1 Content of the course

”Quantum Field Theory” by M. Srednicki, Part 1.

2 Combining QM and relativity

We are going to keep all axioms of QM:
1. states are vectors (or rather rays) in Hilbert space.
2. observables are Hermitian operators and their values are the spectrum.
3. probability of measuring a particular value a of an observable A in a

state ¥ is )
[P 2I["
[[w[[?
where P, is a projector to the eigenspace of A corresponding to a.
4. Time evolution of states is governed by the Schrédinger equation

AdY(t)
i
dt
where H is the Hamiltonian (energy operator).

5. Symmetries are unitary or anti-unitary operators preserving the Hamil-
tonian.

= HU(1),

6. etc.
For a nonrelativistic particle, we let # = L*(R?) and let the momen-
tum operator (generator of translations) be P = —ihV. Since E = P?/2m

classically, it is natural to define H = P2/2m = —h2V?2/2m.
From now on, I will let h =1, so H = —V?/2m.
For a relativistic particle,

P2c2 + m2ct,

so can try

H =V-V22 +m2c!
This expression is problematic: treats time and space asymmetrically and
appears nonlocal.
Alternatively, we can “quantize” the squared dispersion relation E? =
P2c* + m2ct to get the Klein-Gordon equation
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This equations is more reasonable, as it is more symmetric w.r. to ex-
change of time and space. To see relativistic invariance better, let 2° = ct.
From now I will let ¢ = 1, so in such units 2° = ¢. Also, zy = —t, and
' = x;,1 = 1,2,3. Greek indices will run over the set 0, 1,2, 3.

Minkowski metric: ¢, = diag(—1,1,1,1) = ¢*. =, = g,z", where
we use Einstein’s convention (summation over repeated indices). Similarly,
ot = g™,

Minkowski interval: a? = z#z, = a*atg,, = —(2°)* + >, (z")%

Lorenz transformations are

TH— Al
= Abx¥,

where A is any real matrix such that z#z, = 2" x,,.
Now we can check relativistic invariance of the KG equation, i.e. that
¢(x) and ¢(x) satisfy the same equation.

Let
0, = i ot = g"o
o Qo g O
Then
o — A,

and therefore 0?> = 9%. Hence the KG operator is Lorenz-invariant.

Problems:

1. [dz|V|* is not conserved. Moreover, it has wrong transformation
properties under the Lorenz transformation: |¥|? is not a time component
of a 4-vector, so we do not expect a continuity equation to hold (and it does
not). One can write down something which is a component of a conserved
4-vector:

Ju = 1(¥*0,¥ — 0,¥"V)

/d3xj0

is conserved. But jY is not positive-definite, so cannot be interpreted as
probability density.

2. Negative-energy solutions.

Dirac tried to solve these problems by looking for a first-order equation,
but for a multicomponent wavefunction. This solved problem 1, but not
problem 2.

satisfies 0, = 0, and so



Ultimately, the problem is that relativistic QM can be consistently de-
veloped only if we do not work in a theory with a fixed number of particles.
Hence we need to understand how to describe systems where particle creation
and annihilation is allowed.

3 Fock space methods (second quantization)

3.1 Bosons

A single particle has H; = L*(R3) as its Hilbert space. Two particles have
Hy = L*(R? X R®)gym >~ Sym?H;. And so on. The Hilbert space without
any particles is one-dimensional (the vacuum state). Thus

H=CaeH 1 dHyB...= EB?’:OSymk(Hl).

This is called the bosonic Fock space F(#H;) associated to H;.
The Fock space is always infinite-dimensional, even if H; is not. Let us
look at the extreme case, H; >~ C. Then

FC) =CaCaCa....

Thus a vector in F(C) is an infinite sequence of numbers or vector (ag, a1, as, . . .
such that >~ |ag|* < oo.

It is often convenient to think of such a sequence as Taylor coefficients of
an analytic function

f(2) =ap+arz+ a2 + ...

Degree is then identified with the particle number. Polynomials form a dense
set in this space of functions and correspond to states with a finite number
of particles.

Two natural operations on polynomials are z and 0. They satisfy

[0,z] = 1.

One calls 0 the annihilation operator a, and calls z the creation operator a.
They are indeed conjugate to each other if we define the scalar product to

be

IF@IF =5 [ @alfepe
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"PF =

Using this scalar product, one can compute ||z n!. Thus a normalized

n-particle state is
1 1
_ n o __ \n
Im = = e
Thus

a'ln) =vn+1n+1), aln) =+vnln—1)

This can serve as a definition of creation and annihilation operators.

The particle number operator can be expressed as N = 20, = a'a. Eigen-
states of N are homogeneous polynomials. Polynomials are Fock space states
which involve only a finite number of particles.

More generally, suppose H; ~ CV. Let us choose a basis ¢;,i =1,..., N
in ‘H; and introduce N variables zy, ..., zy. Then one can identify Sym?(H;)
with the space of polynomials in N variables of total degree p: a state with
k, particles in the state 11, ko particles in the state 19, etc. can be identified
with the polynomial

2 z]k\:,N .
We define a; = 0;, aj = z; so that
[a;, a}] = (5;
The Fock space is then the space of all polynomials in variables z, ..., zy.

If we change the basis in H;, creation-annihilation operators also change: if
Y, = Bl1;, where B is a unitary matrix, then

I *1
a; = Bj'a;

The particle number operator is N = >, 2,0, = >, ajai. Eigenstates of N
are homogenous polynomials.

If H; is infinite-dimensional, but has a countable basis, we can still think
of its Fock space as a completion the space of polynomials in variables
L1929y« s

But usual bases on L*(R3) (momentum eigenstates |p) and coordinate
eigenstates |x) are not like that. Still, one can define analogues of creation
and annihilation operators:

V) = Y ai(a). Via) = 3 alvi)



They satisfy
(U (), ¥H(y)] = 6*(z — y).
All operators in Fock space can be expressed in terms of U(x) and ¥T(x).
Examples:
0. The particle number operator N = [ &3z 0T (z)¥(x).
1. One-particle operators. A one-particle operator is an operator of the
form

oo k oo k
YN 1w..0100010...01=> Y 0,
k=1 i=1 k=0 i=1

where O is an operator on H;. It can be written as

/ drdy U (2)(z|Oly) U (y).

For example, the kinetic energy operator is a one-particle operator with O =
—V?2/2m, so the corresponding operator in Fock space is

/d3x\lﬁ(x) (=V?/2m) U(z).

The particle number operator is a one-particle operator with O = 1.
2. Two-particle operators. These are operators of the form

o0
> D Oy
k=1 1<i<j<k

where O;; is an operator on ‘Hy which acts only on the ¢-th and j-th particle.
The corresponding operator in Fock space is

% / Brdyd = ()0 () (2, y| 0|2, )T ()W (2).

For example, the potential energy operator is of this form, with (x, y|O|z,t) =
Vi(z —y)d8*(x — 2)83(y — t). The corresponding operator in Fock space is

% / B ody U (@)U () V (2 — y)T(y) ().

How do we formulate dynamics in the Fock space? Since the emphasis
is on creation-annihilation operators, it is often convenient to work in the
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Heisenberg picture and write EOMs for ¥ and W', instead of the Schrodinger
equation. For free particles, we get

oV i
— =i[H, V] = —— V2.
ot iH, Y] 2mV

This looks like Schrodinger equation, but for a field operator. Hence the name
"second quantization”. Let us find a solution. Go to momentum space:

W(x) = / d*p(2m)b(p)e™

Then
[b(p), b'(q)] = (2m)*0*(p — q).
and
H = [ dpem) Lo (o)bip).
b(p,t) = e “Fr'b(p,0).
Thus

Wt = [ b0 e
Y (271_)3 ) *
This completely determines the evolution of all observables.
For an interacting system, get the following equation:

v 1
@aa—t = —%VQ\IJ + /d?’y\IJT(y)\If(y)V(m —y)¥(x).
This is nonlinear and cannot be regarded as “second-quantized” Schrodinger
equation. Its classical analogue is a PDE for an ordinary function W(t, z),
which is NOT interpreted as a quantum-mechanical wavefunction.

Remark: the quantum harmonic oscillator corresponds to the Fock space
for H = 1. A collection of N harmonic oscillators is equivalent to the bosonic
Fock space for H; = CV.Thus the quantization of a system of harmonic
oscillators can be interpreted in terms of free bosonic particles. The energies
of 1-particle states are w;.



3.2 Fermions

Now consider fermionic particles which obey the Pauli principle. Fermionic
wavefunctions are antisymmetric with respect to the exchange of any two
particles.

Let us again begin with the case H; = C. Then the Fock space is

F(H.,)=CaC.

This is two-dimensional, and there are many ways to think about it. E.g.,
we can identify it with the states of a spin-1/2 particle. But we will choose
a more esoteric viewpoint. Consider a variable # which has a multiplication
rule 2 = 0. Then “analytic functions of §” are linear functions

F(0) = a+ b0,

The space of such functions can be identified with F(#;): th vacuum state
is 1, while the 1-particle state is 6.

Creation-annihilation operators are defined as before: ¢ = 6, ¢ = 0.
Note that ¢? = (cf)? = 0. It is also easy to check that cc' + ¢fe = 1. Note
the crucial plus sign. The particle number operator is N = cfc.

We can define the scalar product so that c' is indeed the adjoint of c.
Details of this are left as an exercise.

Now consider N-dimensional H;. Introduce N variables 6; which satisfy
0;0; 4+ 0;0;, = 0. Consider an analytic function of ;. Again, the series termi-
nates in degree N. The total dimension of the space of functions is 2. The
k-ht term in the expansion is

N feg 6,
1.k

Here the coefficient functions are totally anti-symmetric, as required by the
Fermi statistics. The creation operators are C;-r = 0;, the annihilation opera-
tors are ¢; = 0;. They satisfy

CZ'C;[ + C}Ci = 5@]

Note that the fermionic Fock space has a symmetry which replaces the vac-
uum with the “filled state” 6, ... 60y and exchanges ¢; and CI . There is nothing
analogous in the bosonic case.



The rest proceeds as before. We can choose a countable basis in L?(R?)
and define
U(r) =) til@)e, Vi) =) vix)d.

They satisfy
V()W (y) + U (y)¥(z) = 0°(z — y).

These are called canonical anti-commutation relations. In the noninteracting
case, the EOM is linear and solved exactly as in the bosonic case.

4 Classical field theory

There is something special about differential equations which come from “de-
quantizing” the Heisenberg equations of motion: they come from a variational
principle.

4.1 Classical mechanics

Recall classical mechanics. Action:

5:/0 dtL(q' (1), ¢'(1)).

Euler-Lagrange variational principle: 6S = 0 with ¢(0) and ¢(7T') fixed. Equa-
tions of motion:

oL d (0L

d¢t  dt \9¢' )"

Alternatively, we can introduce p; = 9L/9q", the Hamiltonian

and write the action as
s = [ dttvi - H(p(0).a(0)

The equation 6.5 = 0 then gives

_9H . 9H

33
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These are Hamilton equations.
Finally, if we introduce the Poisson bracket

oF 0G B OF 0G
Op; O¢"  0q* Op;

{F’G}:

for any two functions F, GG, the Hamilton equations of motion can be written
as

We also have ' o
{pi,q;} =9, {d. ¢} ={pip;} =0.

Under quantization, Poisson bracket becomes ¢ times the commutator.

4.2 Nonrelativistic field theory

Now we want to have a similar formalism where ¢ is replaced with a contin-
uous index x. Instead of ¢;(t) will have W(¢,x). Action:

S = /dtL(\I/,\P).

Here the variational derivative is defined by

EOM:

5L
_ 3
SL = /d xé‘lj(t?X)(S\IJ(t,x).

In the free case, it is sufficient to take

L=1Ly= /de (z\w - iaiqf*ai\p) .
2m

Note that L is an integral of a local expression, L = [ d*xL, so

S = /dtd%ﬁ(\l/,\if).



This is very nice, but is not obligatory in a nonrelativistic situation: in an
interacting case one finds

L= 1Ly %/d3$d3y|\lf(x)\2|\lf(y)|2‘/(x —y).

This is local in some very special cases. For example, when V(z) = §°(x)
(“contact interaction”). In the relativistic case only such interaction are
allowed.

Note that this fits better with the second version of the variational prin-
ciple: ¢U* is the “momentum conjugate to ¥”. So one has Poisson brackets

{U"(x), ¥(y)} = —id*(x —y).

The Hamiltonian is then given by the same expression as before, but U’s are
now ordinary functions, not Fock-space operators.

Quantization now is easy: we get the standard commutation relations for
¥ and U* and realize them as operators in Fock space.

How do we get fermionic Fock space in this way? There is no good way
of doing so. Reason: classical limit makes sense only when a large number
of particles are in the same state.

For clarity, consider discrete case. In order for the commutator term to
be negligible, need to consider a state where a has a large expectation value
(and small variance). Hence N = a'a will have a large expectation value.
This is not possible in the fermionic case.

Formally, we can still consider the same equations, but with ¥ and ¥*
satisfying anticommutation relations. This means that they are not ordinary
functions, but generators of a Grassmann algebra. We will use this trick
later.

4.3 Relativistic field theory

Main idea: interpret the KG equation not as an equation for a wavefunction,
but an equation for a field operator. That is, let us make relativistic not the
one-particle Schrodinger equation, but the Heisenberg equation of motion for
the Fock space operator.

To understand it, we need to specify commutation relations for ¥ in such a
way, that the KG equation is the Heisenberg equation for some Hamiltonian.
We can do this like this: first solve an analogous classical problem, and then
quantize everything.
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The classical KG equation comes from the action

S = %/dtd% (—Qﬁb@“qﬁ — m2<;52) i

This looks more like the first version of the variational principle. The mo-
mentum is

and the Hamiltonian is
1
H= / dPrH = 3 / Pz (p(x)? + (Vo)? +m*¢?)
The Poisson brackets are

{p(x),6(y)} = &*(x —y}.

Hence quantization will give

[6(x), p(y)] = i0°(x — ).

This is just like [¢.p] = ¢, but with continuous indices.

Reason: the classical system describes the continuum limit of a system
of particles connected with springs, and ¢(x) is the continuum limit of the
coordinate of a particle.

Classical excitations are waves. What about quantization? Expect that
we get a system of free bosonic particles with a relativistic dispersion law.
Two reasons: (1) that is what we set out to describe; (2) classical system can
be Fourier-analyzed into a collection of harmonic oscillators; each oscillator is
equivalent to a Fock space (for a one-dimensional vector space), so the whole
thing is equivalent to a Fock space (for an infinite-dimensional 1-particle
space), so describes free bosonic particles.
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