1 Free real scalar field

The Hamiltonian is

1
H= /d?’ac’H =3 /d3x (p(z)* + (V¢)* + m*¢?)
Let us expand both ¢ and p in Fourier series:

d3

dp - , .
o(t,x) = /T(pp)¢(t,x)elp-x7 p(t,x) :/T&ﬁ(t,x)ezp.x.
where w(p) = /p? + m?. Then:

1 d3p ~ 2 7 2 2
1 =5 | G (FR)F+ 0@ Fute)?).

This is a Hamiltonian for an infinite collection of harmonic oscillators labeled
by p € R3 and energy w(p). Introduce creation-annihilation operators:

o) = PRI —i0P) o p(p) +idT(p)
== oe P o

Then:
1

= [ isote) (o late) + 5

The last term in parentheses can be dropped (divergent vacuum energy).
The operators a, a' satisfy:

[a(p).d'(p")] = (27)*2w(p)s*(p — P), [a(p),a(p’)] = 0.

The expression 2w(p)d*(p — p’) is Lorenz-invariant, so this is a natural nor-
malization of creation-annihilation operators in a relativistic theory.

So, as expected, the free scalar field describes noninteracting spinless
bosonic particles with a relativistic energy-momentum relation E(p) = 1/p? + m?2.

2 Free complex scalar field

Commutation relations:



[6(t, %), p(t, y)] = i0*(x — y),
[o(t,%)1, p(t, y)1] = i0°(x —y),
[6(t, )", p(t,y)] =0,
[6(t, %), p(t,y)T] =0,
[0t x), ¢(t,¥)] = 0,
[o(t,x)", o(t,y)'] =0,
[6(t, %), 6(t,y)'] =0,
[p(t,x), p(t,y)] = 0,
[p(t,%)", p(t,y)1] =0,
[p(t.x), p(t,y)] = 0.

Here p = (bT,pT = gzﬁ
Hamiltonian:

H= /d3x (pp" + 0,070,0 + M1 ) .

Let us show that these equations describe the bosonic Fock space for
relativistic particles (with E, = y/p?+ m?). Let us Fourier transform the
scalar field ¢:

dp - )
t,x) = | = o(t, p)eP™,
ott.%) = [ Gptilt.ple

The Klein-Gordon equation
05—V +m*)¢p =0
gives an ordinary differential equation for qg(t, p):
0?0 -
Froi —(p* +m?)¢.

The general solution is

o(t,p) = e "Pa(p) + 'c(p).



It will be convenient to rename ¢(p) = b(—p)f. Then

_ d3p ipxT —ip-T
gb(t,X) = /W (Clpe + b(p)TG ) .

Similarly

e | |
gb(tx)]L = /Wg’ﬂ')g (bpezp-x + CL(p)Te—zp'x) '

We can invert these formulas and express a, b, al, b in terms of ¢, ¢ and ¢, ¢1.
(This is an exercise). Then the commutation relations of a, a', b, bT turn out

la(p), al (@)] = (27)°2E,0°(p — ), (1)
[b(p), ' ()] = (27)*2E,6°(p — q), (2)

with all other commutators vanishing. Thus it is natural to postulate the

existence of the vacuum state |0), annihilated by all a(p) and b(p). Then

the Hilbert space is the bosonic Fock space built on the sum of two copies

of L*(R?). Why two copies? We expected only one! Resolution: we have an

additional quantum number which distinguishes b-particles from a-particles.

The b-particles are actually anti-particles of a-particles! (see below).
Hamiltonian becomes

H =y [ 5pmoss B (B)atp) + ap)a (0) + 81 (p)0(R) + 0PI ().
Let us normal-order it:
H =V (2r) / PE, + ...

Thus the vacuum energy density is divergent. If we cut off the integral at
lp| = A, we find

A4
~ 82

This is the simplest example of an ultraviolet divergence.

&o

3 Noether’s theorem

(Reading: section 22, pp. 132-135).



Noether’s theorem says that for every continuous symmetry of the ac-
tion there is a current j, (vector-valued function made of fields and their
derivatives) which satisfies

ot = 0.

This implies that

Q= [t

is time-independent. I.e. it is a conserved charge. In the Hamiltonian for-
malism this is expressed as ), H = 0, which upon quantization becomes

Q,H] = 0.

Let us derive the Noether theorem for a theory of scalar fields with a
Lagrangian L(¢®). Suppose the infinitesimal symmetry transformation is
given by

59" = ¢ -v"(6).

Consider now the same transformation, but with € a function of z. Since the
action is of first order in derivatives of ¢, the variation of the action must be
of the form

08 = /d%j“@ue,

for some j* independent of €. But on equations of motion this must vanish,
for arbitrary e. Therefore 0, j* = 0.

Let us apply this procedure to the complex scalar field ¢ and the trans-
formation

Sp =ichp, ! = —ieg.

The variation of the action is
5S =i / d*z0,e (—¢T0 g + 0" ¢19) .

Hence the current is
Ju = —i (80,0 — 0,0'0) .

What is the meaning of the corresponding charge, in terms of particles?

Q= [ o (00409 11 1009).

L.e. it is the number of particles minus the number of anti-particles.



Let me consider another example: translational symmetry. Here
0¢p = €0,,¢.

Note that here € has a vector index. Thus we expect
55:/ﬁ%@wq

for some tensor T'. (It is called the stress-energy tensor). Let us determine
T'. For constant € we have

0S = /d4x€“8u£.

This indeed vanishes for constant € (by integration by parts), but does not
vanish for nonconstant e. But for nonconstant € we also get other terms in

the variation:
s
0S = /d4x (_8”&% + 8“6 m&,qﬁ) .

Hence or
e
v 00,¢

For the free scalar field, we get

0,6 — "L

T" = —0"¢'0,¢ + 0"¢0,¢' — 6 L.

For example:

TP = 0y 0y + Vo'V +m2p'¢.

The corresponding “charge” is the energy (i.e. the Hamiltonian). Similarly,
T = 009'0:¢ + ;0" 00 .

The corresponding charge is minus the momentum. Indeed, after expressing
in terms of a and b get

/ﬁﬂ?:—/@%£E@QMMMm+N&wmy



Starting from a symmetry, one can get a conserved charge. Conversely,
starting from a conserved charge (), one can try to get a symmetry transfor-
mation, by letting

5F = {Q, F}.

Then 6H = 0, and § commutes with time translations.
One can show directly that @) is the generator of symmetry transforma-
tions:

Q= [ @i, (@0} =00
In quantum theory: A ‘
(Q, ¢'] = —idg’.
A finite transformation is

¢ — U toU, U =exp(—itQ).

In relativistic field theory, we are interested in translations and Lorenz
transformations. Together they form Poincare group:

z — Az + a.

Generators of translations are momenta P, = f d%TS . Lorenz transforma-
tions act by

¢'(x) = o(A™ ).

Infinitesimal transformation A = 1 4 w gives

0p = 12 (20" — 2" 0") .

W pv

We can achieve this by letting
MW = /d3x (x“To” — x”TO“) )
This suggests that the conserved current for the Lorenz transformations is
LPRY = gt TPV — gV TPH,

It is conserved because TH = T"#,



It is interesting to compute Poisson brackets or commutator of all these
generators. For example:

[MH, MP7) = i(g"" M — (4> v)) — (p > 0).

This algebra characterizes infinitesimal Lorenz transformations. Infinitesimal

rotations are 1
Vel
Ji = o Cigk =,

infinitesimal boosts are K; = M. In terms of J and K we have
(i, Jj] = teijudi, i, Kj] =t K5, [KG, K] = —i€;j5 .
The other commutators are

[P", M??] = i(g"" P — (p <> 0)).

4 The spin-statistics relation

Let us compute the commutator of ¢(z) and ¢(y) (in the real case). It
vanishes outside the light-cone.

Now let us try to construct a similar theory based on the fermionic Fock
space. The anticommutator comes out to be nonvanishing outside the light-
cone,so this is unacceptable.

5 Scattering theory

First: ' X
/ d’re” M ¢(x) = 5 0lk) + Ze%ﬂfaf(_k),
/dgi’fe_imaoéb = —% (k) + %62"”taf(—k).
Hence

a(k) = /d%e_“” (100 + wop) = i/dgxe_ik””gogb.



