
Physics 12c: Problem Set 7

Due: Thursday, May 30, 2019
Note: problem 3 is optional.

1. Mechanical contact and volume fluctuations

Consider a system in thermal and mechanical contact with a reservoir at constant
temperature τ and pressure p. The heat capacity at constant pressure is defined as

Cp =

(
∂U

∂τ

)
p

+ p

(
∂V

∂τ

)
p

. (1)

The isothermal compressibility is defined by

κ = − 1

V

(
∂V

∂p

)
τ

, (2)

and the thermal expansion coefficient is defined by

η =
1

V

(
∂V

∂τ

)
p

. (3)

Here, U = 〈E〉 and V = 〈V 〉. For a quantity X, we write ∆X = X − 〈X〉.

(a) Compute the expected fluctuations

〈∆E2〉, 〈∆E∆V 〉, 〈∆V 2〉 (4)

in terms of Cp, κ, and η. Hint: Remember problem 1 on problem set 2. You will
have to use an appropriate generalization of the canonical ensemble and study
an appropriate generalization of the partition function. You may find it helpful
to define the variables β = 1/τ and γ = p/τ .

(b) Compute Cp, κ, η for an ideal monatomic gas and plug them in to determine the

fluctuations (4) in terms of N , τ , and V . In particular, show that 〈∆V 2〉 = V 2

N .

2. Kinetic model of a gas

The purpose of this problem is to introduce an important concrete model of a gas
and to reproduce your result for 〈∆V 2〉 from problem 1 using that model. The
computation in problem 1 is much simpler, and you might take this as evidence for
the power of partition functions.

Let us model a gas as a collection of N non-interacting classical particles with mass m
and infinitesimal size, moving in a container with dimensions Lx×Ly×Lz. The gas is
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in thermal and mechanical contact with a reservoir with pressure p and temperature
τ . Specifically, the right-hand wall of the container with area A = LyLz is a movable
piston with mass M � m. The reservoir applies pressure p to the piston, and this is
balanced by a force from the gas.

The probability distribution of velocities of gas particles is described by the Maxwell-
Boltzmann distribution that you computed in problem 4 of problem set 4:

f(v) =

(
βm

2π

)3/2

e−
βm(v2x+v

2
y+v

2
z)

2 . (5)

For example, the total number of particles with velocity inside a velocity-space cube
[v,v + dv] = [vx, vx + dvx]× [vy, vy + dvx]× [vz, vz + dvz] is

Nf(v)d3v = Nf(v)dvxdvydvz. (6)

You may find it helpful to factor f(v) into a product of 1-dimensional MB distribu-
tions f(v) = g(vx)g(vy)g(vz), where

g(v) =

(
βm

2π

)1/2

e−
βmv2

2 . (7)

(a) We can model the force from the gas as the collective result of many individual
elastic collisions between gas particles and the piston. During a single collision,
a gas particle with velocity vi = (vx, vy, vz) bounces off the wall and leaves with
velocity vf = (−vx, vy, vz). During a bounce, what momentum does the gas
particle transfer to the wall?

(b) Let the number of particles with velocity v = (vx, vy, vz) inside a velocity-space
cube d3v that hit the wall in a time interval dt be

n(v)f(v) dt d3v (8)

Compute n(v). What is the total momentum transfer to the wall from these
particles?

(c) Integrate your answer to the previous part over v to obtain the total momentum
transfer to the piston in time dt. Be careful: only one sign of vx contributes.
You should recover the ideal gas law p = Nτ

V . Note: there is also a slick way to
compute the above integral using equipartition of energy. However you want to
do it is fine.

Let us now consider fluctuations in the position of the piston. We write its position
as Lx + x, where 〈x〉 = 0 in equilibrium. There are three important effects:
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• The piston experiences a position-dependent force from the volume-dependence
of the ideal gas law.

• The piston experiences a velocity-dependent drag force from increased/decreased
impulse of gas particles.

• Fluctuations in the number of particles hitting the piston cause the force on the
piston to fluctuate around its average value.

Overall, the position of the piston satisfies the differential equation

Mẍ = −kx− γẋ+ ζ(t), (9)

where −xk is the position-dependent force, −γẋ is the velocity-dependent drag force,
and ζ(t) is a random driving force satisfying

〈ζ(t)〉 = 0,

〈ζ(t)ζ(t′)〉 = rδ(t− t′) (10)

coming from fluctuations in the number of particles hitting the piston. Our goal is
to compute k, γ, r.

(d) The reservoir exerts a constant force −pA = −Nτ
Lx

on the piston. The gas exerts

an average force NτA
V on the piston, where V = A(Lx + x). Compute k by

linearizing the total force around x = 0.

(e) The term −γẋ is a velocity-dependent drag force. Suppose the piston has ve-
locity ẋ. In the frame of the piston, the distribution of velocities of the gas
molecules is shifted

f(vx, vy, vz)→ f(vx + ẋ, vy, vz) (11)

Linearize this distribution around ẋ = 0 and redo your calculation in part (2c)
to compute γ.

We would now like to compute r. Let us model each bounce as an instantaneous
force:

2mvi,xδ(t− ti), (12)

where ti is the time of the bounce and vi is the velocity of the particle participating
in the bounce. Consider a long time interval T , during which B � 1 bounces occur.
The force at time t is

F (t; t1,v1, . . . , tB,vB) =
B∑
i=1

2mvi,xδ(t− ti). (13)
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In addition to depending on t, the force also depends on the bounce times t1, . . . , tB
and bounce velocities v1, . . . ,vB. Note that t is not a bounce time — it is the time
at which we measure the force.

The probability of bounce i occurring in a time interval dti and velocity cube d3vi is

ρ(ti,vi)dti d
3vi, ≡

1

B
n(vi)f(vi)dti d

3vi (14)

where n(v) is the function you computed in part (2b). Given a function h(t1,v1) of
a single bounce time and bounce velocity, its expectation value is

〈h〉 =

∫ T

0
dt1

∫
d3v1ρ(t1,v1)h(t1,v1). (15)

Similarly, for a function h(t1,v1, . . . , tk,vk) of multiple bounce times and bounce
velocities, its expectation value is

〈h〉 =

∫ T

0
dt1

∫
d3v1 · · ·

∫ T

0
dtk

∫
d3vkρ(t1,v1) · · · ρ(tk,vk)h(t1,v1, . . . , tk,vk).

(16)

The number of bounces B can be fixed by demanding that 〈1〉 = 1. You do not
need to actually compute B for this problem, but you should convince yourself that
it grows linearly with T .1

(f) Show that

F0 ≡ 〈F (t; t1,v1, . . . , tB,vB)〉 =
Nτ

Lx
, (17)

in agreement with your answer to part (2c). Hint: t is not a bounce time, so
you should not integrate over t.

(g) Show that for any function h(v),

〈h(vi)h(vj)δ(t− ti)δ(t′ − tj)〉 =

{
〈h(vi)2〉

T δ(t− t′) if i = j
〈h(vi)〉2
T 2 if i 6= j.

(18)

(h) Let the fluctuating part of the force be ζ(t) = F (t; t1,v1, . . . , tB,vB)−F0. Using
(18), show that

lim
T→∞

〈ζ(t)ζ(t′)〉 = rδ(t− t′) (19)

and compute r.

1For the sums over bounces to make sense, B must be an integer. You can assume that T is such that
this is the case. Because T is large, this doesn’t really matter. You may also assume Lx/〈vx〉 � T , so that
a single particle doesn’t experience multiple bounces. Also, for the purposes of computing fluctuations, you
can use the value of n(v) at x = 0, ẋ = 0.
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(i) Equation (9) is an example of a stochastic differential equation. The random
driving force repeatedly kicks the piston making it undergo a sort of random walk
called “Brownian motion” in the potential defined by the position-dependent
force −kx. You will (optionally) show in problem 3 that

〈x2〉 =
r

2γk
. (20)

Plugging in your values for k, γ, r, show that

〈∆V 2〉 =
V 2

N
. (21)

3. Optional: solving the stochastic diffeq

In this completely optional problem, we prove equation (20).2

(a) Define ẋ = v (not to be confused with the velocity of a gas particle) and write
(9) as a first-order matrix differential equation

ẏ = Ay + z(t), (22)

where

y ≡
(
x
v

)
, z(t) ≡

(
0

ζ(t)/M

)
(23)

compute the 2× 2 matrix A.

(b) Show that the solution is

y(t) =

∫ t

−∞
dt′eA(t−t

′)z(t′). (24)

(Recall that the exponential of a matrix can be defined by its Taylor series.)
Thus

x(0) =
1

M

∫ 0

−∞
dt′(e−At

′
)12ζ(t′), (25)

where (e−At
′
)ij are the matrix elements of e−At

′
.

(c) Show that

〈x(0)2〉 =
r

M2

∫ 0

−∞
dt′(e−At

′
)212. (26)

2The canonical way to do this is via Fourier analysis and contour integrals. Since many of you haven’t
studied complex analysis, we will do things in a different way.
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(d) Using any method you like (Mathematica is ok), show

(e−At)12 = −2M
e
γt
2M√

4kM − γ2
sin

(
t
√

4kM − γ2
2M

)
. (27)

Perform the integral (26) to derive

〈x(0)2〉 =
r

2kγ
. (28)

From the point of view of this calculation, it is remarkable that M drops out of
the final answer — i.e. the volume fluctuations do not depend on the mass of
the piston. Of course, this is obvious from the approach of problem 1 (since the
mass of the piston doesn’t appear anywhere).
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