Homework 1 Solutions Ph 205a Tristan McKinney

1. (a)

It is simplest to first evaluate [N, Uf(y)]:

N () = [l (2)0(), W) 0
If we remember the relations
[AB,C] = A[B,C] + [4, C)B, (2)
(U1 (2), O (y)] = [¥(2), T(y)] = 0, (3)
(U (), UH(y)] = &°(z — ), (4)

This also tells us
N, W(y)] = [WH(y), N1 = [N, why)] = —w(y). (6)

The physical meaning of (5) can be understood by applying it to a state
with n particles:

[N, Ui ()] |n) = U'(x) n)
[NU! (2) — Ui(2)N] |n) =
7
(MU (1) — ¥ (2)] ) = g
N\IJT(x) In) = (n 4 1)TM(2) |n).

This demonstrates that UT(z) |n) is a state with n + 1 particles, so ¥T(x)
increases the number of particles in a state by one (it creates a particle).
With (5) and (6), we can evaluate [Hy, N]:
0, ¥ = [l (2) V0 (2), §]
— [ (W@ [PP U@, N+ (@), V@) )
= /d3${\IfT(ZE)V2\If(ZL‘) — U (2)V2(2)} =
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The commutator of an operator Q with the Hamiltonian dictates how Q

evolves in time by Cil—cf = i[Hy,Q]. Thus, (8) implies that the number of
particles is conserved, i.e. the number of particles does not change with time.

1. (b)

It is important to note that position is no longer treated as an operator in

the formalism we are usmg Instead, it is merely a label. Anyway, if we
3

remember that [ (gﬂf ellap)r — §3(p — ¢), we can rewrite N in terms of bi(p)

and b(p).
—ipm d3q eiqx
/ (2m)? a)

P itgpe
)/(27T)3 o)
/ pd b(q)6°(p — q)

Similarly,

—1 3 d3p t —ipT 2/ d3 iqx
- 2m/d x/ (2ﬂ)3b (p)e” PV 2n) sb(q)e
_ [ d3p i

e [ g

(2m)?
d3pd3q Pr e (10)
% ) bT(p)( Q)b<Q)/(2W)3€( )

= / (jﬂz;:s f—mbT (p)b(p)-

Notice that on the second line of (10), V? only acts on €' because the other
terms do not depend on the label z.




1. (c)

There are several ways to do this. I'll proceed by noting that b(p) must be

the inverse Fourier transform of ¥(z):
b(p) = /dSJJ\IJ(x)e_ipx,
bi(p) = /d?’x\IlT(x)eim.

Then

[N, b (p)] = / B[N, U (z))eP* = / Bl (z)e™ =|bf(p).

We can also compute the commutators of b(p) and bf(p):

b(p). b(g)] = / & Py (), U(y)Je P =,

V)b = [ @ dyl W (@), v o
bV @) = [ P dylve), v
e /de d3y53(x o y)eipa:—iqy

= /deei(p_q)x = (27T)3<53(p —q).

With the above results, we can find our answer directly:

2

o b ) = [ )

(27r)3 2m

_ / 90 ) 1ba). b ()]

(27?)3 2m

= [P -0 =

2
P

= b (p).
2m (p)

(13)

(14)

(15)

(17)

(13) and (17) can be understood in the same way that we understood (5).
To be precise, if we apply [NV, b'(p)] to a state with definite particle number,
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we see that b'(p) increases the particle number by 1. Similarly, if we apply
[Hy, bT(p)] to a state with definite energy, we see that b(p) increases the

energy by %:

10,0 1B) = L 41 ) )

o () — b1 (0) ] ) =

0 () — B0/(9)] 1) = .
)18 = (£+ L) v ) ).

This implies that b'(p) creates a particle with energy %.

2. (a)

The Baker-Campbell-Housedorf formula will be helpful for computing the
norm:

exp(A)exp(B) =exp(A+ B+ = [A Bl +...), (19)

where the ellipsis indicates terms which involve commutators of commutators.

Let us also define
Q) = exp (Z aj)\Z) 10) . (20)

The requirement of finite norm implies

<Q|Q):H(O|exp (al)\ +al + = [a A7 ab) ]>| )

=[] exp (255/\1/\ > (0] exp (a}Aj + az-A;*) 0)
4,3

= Hexp (255/\1/\ [a;r-)\j, ai)\f]) (0] exp (a;/\j) exp (a; A7) [0) (21)

—Hexp 57N );) (0]0)

= exp (Z |)\i|2> < 00,

i



which in turn implies

> AP < 0. (22)

i

We used the fact that the commutator of a and a' is just a number, so it
commutes with everything and thus the Baker-Campbell-Hausedorf formula
terminates. Assume that we have chosen to normalize the state as (Q|Q2) = C,
where C' is a constant. Then

(N) = m'%gl'm CZ (9 (aal ~1)19). (23)

Now, we can use a trick to simplify this calculation. Notice that

= di exp (Z az)‘z) 0) = di)\l €2) . (24)

i

The validity of this formula can be checked by writing out the exponential
as a power series. Given this, we have

0 (d)\* ax, ) e
O (d>\* ax ) °Xp (; W"z)
o2 (1) ew (Z w) )

= éz (Al +1—1) exp (Z \)\j’2>
= Z IXil? =1 (Q[€2).

To compute the standard deviation in the particle number, we should use

o? = (N?) — (N)?. (26)



Then

(N?) = Za alza a; |2)
CZZ Q| (@ial — 1)(ajal —1) Q)

(27)
= 522 (Q [ai(ajal — 6))al — aia] — a;al +1]102)
[N
LS (@ (wayala) — Hose] — el — el + 1) 19)
[N
Let’s take this one term at a time.
o 0 E) 0
8 8
—AIN(QQ
(3)\*8)\* ! j< €2
0
= o (5J)\* + AT+ AT\ | ) (Q]€2)
= (816 + I N + 1+ [N+ [P+ SN + NP (1)
(28)
~ o 0
J o ot _ 5]
(@ faa} 10) = bl oo (l0)
0 (29)
_5j
= 5% 219)
—(5f(5” 6J)\* i) (Q]Q)
and from before
(Qf aial Q) = (N[> +1) Q) . (30)
Taking (28), (29), and (30) together, we get
1 -
(N2 = 2SS + PR (@19) a
i J

=InC + (InC)*.



Finally, we have
0> =InC+ (InC)* — (InC)* = InC, (32)

which implies that the standard deviation is given by

o =+/In{(QQ). (33)

Notice that (25) and (33) provide evidence that the distribution function for
the particle number is a Poisson distribution.

2. (b)

Since ordinary numbers are guaranteed to commute with operators, the fact
that b; and b have the same commutation relations as a; and a! follows
immediately. Before we prove that |€2) is the vacuum for these new operators,
it will be convenient to prove a couple of lemmas. First:

laz, (a})"] = n(ah)" "' 67, (34)

J K3

We can prove this through induction. It clearly holds for the n = 1 case. We
should then prove that it works for the n = k + 1 case under the assumption
that it holds for the n = k case:

(s, ()] = [as, al (a])']
— [a;,al)(a!)" + al[ai, (a})"]
— §/(ah)" + alk(al)" 6!

— (k+1)(ah)"s!.

k

(35)

(34) then implies the following general result:

= 8_f5?'
(9(1;- !

[az, f(al)] (36)

whenever f can be expanded as a power series in a;r- (since we can just dif-

ferentiate term by term). Note that we could have used this trick as an
alternative route for our calculations in (a).

7



Using (36), let’s show that |2) is the vacuum state for these new raising
and lowering operators.

b Q) = (a; — \) exp (Z a}Aj> 0) . (37)
J
Now, note that

a; exp (Z a;/\j> |0) = [[ai,exp (Z a})\j>] + exp <Z a})\j>ai] |0)
dexp () a;/\j .
- p<f sz

= \; exp (Z a;/\]) |0) .

J

da

(38)

Therefore
b Q) = (A — \;) exp (Z a})\]) 0) = (39)
J

which means that |Q2) is the new vacuum for these operators.

2. (c¢)

It’s not too hard to guess the correct answer by looking at the original ex-
pression for the Hamiltonian:

b=t (40)
bl =al + é (41)

Then |B|2
ibTbi: z’Ti i ql 4 120 42
Swtih= 3 (wala+ s+ ol + )

- 3
3

12
which indicates that | By = — Z 5] .




2. (d)
Let’s just do the computation:

[b,0'] = [acosht 4 a'sinht, a' cosht 4 asinh ]
= [acosht,a’ cosht] 4 [a' sinh ¢, a sinh ] (43)
— cosh?t — sinh?t = 1,

[b,0] = [acosht + a'sinht,acosht + a' sinht]
= [acosht,a' sinht] + [a' sinht, a cosh ] (44)
= coshtsinht¢ — sinh ¢ cosht = 0.

(44) also implies that [bT,bT] = 0 if we take its complex conjugate. Now, we
need to find some state |') which is the vacuum for b. Let’s assume that
1) = f(a') |0), where |0) is the vacuum state for a, since any function of a
will just annihilate the vacuum. Then

b|Y) = (acosht + a'sinht)f(a')|0)
= ([a, f(a")] cosht + a' f(a') sinh t) |0)

= (% cosht + a' f(al) sinht) |0) .

(45)

We want the factor in front of |0) to disappear, which gives us a differential
equation for f:

d

d_cJ:T cosht = —a' f(al)sinht
d

@ = —a'tanht

f

1 2 (46)
Inf= _§<GT> tanht + C
f(a') = exp {—%(cﬁ)ztanh t} :

where we will absorb the constant into the normalization of the state. Thus,
we have

|€Y) = exp {—%(a*)ztanht} |0) . (47)




2. (e)

This boils down to solving for ¢ in the Bogolyubov transformation. In this
case, we can have a different ¢; for each set of raising and lowering operators.

wéb}bi = wg(az cosh t; + a; sinh t;)(a; cosh t; + aj» sinh ;)

2
= wlala; cosh® t; + wi[a? + (o) ] sinh t; cosh t; 4+ wla;al sinh? ¢;

= wiala;(cosh? t; + sinh® t;) + w)[a? + (aZT)Q] sinh¢; cosh t; + w] sinh®¢;
!/
= wiala; cosh 2t; + %[a? + (aZ)Q] sinh 2t; 4 w/ sinh? t;.

i

(48)
This implies
w; = w; cosh 2t;, (49)
A\ = w; sinh 2¢;. (50)
Then
w? — A} = w?(cosh? 2t; — sinh® 2t;)
2 (51)
—_= wi
and
W'
w)sinh?t; = j(cosh 2t; — 1)
wh (Wi
=2(=-1 52
:(5-) o
1
= 5(% — wj)
Finally, these imply
w; = yJw? — A\ (53)
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