
Week 5 (due May 7)

Reading: Srednicky, sections 71, 72. See also Peskin-Schroeder for a
better explanation of the Faddeev-Popov gauge-fixing procedure.

1. (a) Derive the equations of motion following from the Yang-Mills action

S = −1

2

∫
d4xTrFµνF

µν .

(b) A gauge field Aµ is called flat if Fµν = 0. Show that if a gauge field
A is gauge transformation of the zero gauge field, i.e. if it has the form

Aµ(x) = iU(x)∂µU
−1(x)

for some gauge transformation U , then it is flat. The converse is actually also
true (on R4), but it is harder to prove. Show that a flat gauge field solves
the Yang-Mills equations of motion derived in part (a). (Such solutions of
course are rather trivial, in the sense that they are gauge-equivalent to the
zero solution).

2. (a) Prove the Bianchi identity

DµFνρ +DνFρµ +DρFµν = 0.

Note that the covariant derivative here is the one appropriate for the adjoint
representation.

(b) Consider the equation

Fµν =
1

2
εµνρση

ραησβFαβ.

This equation is called the instanton equation, and its solutions are called
instantons. Using the Bianchi identity from part (a) show that any solution
of the instanton equation solves the Yang-Mills equations of motion (the
converse is not necessarily true). Show further that if the metric is the
Minkowski metric, then the instanton equations are equivalent to Fµν = 0,
and so all instantons are gauge-equivalent to zero. Show that if the metric is
the Euclidean metric (i.e. the identity matrix), then the instanton equations
do not imply Fµν = 0, and thus there may be nontrivial solutions. (In fact,
there are many solutions of the instanton equation on R4).

3. (a) Show that the expression

εµνρσTrFµνFρσ



is a total derivative:
εµνρσTrFµνFρσ = ∂µK

µ.

Hint: use the following ansatz for Kµ:

Kµ = εµνρσTr(aAν∂ρAσ + bAνAρAσ),

and tune the numbers a and b to get the desired identity. Note that the last
term in Kµ does not vanish because Aρ and Aσ are matrices which need not
commute.

(b) Having found a and b and Kµ, let us set µ = 0. Clearly K0 is a
function of the spatial components of A only. Thus function is called the
Chern-Simons density. We may regard it as a scalar function of the 3d gauge
field with components A1, A2, A3. Show that under an infinitesimal gauge
transformation

δAµ = −Dµε, µ = 1, 2, 3, ε = ε(x1, x2, x3),

the Chern-Simons density changes by a total derivative. Therefore the in-
tegral of the Chern-Simons density is gauge-invariant and can be used as a
candidate for the action of a 3d gauge theory. This action is called the Chern-
Simons action and is special to 3d. (In contrast, the Yang-Mills action makes
sense in all dimensions).

(c) Derive the equations of motion arising from varying the Chern-Simons
action. Show that they are equivalent to

Fµν = 0.

If the space-time is R3, this equation implies that Aµ is gauge-equivalent to
zero. Thus Chern-Simons gauge theory is rather trivial (has no propagating
degrees of freedom), unlike Yang-Mills theory.


