geq 0} F_g(t) g_s^{2g-2}$$

 where $t = g_s N$ is the 't Hooft parameter

- t fixed: expansion in $g_s \leftrightarrow$ expansion in $\frac{1}{N}$
Matrix models in $1/N$ expansion

- Partition function

$$Z = \frac{1}{\text{vol}(U(N))} \int dM e^{-\frac{1}{g_s} \text{Tr} V(M)} = \frac{1}{N!} \int \prod_{i=1}^{N} \frac{dz_i}{2\pi} e^{N^2 V_{\text{eff}}(z_i)}$$

- Effective potential $V_{\text{eff}}(z_i) = V(z_i) - 2 \frac{t}{N} \sum_{i \neq j} \log |z_i - z_j| \to$ Coulomb repulsion \to eigenvalues spread out over interval C

- The object we are interested in is the free energy:

$$F(t) = \sum_{g \geq 0} F_g(t) g_s^{2g-2}$$

where $t = g_s N$ is the 't Hooft parameter

- t fixed: expansion in $g_s \leftrightarrow$ expansion in $1/N$
Matrix models in $1/N$ expansion

- **Partition function**

\[
Z = \frac{1}{\text{vol}(U(N))} \int dMe^{-\frac{1}{gs} \text{Tr}V(M)} = \frac{1}{N!} \int \prod_{i=1}^N \frac{dz_i}{2\pi} e^{N^2 V_{\text{eff}}(z_i)}
\]

- **Effective potential** $V_{\text{eff}}(z_i) = V(z_i) - 2 \frac{t}{N} \sum_{i\neq j} \log |z_i - z_j| \to$ Coulomb repulsion \to eigenvalues spread out over interval C

- The object we are interested in is the free energy;

\[
F(t) = \sum_{g \geq 0} F_g(t) g^{2g-2}
\]

where $t = gsN$ is the 't Hooft parameter

- t fixed: expansion in $gs \leftrightarrow$ expansion in $\frac{1}{N}$
Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

Introduction and Motivation

Instantons & Large Order: The Anharmonic Oscillator

Matrix Models in $1/N$ Expansion

Review

Instanton analysis

Examples

Conclusion and Outlook

Matrix models in $1/N$ expansion

- **Partition function**

\[
Z = \frac{1}{\text{vol}(U(N))} \int dM e^{-\frac{1}{g_s} \text{Tr} V(M)} = \frac{1}{N!} \int \prod_{i=1}^{N} \frac{dz_i}{2\pi} e^{N^2 V_{\text{eff}}(z_i)}
\]

- **effective potential** $V_{\text{eff}}(z_i) = V(z_i) - 2t \frac{1}{N} \sum_{i \neq j} \log |z_i - z_j|$ → Coulomb repulsion \rightarrow eigenvalues spread out over interval C

- The object we are interested in is the free energy;

\[
F(t) = \sum_{g \geq 0} F_g(t) g^{2g-2}
\]

where $t = g_s N$ is the ’t Hooft parameter

- t fixed: expansion in $g_s \leftrightarrow$ expansion in $1/N$

1-cut 2-cut
Matrix models in $1/N$ expansion

- Partition function

\[Z = \frac{1}{\text{vol}(U(N))} \int dM e^{-\frac{1}{g_s} \text{Tr} V(M)} = \frac{1}{N!} \int \prod_{i=1}^{N} \frac{dz_i}{2\pi} e^{N^2 V_{\text{eff}}(z_i)} \]

- effective potential \(V_{\text{eff}}(z_i) = V(z_i) - 2 \frac{t}{N} \sum_{i \neq j} \log |z_i - z_j| \rightarrow \) Coulomb repulsion → eigenvalues spread out over interval \(C \)

- The object we are interested in is the free energy;

\[F(t) = \sum_{g \geq 0} F_g(t) g^{2g-2} \]

where \(t = g_s N \) is the 't Hooft parameter

- \(t \) fixed: expansion in \(g_s \) ↔ expansion in \(\frac{1}{N} \)

Here: Consider 1-cut case only
The planar solution

- When $N \to \infty$, the distribution of eigenvalues becomes continuous and one can write

$$V_{\text{eff}}(z) = V(z) - \frac{1}{2\pi} \int (y(z + i0) - y(z - i0)) \log |z - z'| dz,$$

where $y(z)$ is the spectral curve of the matrix model

[Brézin Itzykson Parisi Zuber]
The planar solution

- When $N \to \infty$, the distribution of eigenvalues becomes continuous and one can write

$$V_{\text{eff}}(z) = V(z) - \frac{1}{2\pi} \int (y(z + i0) - y(z - i0)) \log |z - z'| dz,$$

where $y(z)$ is the spectral curve of the matrix model

[Brézin Itzykson Parisi Zuber]

- The effective potential is constant along the cut and has a saddle point at x_0:

- **Instanton configuration**: an eigenvalue from the endpoint of the cut moves to the saddle of the effective potential barrier
The instanton action is

\[\mathcal{A}_{\text{inst}} = N \int_{a}^{x_0} y(z) dz \]

[David; Shenker]
The instanton action is

\[\mathcal{A}_{\text{inst}} = N \int_{a}^{x_0} y(z) \, dz \]

[David; Shenker]

Geometrically, \(\mathcal{A}_{\text{inst}} \) is a contour integral from endpoint of the cut to singularity of spectral curve

[Seiberg Shih]
Instanton analysis

We expect a relation instantons ↔ large-order analogous to the anharmonic oscillator:

\[F_g = \frac{1}{2\pi} \int_0^\infty ds \frac{\text{Disc}(F(\sqrt{s}))}{s^{g+1}} = \mu_1 \frac{\mathcal{A}_{\text{inst}}^{b-2g}}{\pi} \Gamma(2g + b) \left(1 + \frac{\mathcal{A}_{\text{inst}}}{2g + b - 1} \mu_2 + O\left(\frac{1}{g^2}\right) \right) \]

- The large-order behavior is controlled by Disc\((F(g_s))\)
- The discontinuity of \(F(g_s)\) is again given by

\[\text{Disc}(F(g_s)) = \frac{Z_N^{(1-\text{inst})}(g_s)}{Z_N^{(0-\text{inst})}(g_s)} \]

- \(Z_N^{(1-\text{inst})}\) corresponds to one eigenvalue passing through the nontrivial saddle \(x_0\) of the spectral curve
- \(Z_N^{(1-\text{inst})}\) factorizes as

\[Z_N^{(1)} = Z_N^{(0)} \int_{C_{x_0}} dz \langle \text{det}(z - M)^2 \rangle_{N-1}^{(0)} \exp\left(-\frac{V(z)}{g_s}\right) \]
Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$F_g = \frac{1}{2\pi} \int_0^\infty ds \frac{\text{Disc}(F(\sqrt{s}))}{s^{g+1}} = \mu_1 \frac{A_{\text{inst}}}{\pi} \Gamma(2g + b) \left(1 + \frac{A_{\text{inst}}}{2g+b-1} \mu_2 + O\left(\frac{1}{g^2}\right)\right)$$

- The large-order behavior is controlled by $\text{Disc}(F(g_s))$
- The discontinuity of $F(g_s)$ is again given by

 $$\text{Disc}(F(g_s)) = \frac{Z_N^{(1-\text{inst})}(g_s)}{Z_N^{(0-\text{inst})}(g_s)}$$

- $Z_N^{(1-\text{inst})}$ corresponds to one eigenvalue passing through the nontrivial saddle x_0 of the spectral curve \rightarrow

 $Z_N^{(1-\text{inst})}$ factorizes as

 $$Z_N^{(1)} = Z_{N-1}^{(0)} \int_{C_{x_0}} dz \langle \det(z - M)^2 \rangle_{N-1}^{(0)} \exp\left(-\frac{V(z)}{g_s}\right)$$
Instanton analysis

We expect a relation instantons \leftrightarrow large-order analogous to the anharmonic oscillator:

$$F_g = \frac{1}{2\pi} \int_0^\infty ds \frac{\text{Disc}(F(\sqrt{s}))}{s^{g+1}} = \mu_1 \frac{\mathcal{A}_{\text{inst}}^{b-2g}}{\pi} \Gamma(2g+b) \left(1 + \frac{\mathcal{A}_{\text{inst}}}{2g+b-1} \mu_2 + O\left(\frac{1}{g^2}\right)\right)$$

\uparrow \hspace{2cm} \uparrow

1-loop, leading \hspace{2cm} 2-loop, subleading

- The large-order behavior is controlled by $\text{Disc}(F(g_s))$
- The discontinuity of $F(g_s)$ is again given by

$$\text{Disc}(F(g_s)) = \frac{Z_N^{(1-\text{inst})}(g_s)}{Z_N^{(0-\text{inst})}(g_s)}$$

- $Z_N^{(1-\text{inst})}$ corresponds to one eigenvalue passing through the nontrivial saddle x_0 of the spectral curve \rightarrow
- $Z_N^{(1-\text{inst})}$ factorizes as

$$Z_N^{(1)} = Z_{N-1}^{(0)} \int_{C_x} \langle \text{det}(z - M)^2 \rangle_{N-1}^{(0)} \exp\left(-\frac{V(z)}{g_s}\right)$$
Instanton analysis

We expect a relation instantons ↔ large-order analogous to the anharmonic oscillator:

\[
F_g = \frac{1}{2\pi} \int_0^\infty ds \frac{\text{Disc}(F(\sqrt{s}))}{s^{g+1}} = \mu_1 \frac{\mathcal{A}_{\text{inst}}}{\pi}^{b-2g} \Gamma(2g+b) \left(1 + \frac{\mathcal{A}_{\text{inst}}}{2g+b-1} \mu_2 + O\left(\frac{1}{g^2}\right)\right)
\]

- The large-order behavior is controlled by \(\text{Disc}(F(g_s))\)
- The discontinuity of \(F(g_s)\) is again given by

\[
\text{Disc}(F(g_s)) = \frac{Z_N^{(1-\text{inst})}(g_s)}{Z_N^{(0-\text{inst})}(g_s)}
\]

- \(Z_N^{(1-\text{inst})}\) corresponds to one eigenvalue passing through the nontrivial saddle \(x_0\) of the spectral curve.
- \(Z_N^{(1-\text{inst})}\) factorizes as

\[
Z_N^{(1)} = Z_{N-1}^{(0)} \int_{C_{x_0}} dz \langle \det(z - M)^2 \rangle_{N-1}^{(0)} \exp\left(-\frac{V(z)}{g_s}\right)
\]
Instanton analysis

We expect a relation instantons ↔ large-order analogous to the anharmonic oscillator:

\[
F_g = \frac{1}{2\pi} \int_{0}^{\infty} ds \frac{\text{Disc}(F(\sqrt{s}))}{s^{g+1}} = \mu_1 \frac{\mathcal{A}_{\text{inst}}^{-b-2g}}{\pi} \Gamma(2g + b) \left(1 + \frac{\mathcal{A}_{\text{inst}}}{2g+b-1} \mu_2 + O\left(\frac{1}{g^2}\right) \right)
\]

- The large-order behavior is controlled by Disc\((F(g_s))\)
- The discontinuity of \(F(g_s)\) is again given by

\[
\text{Disc}(F(g_s)) = \frac{Z_N^{(1-\text{inst})}(g_s)}{Z_N^{(0-\text{inst})}(g_s)}
\]

- \(Z_N^{(1-\text{inst})}\) corresponds to one eigenvalue passing through the nontrivial saddle \(x_0\) of the spectral curve
- \(Z_N^{(1-\text{inst})}\) factorizes as

\[
Z_N^{(1)} = Z_{N-1}^{(0)} \int_{C_{x_0}} dz \langle \det(z - M)^2 \rangle_{N-1}^{(0)} \exp\left(-\frac{V(z)}{g_s}\right)
\]
• $\langle \det(z - M)^2 \rangle$ can be expanded in terms of connected matrix correlation functions $W_{g,h}$ defined as

$$\langle \text{Tr} \frac{1}{p_1 - M} \cdots \text{Tr} \frac{1}{p_h - M} \rangle = \sum_{g=0}^{\infty} g_s^{2g-2+h} W_{g,h}(p_1, \cdots p_h)$$

• $W_{g,h}$ determined recursively from spectral curve by matrix model loop equations

[Ambjørn Chekhov Kristjansen Makeenko; Eynard Orantin]

• The remaining ingredient is

$$\frac{Z^{(0)}_{N-1}}{Z^{(0)}_N} = \exp \left(\sum_{g=0}^{\infty} g_s^{2g-2} (F_g(g_s(N-1)) - F_g(g_sN)) \right),$$

and we find in saddle-point analysis

$$\text{Disc}(F) = \mu_1 g_s^{1/2} \exp \left(-\frac{A_{\text{inst}}}{g_s}\right) (1 + g_s \mu_2 + \cdots)$$
\[\langle \det(z - M)^2 \rangle \] can be expanded in terms of connected matrix correlation functions \(W_{g,h} \) defined as

\[
\langle \text{Tr} \frac{1}{p_1 - M} \cdots \text{Tr} \frac{1}{p_h - M} \rangle = \sum_{g=0}^{\infty} g_s^{2g-2+h} W_{g,h}(p_1, \cdots p_h)
\]

\(W_{g,h} \) determined recursively from spectral curve by matrix model loop equations

\[
\text{Disc}(F) = \mu_1 g_s^{1/2} \exp \left(- \frac{A_{\text{inst}}}{g_s} \right) \left(1 + g_s \mu_2 + \cdots \right)
\]

The remaining ingredient is

\[
\frac{Z^{(0)}_{N-1}}{Z^{(0)}_N} = \exp \left(\sum_{g=0}^{\infty} g_s^{2g-2} (F_g(g_s(N-1)) - F_g(g_sN)) \right),
\]

and we find in saddle-point analysis
Disc\((F) \) = \(\mu_1 g_s^{1/2} \exp\left(-\frac{\mathcal{A}_{\text{inst}}}{g_s}\right)(1 + g_s \mu_2 + \cdots) \)

Explicitly:

\[
\mu_1 = \frac{(a - b)}{4} \sqrt{\frac{1}{2\pi y'(x_0)((x_0 - a)(x_0 - b))^{3/2}}} e^{-\frac{1}{g_s} \mathcal{A}_{\text{inst}}}
\]

- Disc\((F) \) depends only on the spectral curve of the matrix model, not on the potential
- ↓ B-model formalism
- unambiguously defined for topological strings on mirrors of toric geometries
- \(a, b, x_0 \) depend on \('t \) Hooft parameter \(t \)
- Disc\((F) \) \(\sim e^{-N\mathcal{A}_{\text{inst}}/t} \) → non-perturbative
- \(\mu_1 \) has been computed before, but the result is not valid off criticality

 [Hanada Hayakawa Ishibashi Kawai Kuroki Matsuo Tada]
- We have computed Disc\((F) \) to two loops → \(\mu_1, \mu_2 \)
Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

Introduction and Motivation

Instantons & Large Order: The Anharmonic Oscillator

Matrix Models in 1/N Expansion

Review

Instanton analysis

Examples

Conclusion and Outlook

\[\text{Disc}(F) = \mu_1 g_s^{1/2} \exp \left(- \frac{A_{\text{inst}}}{g_s} \right) (1 + g_s \mu_2 + \cdots) \]

Explicitly:

\[\mu_1 = \frac{(a - b)}{4} \sqrt{\frac{1}{2\pi y'(x_0)((x_0 - a)(x_0 - b))^{3/2}}} e^{-\frac{1}{g_s} A_{\text{inst}}} \]

- \text{Disc}(F) \text{ depends only on the spectral curve of the matrix model, not on the potential}
 \[\downarrow \text{B-model formalism} \]
 \text{unambiguously defined for topological strings on mirrors of toric geometries}
- \(a, b, x_0 \) depend on 't Hooft parameter \(t \)
- \(\text{Disc}(F) \sim e^{-N A_{\text{inst}}/t} \rightarrow \) non-perturbative
- \(\mu_1 \) has been computed before, but the result is not valid off criticality

 [Hanada Hayakawa Ishibashi Kawai Kuroki Matsuo Tada]
- We have computed \(\text{Disc}(F) \) to two loops \(\rightarrow \mu_1, \mu_2 \)
\[\text{Disc}(F) = \mu_1 g_s^{1/2} \exp \left(-\frac{A_{\text{inst}}}{g_s} \right)(1 + g_s \mu_2 + \cdots) \]

Explicitly:

\[\mu_1 = \frac{(a - b)}{4} \sqrt{\frac{1}{2\pi y'(x_0)((x_0 - a)(x_0 - b))^3}} e^{-\frac{1}{g_s} A_{\text{inst}}} \]

- \text{Disc}(F) depends only on the spectral curve of the matrix model, not on the potential
 \[\downarrow \text{B-model formalism} \]
 unambiguously defined for topological strings on mirrors of toric geometries

- \(a, \ b, \ x_0 \) depend on 't Hooft parameter \(t \)

- \(\text{Disc}(F) \sim e^{-N A_{\text{inst}}/t} \to \text{non-perturbative} \)

- \(\mu_1 \) has been computed before, but the result is not valid off criticality

 [Hanada Hayakawa Ishibashi Kawai Kuroki Matsuo Tada]

- We have computed \(\text{Disc}(F) \) to two loops \(\to \mu_1, \mu_2 \)
String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model

\[\mathcal{A}_{\text{inst}} = \int_{a}^{x_0} y(z) \]
\[= W(x_0) - W(a) \]

\[\leftrightarrow \]

disk amplitude for D-instanton in noncritical string theory \(\rightarrow \) ZZ-brane

[Alexandrov Kazakov Kutasov]

\[\downarrow \]
difference between disk amplitudes of FZZT branes
\[W_{\text{FZZT}}(a) - W_{\text{FZZT}}(x_0) \]

Is there a similar story for topological string theory?

\[\mathcal{A}_{\text{inst}} = \int_{a}^{x_0} y(z) \]
\[= W(x_0) - W(a) \]

\[\leftrightarrow \]
two branes located at \(a, x_0 \) with difference between superpotentials \(W(x_0) - W(a) \)
\[\rightarrow \] define domain wall in underlying type II theory, with tension given by \(\mathcal{A}_{\text{inst}} \)

Unlike the B-branes, this domain wall can couple to the complex structure!
String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model \(\leftrightarrow \) disk amplitude for D-instanton in noncritical string theory \(\rightarrow \) ZZ-brane

[Alexandrov Kazakov Kutasov]

difference between disk amplitudes of FZZT branes
\(W_{FZZT}(a) - W_{FZZT}(x_0) \)

Is there a similar story for topological string theory?

\[A_{\text{inst}} = \int_a^{x_0} y(z) = W(x_0) - W(a) \]

two branes located at \(a, x_0 \) with difference between superpotentials \(W(x_0) - W(a) \)

\(\rightarrow \) define domain wall in underlying type II theory, with tension given by \(A_{\text{inst}} \)

Unlike the B-branes, this domain wall can couple to the complex structure!
String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model

\[\mathcal{A}_{\text{inst}} = \int_a^{x_0} y(z) = W(x_0) - W(a) \]

\[\iff \]

disk amplitude for D-instanton in noncritical string theory \(\rightarrow \) ZZ-brane

[Alexandrov Kazakov Kutasov]

\[\downarrow \]

difference between disk amplitudes of FZZT branes

\[W_{FZZT}(a) - W_{FZZT}(x_0) \]

Is there a similar story for topological string theory?

\[\mathcal{A}_{\text{inst}} = \int_a^{x_0} y(z) = W(x_0) - W(a) \]

\[\iff \]

two branes located at \(a, x_0 \) with difference between superpotentials \(W(x_0) - W(a) \)

\(\rightarrow \) define domain wall in underlying type II theory, with tension given by \(\mathcal{A}_{\text{inst}} \)

\[\llap{\text{Unlike the B-branes, this domain wall can couple to the complex structure!}} \]
String interpretation of the instanton effects

Instanton action in the double-scaling limit of matrix model

↔

disk amplitude for D-instanton in noncritical string theory → ZZ-brane

\[[\text{Alexandrov Kazakov Kutasov}] \]

\[\text{difference between disk amplitudes of FZZT branes} \]
\[W_{\text{FZZT}}(a) - W_{\text{FZZT}}(x_0) \]

Is there a similar story for topological string theory?

\[\mathcal{A}_{\text{inst}} = \int_a^{x_0} y(z) \]
\[= W(x_0) - W(a) \]

↔

two branes located at \(a, x_0 \) with difference between superpotentials \(W(x_0) - W(a) \)

→ define **domain wall** in underlying type II theory, with tension given by \(\mathcal{A}_{\text{inst}} \)

¶ Unlike the B-branes, this domain wall can couple to the complex structure!
Examples

We now test our prediction for the asymptotics in the following examples:
Examples

We now test our prediction for the asymptotics in the following examples:

![Diagram]

- Quartic Matrix Model
 - double-scaling limit
 - 2d Gravity
 - Local Curve X_p (double-scaling limit)
 - Hurwitz Theory ($p \to \infty$)

- 2d Gravity
 - double-scaling limit
 - Quartic Matrix Model
 - Local Curve X_p (double-scaling limit)
 - Hurwitz Theory ($p \to \infty$)
Numerical analysis: Richardson transformation

F_g are only available to limited genus, how to extract the asymptotics as $g \to \infty$? → Richardson transformation.

Given a sequence (S_g),

$$S_g = s_0 + \frac{s_1}{g} + \frac{s_2}{g^2} + \cdots,$$

the subleading corrections up to order $\frac{1}{g^n}$ can be removed defining

$$A(g, n) = \sum_{k=0}^{N} S_{g+k}(g+k)^n (-1)^{g+n} \frac{1}{k!(n-k)!}.$$

If S_g truncates at $1/g^n$, this gives exactly s_0: for $n=1$;

$$S_g = s_0 + \frac{s_1}{g} \to A(g, 1) = -(s_0 + \frac{s_1}{g}) + (s_0 + \frac{s_1}{g+1})(g+1) = s_0$$

$A(g, n) = s_0 + O\left(\frac{1}{g^{n+1}}\right) \to$ accelerates convergence
Numerical analysis: Richardson transformation

F_g are only available to limited genus, how to extract the asymptotics as $g \to \infty$? \to Richardson transformation.

Given a sequence $\{S_g\}$,

$$S_g = s_0 + \frac{s_1}{g} + \frac{s_2}{g^2} + \cdots,$$

the subleading corrections up to order $\frac{1}{g^n}$ can be removed defining

$$A(g, n) = \sum_{k=0}^{N} \frac{S_{g+k}(g+k)^n(-1)^{g+n}}{k!(n-k)!}$$

If S_g truncates at $1/g^n$, this gives exactly s_0: for $n=1$;

$$S_g = s_0 + \frac{s_1}{g} \to A(g, 1) = -(s_0 + \frac{s_1}{g}) + (s_0 + \frac{s_1}{g+1})(g+1) = s_0$$

$\therefore A(g, n) = s_0 + O\left(\frac{1}{g^{n+1}}\right)$ \to accelerates convergence.
Numerical analysis: Richardson transformation

F_g are only available to limited genus, how to extract the asymptotics as $g \to \infty$? \rightarrow Richardson transformation.

Given a sequence $\{S_g\}$,

$$S_g = s_0 + \frac{s_1}{g} + \frac{s_2}{g^2} + \cdots,$$

the subleading corrections up to order $\frac{1}{g^n}$ can be removed defining

$$A(g, n) = \sum_{k=0}^{N} S_{g+k}(g+k)^n(-1)^{g+n} \frac{1}{k!(n-k)!}$$

If S_g truncates at $1/g^n$, this gives exactly s_0: for $n=1$;

$$S_g = s_0 + \frac{s_1}{g} \rightarrow A(g, 1) = -(s_0 + \frac{s_1}{g}) + (s_0 + \frac{s_1}{g+1})(g+1) = s_0$$

\bullet $A(g, n) = s_0 + O(\frac{1}{g^{n+1}}) \rightarrow$ accelerates convergence
The quartic matrix model

Consider the matrix model with quartic potential

\[V(M) = \frac{1}{2} M^2 + \lambda M^4 \]

- spectral curve:

\[y(z) = (1 + 8\lambda a^2 + 4\lambda z^2) \sqrt{z^2 - 4a^2} \]

\[\pm 2a = \text{endpoints of the cut,} \]

\[a(\lambda) = \frac{1}{24\lambda} \left(-1 + \sqrt{1 + 48\lambda} \right) \]

[Brézin Itzykson Parisi Zuber]

- Critical point at \(\lambda = -\frac{1}{48} \)

- The free energy in \(\frac{1}{N} \)-expansion can be computed by standard methods

[Bessis Itzykson Zuber]

We have computed \(F_g(\lambda) \) up to genus 10:
The quartic matrix model

Consider the matrix model with quartic potential

\[V(M) = \frac{1}{2} M^2 + \lambda M^4 \]

- spectral curve:

\[y(z) = (1 + 8\lambda a^2 + 4\lambda z^2) \sqrt{z^2 - 4a^2}, \]

\[\pm 2a = \text{endpoints of the cut}, \]

\[a(\lambda) = \frac{1}{24\lambda} \left(-1 + \sqrt{1 + 48\lambda} \right) \]

[Brézin Itzykson Parisi Zuber]

- Critical point at \(\lambda = -\frac{1}{48} \)
- The free energy in \(\frac{1}{N} \)-expansion can be computed by standard methods

[Beissis Itzykson Zuber]

We have computed \(F_g(\lambda) \) up to genus 10:
The quartic matrix model

Consider the matrix model with quartic potential

\[V(M) = \frac{1}{2} M^2 + \lambda M^4 \]

- spectral curve:

\[y(z) = (1 + 8\lambda a^2 + 4\lambda z^2) \sqrt{z^2 - 4a^2}, \]

\[\pm 2a = \text{endpoints of the cut}, \]

\[a(\lambda) = \frac{1}{24\lambda} \left(-1 + \sqrt{1 + 48\lambda} \right) \]

[Brézin Itzykson Parisi Zuber]

- Critical point at \(\lambda = -\frac{1}{48} \)

- The free energy in \(\frac{1}{N} \)-expansion can be computed by standard methods

We have computed \(F_g(\lambda) \) up to genus 10:

19/28
The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda = -0.1$.
The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda = -0.1$.
Nonperturbative effects in Matrix Models and Topological Strings

Marlene Weiss

Introduction and Motivation

Instantons & Large Order: The Anharmonic Oscillator

Matrix Models in $1/N$ Expansion

Examples
- The quartic matrix model
- 2d gravity
- The local curve
- Hurwitz Theory

Conclusion and Outlook

The numerical asymptotics for the instanton action, along with the matrix prediction, at $\lambda = -0.1$

The leading asymptotics for $F_{g}^{\text{quart}}(\lambda)$, divided by the one-loop matrix prediction

The subleading asymptotics, divided by the two-loop prediction
2d gravity

- Taking $N \to \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \to \lambda_c$ where higher-genus contributions are enhanced as $F_g \propto (\lambda - \lambda_c)^{(2-\gamma)(1-g)}$: double-scaling limit \to 2d gravity
 [Gross Migdal; Douglas Shenker]

- limit discretized surface \to continuum

- The perturbative amplitudes are governed by the Painlevé I equation fulfilled by the specific heat $u(z) = F''(z)$,
 \[
 u^2 - \frac{u''}{6} = z
 \]

- can compute F_g to arbitrary genus

- The instanton action and 1-loop factor are
 \[
 \mathcal{A}_{\text{inst}} = \frac{8 \sqrt{3}}{5}, \quad \mu_1 = \frac{1}{8 \, 3^{3/4} \sqrt{\pi}}
 \]
 [David]
2d gravity

- Taking $N \to \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \to \lambda_c$ where higher-genus contributions are enhanced as $F_g \propto (\lambda - \lambda_c)^{(2-\gamma)(1-g)}$: double-scaling limit \to 2d gravity

 [Gross Migdal; Douglas Shenker]

- limit discretized surface \to continuum

- The perturbative amplitudes are governed by the Painlevé I equation fulfilled by the specific heat $u(z) = F''(z)$,

 $$u^2 - \frac{u''}{6} = z$$

- can compute F_g to arbitrary genus

- The instanton action and 1-loop factor are

 $$\mathcal{A}_{\text{inst}} = \frac{8 \sqrt{3}}{5}, \quad \mu_1 = \frac{1}{8 \cdot 3^{3/4} \sqrt{\pi}}$$

 [David]
2d gravity

- Taking $N \to \infty$ in a standard matrix model retains only planar surfaces unless one simultaneously takes $\lambda \to \lambda_c$ where higher-genus contributions are enhanced as $F_g \propto (\lambda - \lambda_c)^{(2-\gamma)(1-g)}$: double-scaling limit \to 2d gravity
 [Gross Migdal; Douglas Shenker]

- limit discretized surface \to continuum
- The perturbative amplitudes are governed by the Painlevé I equation fulfilled by the specific heat $u(z) = F''(z)$,

 \[u^2 - \frac{u''}{6} = z \]

- can compute F_g to arbitrary genus
- The instanton action and 1-loop factor are

 \[\mathcal{A}_{\text{inst}} = \frac{8 \sqrt{3}}{5}, \quad \mu_1 = \frac{1}{8 \cdot 3^{3/4} \sqrt{\pi}} \]

 [David]
The leading asymptotics, divided by the one-loop prediction

The subleading asymptotics, divided by the two-loop prediction
The local curve

Consider A-model topological strings on the local curve

\[X_p = O(p) \oplus O(2 - p) \to \mathbb{P}^1, \quad p \in \mathbb{Z}. \]

- This is a toric Calabi-Yau threefold with one Kähler modulus
- The potential is unstable for all \(p > 2 \)
- The free energy can be computed using the topological vertex or local Gromov-Witten theory
 [Aganagic Klemm Mariño Vafa; Bryan Pandharipande]
- double-scaling limit \(\to 2d \) gravity
The local curve

Consider A-model topological strings on the local curve

\[X_p = O(p) \oplus O(2 - p) \to \mathbb{P}^1, \ p \in \mathbb{Z}. \]

- This is a toric Calabi-Yau threefold with one Kähler modulus

- The potential is unstable for all \(p > 2 \)

- The free energy can be computed using the topological vertex or local Gromov-Witten theory

 [Aganagic Klemm Mariño Vafa; Bryan Pandharipande]

- double-scaling limit \(\to 2d \) gravity
The spectral curve corresponding to the matrix description of the mirror B-model is

\[y(z) = \frac{2}{z} \left(\tanh^{-1} \left(\frac{\sqrt{(z-a)(z-b)}}{z - \frac{a+b}{2}} \right) - p \tanh^{-1} \left(\frac{\sqrt{(z-a)(z-b)}}{z + \sqrt{ab}} \right) \right), \]

[Mariño]

- The endpoints of the cut \(a, b \) depend on the exponential of the Kähler parameter \(Q \) via the mirror map:

\[
\begin{align*}
a &= \frac{(1 + \sqrt{\zeta})^2}{(1 - \zeta)^p}; & b &= \frac{(1 - \sqrt{\zeta})^2}{(1 - \zeta)^p} \\
Q &= (1 - \zeta)^p (p-2) \zeta
\end{align*}
\]

- The B-model matrix formalism provides a nonperturbative completion that is testable with the large-order behaviour of the perturbative amplitudes \(F_g(Q) \).
- Using the topological vertex, we computed \(F_g \) up to genus 9 (genus 7) for \(p=3 \) (\(p=4 \)).
The spectral curve corresponding to the matrix description of the mirror B-model is

\[y(z) = \frac{2}{z} \left(\left(\tanh^{-1} \left(\frac{\sqrt{(z - a)(z - b)}}{z - \frac{a + b}{2}} \right) \right) - \rho \tanh^{-1} \left(\frac{\sqrt{(z - a)(z - b)}}{z + \sqrt{ab}} \right) \right), \]

[Mariño]

- The endpoints of the cut \(a, b \) depend on the exponential of the Kähler parameter \(Q \) via the mirror map:

\[a = \frac{(1 + \sqrt{\zeta})^2}{(1 - \zeta)^p}; \quad b = \frac{(1 - \sqrt{\zeta})^2}{(1 - \zeta)^p}; \quad Q = (1 - \zeta)^{p(p-2)} \zeta \]

- The B-model matrix formalism provides a nonperturbative completion that is testable with the large-order behaviour of the perturbative amplitudes \(F_g(Q) \)

- Using the topological vertex, we computed \(F_g \) up to genus 9 (genus 7) for \(p=3 \) (\(p=4 \))
The numerical asymptotics for the instanton action, along with the matrix prediction, at $\zeta = .15, p = 3$

The leading asymptotics for $F_{g}^{p=3}$, divided by the one-loop prediction

The subleading asymptotics, divided by the two-loop prediction
Hurwitz Theory

- Hurwitz theory counts branched covers of Riemann surfaces obtained as a special limit of the local curve X_p:

$$p \to \infty, \ g_s \to 0, \ Q \to 0; \ g^H = Npg_s, \ Q_H = \frac{(-1)^p}{(g_s N)^2} Q$$

$$F^H = \sum_{g \geq 0} N^{2-2g} \sum_{d \geq 0} Q_H^{d} H_{g,d}^{\mathbb{P}^1} (1^d) \cdot \frac{g^{2g-2+2d}}{(2g-2+2d)!}$$

- The mirror map and endpoints of the cut are given by

$$\chi e^{-\chi} = Q^H, \ a_H(\chi) = (1 + \sqrt{\chi})^2, \ b_H(\chi) = (1 - \sqrt{\chi})^2$$

- In the double-scaling limit (at $\chi = 1$), one recovers 2d gravity

- We have computed F_g up to genus 16, finding again spectacular agreement:
Hurwitz Theory

- Hurwitz theory counts branched covers of Riemann surfaces obtained as a special limit of the local curve X_p:

 $$p \to \infty, \ g_s \to 0, \ Q \to 0; \ g^H = Np g_s, \ Q_H = \frac{(-1)^p}{(g_s N)^2} Q$$

- $F^H = \sum_{g \geq 0} N^{2-2g} \sum_{d \geq 0} Q^d_H H_{g,d}(1^d) \cdot \frac{g_H^{2g-2+2d}}{(2g-2+2d)!}$

- The mirror map and endpoints of the cut are given by

 $$\chi e^{-\chi} = Q^H, \ a_H(\chi) = (1 + \sqrt{\chi})^2, \ b_H(\chi) = (1 - \sqrt{\chi})^2$$

- In the double-scaling limit (at $\chi = 1$), one recovers 2d gravity

- We have computed F_g up to genus 16, finding again spectacular agreement:
The numerical asymptotics for the instanton action, along with the matrix prediction, at $\chi = 0.5$

The leading asymptotics for $F_{g}^{H}(\chi)$, divided by the one-loop matrix prediction

The subleading asymptotics for $F_{g}^{H}(\chi)$, divided by the two-loop prediction
Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model.
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries.
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision.

Challenges ahead:
- multi-cut case
- Extend B-model formalism?
Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision

Challenges ahead
- multi-cut case
- Extend B-model formalism?
Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
 - All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision

Challenges ahead
- multi-cut case
- Extend B-model formalism?
Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision

Challenges ahead
- multi-cut case
- Extend B-model formalism?
Conclusion and Outlook

- We have computed nonperturbative effects for a generic matrix model
- The B-model formalism defines a nonperturbative completion for topological strings on local geometries
- All can be tested with the large-order behavior of the string perturbation series: agreement to very high precision

Challenges ahead
- multi-cut case
- Extend B-model formalism?