Phys 229b, CFT: Problem Set 5

Due: June 12, 2018

Please write up your solutions in I^AT_EX, and submit via email (dsd@caltech.edu). Feel free to use a computer algebra program (e.g. *Mathematica*).

- 1. Derive the four-point functions $\langle \epsilon \epsilon \epsilon \epsilon \rangle$ and $\langle \sigma \sigma \epsilon \epsilon \rangle$ in the 2d Ising model. Use the degeneracy conditions on σ, ϵ to write down differential equations for the Virasoro blocks. Solve the equations and fix the coefficients by considering OPE limits.
- 2. Download and install SDPB from https://github.com/davidsd/sdpb. Run the function bootstrapBound2d in the notebook mathematica/Bootstrap2dExample.m and produce a bound on the lowest-dimension scalar in the $\phi \times \phi$ OPE in two dimensions.
- 3. Assume that $\Delta_{\phi} = \frac{1}{8}$. Compute an upper bound on the OPE coefficient of a scalar $\mathcal{O} \in \phi \times \phi$ with dimension Δ_0 , as a function of Δ_0 . You may find it useful to modify the function singletAllowed2d to compute an upper bound on an OPE coefficient.