
1 Content of the course

”Quantum Field Theory” by M. Srednicki, Part 1.

2 Combining QM and relativity

We are going to keep all axioms of QM:
1. states are vectors (or rather rays) in Hilbert space.
2. observables are Hermitian operators and their values are the spectrum.
3. probability of measuring a particular value a of an observable A in a

state Ψ is
||PaΨ||2

||Ψ||2
,

where Pa is a projector to the eigenspace of A corresponding to a.
4. Time evolution of states is governed by the Schrödinger equation

i
dΨ(t)

dt
= HΨ(t),

where H is the Hamiltonian (energy operator).
5. Symmetries are unitary or anti-unitary operators preserving the Hamil-

tonian.
6. etc.
For a nonrelativistic particle, we let H = L2(R3) and let the momen-

tum operator (generator of translations) be P̂ = −i~∇. Since E = P2/2m
classically, it is natural to define H = P̂2/2m = −~2∇2/2m.

From now on, I will let ~ = 1, so H = −∇2/2m.
For a relativistic particle,

E =
√

P2c2 +m2c4,

so can try
H =

√
−∇2c2 +m2c4

This expression is problematic: treats time and space asymmetrically and
appears nonlocal.

Alternatively, we can “quantize” the squared dispersion relation E2 =
P2c4 +m2c4 to get the Klein-Gordon equation

− ∂2

∂t2
Ψ =

(
−c2∇2 +m2c4

)
Ψ.
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This equations is more reasonable, as it is more symmetric w.r. to ex-
change of time and space. To see relativistic invariance better, let x0 = ct.
From now I will let c = 1, so in such units x0 = t. Also, x0 = −t, and
xi = xi, i = 1, 2, 3. Greek indices will run over the set 0, 1, 2, 3.

Minkowski metric: gµν = diag(1,−1,−1,−1) = gµν . xµ = gµνx
ν , where

we use Einstein’s convention (summation over repeated indices). Similarly,
xµ = gµνxν .

Minkowski interval: x2 = xµxµ = xµxµgµν = (x0)2 −
∑

i(x
i)2.

Lorenz transformations are

x̄µ = Λµ
νx

ν ,

where Λ is any real matrix such that x̄µx̄µ = xµxµ.
Now we can check relativistic invariance of the KG equation, i.e. that

φ(x) and φ(x̄) satisfy the same equation.
Let

∂µ =
∂

∂xµ
, ∂µ = gµν∂ν .

Then
∂̄µ = Λµ

ν ∂̄
ν .

and therefore ∂̄2 = ∂2. Hence the KG operator is Lorenz-invariant.
Problems:
1.
∫
d3x|Ψ|2 is not conserved. Moreover, it has wrong transformation

properties under the Lorenz transformation: |Ψ|2 is not a time component
of a 4-vector, so we do not expect a continuity equation to hold (and it does
not). One can write down something which is a component of a conserved
4-vector:

jµ = i(Ψ∗∂µΨ− ∂µΨ∗Ψ)

satisfies ∂µj
µ = 0, and so ∫

d3xj0

is conserved. But j0 is not positive-definite, so cannot be interpreted as
probability density.

2. Negative-energy solutions.
Dirac tried to solve these problems by looking for a first-order equation,

but for a multicomponent wavefunction. This solved problem 1, but not
problem 2.
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Ultimately, the problem is that relativistic QM can be consistently de-
veloped only if we do not work in a theory with a fixed number of particles.
Hence we need to understand how to describe systems where particle creation
and annihilation is allowed.

3 Fock space methods (second quantization)

3.1 Bosons

A single particle has H1 = L2(R3) as its Hilbert space. Two particles have
H2 = L2(R3 × R3)sym ' Sym2H1. And so on. The Hilbert space without
any particles is one-dimensional (the vacuum state). Thus

H = C⊕H1 ⊕H2 ⊕ . . . = ⊕∞k=0Symk(H1).

This is called the bosonic Fock space F(H1) associated to H1.
The Fock space is always infinite-dimensional, even if H1 is not. Let us

look at the extreme case, H1 ' C. Then

F(C) = C⊕ C⊕ C⊕ . . . .

Thus a vector in F(C) is an infinite sequence of numbers or vector (a0, a1, a2, . . .)
such that

∑
k |ak|2 <∞.

It is often convenient to think of such a sequence as Taylor coefficients of
an analytic function

f(z) = a0 + a1z + a2z
2 + . . .

Degree is then identified with the particle number. Polynomials form a dense
set in this space of functions and correspond to states with a finite number
of particles.

Two natural operations on polynomials are z and ∂. They satisfy

[∂, z] = 1.

One calls ∂ the annihilation operator a, and calls z the creation operator a†.
They are indeed conjugate to each other if we define the scalar product to
be

||f(z)||2 =
1

2π

∫
d2z|f(z)|2e−|z|2 .
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Using this scalar product, one can compute ||zn||2 = n!. Thus a normalized
n-particle state is

|n〉 =
1√
n!
zn =

1√
n!

(a†)n|0〉.

Thus
a†|n〉 =

√
n+ 1|n+ 1〉, a|n〉 =

√
n|n− 1〉

This can serve as a definition of creation and annihilation operators.
The particle number operator can be expressed as N = z∂z = a†a. Eigen-

states of N are homogeneous polynomials. Polynomials are Fock space states
which involve only a finite number of particles.

More generally, suppose H1 ' CN . Let us choose a basis ψi, i = 1, . . . , N
in H1 and introduce N variables z1, . . . , zN . Then one can identify Symp(H1)
with the space of polynomials in N variables of total degree p: a state with
k1 particles in the state ψ1, k2 particles in the state ψ2, etc. can be identified
with the polynomial

zk11 . . . zkNN .

We define ai = ∂i, a
†
i = zi so that

[ai, a
†
j] = δij.

The Fock space is then the space of all polynomials in variables z1, . . . , zN .
If we change the basis in H1, creation-annihilation operators also change: if
ψ′i = Bj

iψj, where B is a unitary matrix, then

a′i = B∗ij aj

The particle number operator is N =
∑

i zi∂i =
∑

i a
†
iai. Eigenstates of N

are homogenous polynomials.
If H1 is infinite-dimensional, but has a countable basis, we can still think

of its Fock space as a completion the space of polynomials in variables
z1, z2, . . ..

But usual bases on L2(R3) (momentum eigenstates |p〉 and coordinate
eigenstates |x〉 are not like that. Still, one can define analogues of creation
and annihilation operators:

Ψ(x) =
∑
i

aiψi(x), Ψ†(x) =
∑
i

a†iψ
∗
i (x).
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They satisfy
[Ψ(x),Ψ†(y)] = δ3(x− y).

All operators in Fock space can be expressed in terms of Ψ(x) and Ψ†(x).
Examples:
0. The particle number operator N =

∫
d3xΨ†(x)Ψ(x).

1. One-particle operators. A one-particle operator is an operator of the
form

∞∑
k=1

k∑
i=1

1⊗ . . .⊗ 1⊗O ⊗ 1⊗ . . .⊗ 1 =
∞∑
k=0

k∑
i=1

Oi,

where O is an operator on H1. It can be written as∫
d3xd3yΨ†(x)〈x|O|y〉Ψ(y).

For example, the kinetic energy operator is a one-particle operator with O =
−∇2/2m, so the corresponding operator in Fock space is∫

d3xΨ†(x)
(
−∇2/2m

)
Ψ(x).

The particle number operator is a one-particle operator with O = 1.
2. Two-particle operators. These are operators of the form

∞∑
k=1

∑
1≤i<j≤k

Oij

where Oij is an operator on H2 which acts only on the i-th and j-th particle.
The corresponding operator in Fock space is

1

2

∫
d3xd3yd3zd3tΨ†(x)Ψ†(y)〈x, y|O|z, t〉Ψ(t)Ψ(z).

For example, the potential energy operator is of this form, with 〈x, y|O|z, t〉 =
V (x− y)δ3(x− z)δ3(y − t). The corresponding operator in Fock space is

1

2

∫
d3xd3yΨ†(x)Ψ†(y)V (x− y)Ψ(y)Ψ(x).

How do we formulate dynamics in the Fock space? Since the emphasis
is on creation-annihilation operators, it is often convenient to work in the
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Heisenberg picture and write EOMs for Ψ and Ψ†, instead of the Schrödinger
equation. For free particles, we get

∂Ψ

∂t
= i[H,Ψ] = − i

2m
∇2Ψ.

This looks like Schrödinger equation, but for a field operator. Hence the name
”second quantization”. Let us find a solution. Go to momentum space:

Ψ(x) =

∫
d3p(2π)−3b(p)eipx

Then
[b(p), b†(q)] = (2π)3δ3(p− q).

and

H =

∫
d3p(2π)−3

p2

2m
b†(p)b(p).

b(p, t) = e−iEptb(p, 0).

Thus

Ψ(t,x) =

∫
d3p

(2π)3
b(p, 0)e−Ept+ip·x.

This completely determines the evolution of all observables.
For an interacting system, get the following equation:

i
∂Ψ

∂t
= − 1

2m
∇2Ψ +

∫
d3yΨ†(y)Ψ(y)V (x− y)Ψ(x).

This is nonlinear and cannot be regarded as “second-quantized” Schrodinger
equation. Its classical analogue is a PDE for an ordinary function Ψ(t, x),
which is NOT interpreted as a quantum-mechanical wavefunction.

Remark: the quantum harmonic oscillator corresponds to the Fock space
for H = 1. A collection of N harmonic oscillators is equivalent to the bosonic
Fock space for H1 = CN .Thus the quantization of a system of harmonic
oscillators can be interpreted in terms of free bosonic particles. The energies
of 1-particle states are ωi.
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3.2 Fermions

Now consider fermionic particles which obey the Pauli principle. Fermionic
wavefunctions are antisymmetric with respect to the exchange of any two
particles.

Let us again begin with the case H1 = C. Then the Fock space is

F(H1) = C⊕ C.

This is two-dimensional, and there are many ways to think about it. E.g.,
we can identify it with the states of a spin-1/2 particle. But we will choose
a more esoteric viewpoint. Consider a variable θ which has a multiplication
rule θ2 = 0. Then “analytic functions of θ” are linear functions

f(θ) = a+ bθ.

The space of such functions can be identified with F(H1): th vacuum state
is 1, while the 1-particle state is θ.

Creation-annihilation operators are defined as before: c† = θ, c = ∂θ.
Note that c2 = (c†)2 = 0. It is also easy to check that cc† + c†c = 1. Note
the crucial plus sign. The particle number operator is N = c†c.

We can define the scalar product so that c† is indeed the adjoint of c.
Details of this are left as an exercise.

Now consider N -dimensional H1. Introduce N variables θi which satisfy
θiθj + θjθi = 0. Consider an analytic function of θi. Again, the series termi-
nates in degree N . The total dimension of the space of functions is 2N . The
k-ht term in the expansion is∑

i1...ik

f i1...ikθi1 . . . θik .

Here the coefficient functions are totally anti-symmetric, as required by the
Fermi statistics. The creation operators are c†i = θi, the annihilation opera-
tors are ci = ∂i. They satisfy

cic
†
j + c†jci = δij.

Note that the fermionic Fock space has a symmetry which replaces the vac-
uum with the “filled state” θ1 . . . θN and exchanges ci and c†i . There is nothing
analogous in the bosonic case.
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The rest proceeds as before. We can choose a countable basis in L2(R3)
and define

Ψ(x) =
∑
i

ψi(x)ci, Ψ†(x) =
∑
i

ψ∗i (x)c†i .

They satisfy
Ψ(x)Ψ†(y) + Ψ†(y)Ψ(x) = δ3(x− y).

These are called canonical anti-commutation relations. In the noninteracting
case, the EOM is linear and solved exactly as in the bosonic case.

4 Classical field theory

There is something special about differential equations which come from “de-
quantizing” the Heisenberg equations of motion: they come from a variational
principle.

4.1 Classical mechanics

Recall classical mechanics. Action:

S =

∫ T

0

dtL(qi(t), q̇i(t)).

Euler-Lagrange variational principle: δS = 0 with q(0) and q(T ) fixed. Equa-
tions of motion:

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
.

Alternatively, we can introduce pi = ∂L/∂qi, the Hamiltonian

H = pq̇ − L,

and write the action as

S =

∫
dt(pq̇ −H(p(t), q(t))).

The equation δS = 0 then gives

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.
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These are Hamilton equations.
Finally, if we introduce the Poisson bracket

{F,G} =
∂F

∂pi

∂G

∂qi
− ∂F

∂qi
∂G

∂pi

for any two functions F,G, the Hamilton equations of motion can be written
as

q̇i = {H, qi}, ṗi = {H, pi}.

We also have
{pi, qj} = δji , {qi, qj} = {pi, pj} = 0.

Under quantization, Poisson bracket becomes i times the commutator.

4.2 Nonrelativistic field theory

Now we want to have a similar formalism where i is replaced with a contin-
uous index x. Instead of qi(t) will have Ψ(t,x). Action:

S =

∫
dtL(Ψ, Ψ̇).

EOM:
δL

δΨ(t,x)
=

d

dt

(
δL

δΨ̇(t,x)

)
.

Here the variational derivative is defined by

δL =

∫
d3x

δL

δΨ(t,x)
δΨ(t,x).

In the free case, it is sufficient to take

L = L0 =

∫
d3x

(
iΨ∗Ψ̇− 1

2m
∂iΨ

∗∂iΨ

)
.

Note that L is an integral of a local expression, L =
∫
d3xL, so

S =

∫
dtd3xL(Ψ, Ψ̇).
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This is very nice, but is not obligatory in a nonrelativistic situation: in an
interacting case one finds

L = L0 −
1

2

∫
d3xd3y|Ψ(x)|2|Ψ(y)|2V (x− y).

This is local in some very special cases. For example, when V (x) = δ3(x)
(“contact interaction”). In the relativistic case only such interaction are
allowed.

Note that this fits better with the second version of the variational prin-
ciple: iΨ∗ is the “momentum conjugate to Ψ”. So one has Poisson brackets

{Ψ∗(x),Ψ(y)} = −iδ3(x− y).

The Hamiltonian is then given by the same expression as before, but Ψ’s are
now ordinary functions, not Fock-space operators.

Quantization now is easy: we get the standard commutation relations for
Ψ and Ψ∗ and realize them as operators in Fock space.

How do we get fermionic Fock space in this way? There is no good way
of doing so. Reason: classical limit makes sense only when a large number
of particles are in the same state.

For clarity, consider discrete case. In order for the commutator term to
be negligible, need to consider a state where a has a large expectation value
(and small variance). Hence N = a†a will have a large expectation value.
This is not possible in the fermionic case.

Formally, we can still consider the same equations, but with Ψ and Ψ∗

satisfying anticommutation relations. This means that they are not ordinary
functions, but generators of a Grassmann algebra. We will use this trick
later.

4.3 Relativistic field theory

Main idea: interpret the KG equation not as an equation for a wavefunction,
but an equation for a field operator. That is, let us make relativistic not the
one-particle Schrodinger equation, but the Heisenberg equation of motion for
the Fock space operator.

To understand it, we need to specify commutation relations for Ψ in such a
way, that the KG equation is the Heisenberg equation for some Hamiltonian.
We can do this like this: first solve an analogous classical problem, and then
quantize everything.
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The classical KG equation comes from the action

S =
1

2

∫
dtd3x

(
∂µφ∂

µφ−m2φ2
)
.

This looks more like the first version of the variational principle. The mo-
mentum is

p(x) = φ̇(x),

and the Hamiltonian is

H =

∫
d3xH =

1

2

∫
d3x

(
p(x)2 + (∇φ)2 +m2φ2

)
The Poisson brackets are

{p(x), φ(y)} = δ3(x− y}.

Hence quantization will give

[φ(x), p(y)] = iδ3(x− y).

This is just like [q.p] = i, but with continuous indices.
Reason: the classical system describes the continuum limit of a system

of particles connected with springs, and φ(x) is the continuum limit of the
coordinate of a particle.

Classical excitations are waves. What about quantization? Expect that
we get a system of free bosonic particles with a relativistic dispersion law.
Two reasons: (1) that is what we set out to describe; (2) classical system can
be Fourier-analyzed into a collection of harmonic oscillators; each oscillator is
equivalent to a Fock space (for a one-dimensional vector space), so the whole
thing is equivalent to a Fock space (for an infinite-dimensional 1-particle
space), so describes free bosonic particles.
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