Homework 1 Solutions Ph 205b

1. The Lorentz group in three spacetime dimensions is three dimensional because there
is one way to rotate (in the x-y plane) and two ways to boost (in either the x or y
directions). Alternatively, there are three generators of the group SO(2,1).

To construct the homomorphism in question, let’s find the generators of the two groups.
Once we have found these, we should be able to specify the mapping by exponentiating
the generators of each group. Let’s look at SO(2,1) first. The defining representation
of this group consists of matrices A for which

ATnA =, (1)

where
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Taking A to be an infinitesimal generator of the Lorentz transformations gives us
(L4 A" )m(L+ix) =, (3)

which implies

nA = =", (4)

Writing out the components of A gives us
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0 01 h 1 c 1 0 01
g f 5)
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(5) implies that A is of the form
0 a b
A=[la 0 ¢ (6)
b —c O

0 —i 0 0 0 —i 00 0
T={K,=|-i 0 o], K,=[0 0 0], J=[00 —i (7)
0 0 0 —i 0 0 0i 0



The first two generators correspond to boosts and the last corresponds to a rotation.
Now, let’s try to do the same for SL(2,R). Because the determinant of these matrices
is 1, we know that for M = (2%) € SL(2,R),

()

Expanding in terms of infinitesimal parameters near the identity gives

| — 1+da b 1+dd —ob
o dc 1+ 4dd —0c 1+ da
(9)

(14 da+dd 0
N 0 1+da+dd)"
Thus, we see that dd = —da is the only constraint on the generators. A basis for the

generators which reproduces the commutation relations for the generators of so(2,1)
specified in (7) and satisfies the constraint from (9) is

1 . )
T = 3 {—ioy, —io,,0,}, (10)

so any M € SL(2,R) = exp (7,0, + 1,0, + ifo,) for some choice of 7,,n,, and 6. We
then see that the homomorphism from f : SL(2,R) — SO(2, 1) should be given by

flexp [ift - T')) = exp [ifi - T}, (11)

where T and T' are vectors consisting of the basis of generators in (7) and (10) re-
spectively. We can see that this homomorphism is 2-1 by noting that 7 = (0,0, 0) and
7 = (0,0, 27) both give the same element in SO(2,1), the identity, but because of the
factor of 1 in the definition of the generators 7" give different elements of SL(2,R),
namely the identity and negative one times the identity. In fact, the previous statement
is sufficient to guarantee that the homomorphism is 2-1, because the first isomorphism
theorem tells us that

SL(2,R)  SL(2,R)
ker(f) — Zs

I

50(2,1) = fISL(2, (R))] (12)

It is self dual, because

CoT-Ca-Coaeney e

Finally, there is only one inequivalent spinor representation in 3D.



2. Srednicki 36.3

36.3) a) We have (Xiﬁ”xz)(xgc?”xﬁl) = E”éaﬁff XI_&X2GX;&X4C' Then we use Er”aa&ff = —2g%g
and Xidxgaxgéxﬁlc = _XJ{@X§.5X2aX4c along with £%¢y, = x® and its dotted counterpart

to get (x}ax2)(xhauxa) = 2x}xixeaxd = — 2o X8x4a = —20x}) (x2x4), which is
eq. (36.58). Then we use xa2x4 = XaXx2, and go backwards throught these steps to get the
right-hand side of eq. (36.59).

b) Using eqs. (36.7), (36.22), (36.45), and (36.60), we find T14»P, Uy = x1otx2,
Uy PU§ = xlxd, and WP Wy = yax2, which yield egs. (36.61-62) from egs. (36.58-59).

c) In terms of Weyl fields, we have Uy*P, ¥, = flor“g; = f&g&”& = —U§yHP, TF,
TPV = E1x2 = xob1 = U§PLUS, and U1 PaWs = x|¢] = x| = U5 PS5,



3. Srednicki 36.4

36.4) a) This form for T is identical to eq. (22.29). The derivation is unchanged if the index a is
replaced with the Lorentz index A.

b) For A = 1+ 6w, the Lorentz transformation ¢ (z) — LAB(M)pp(A~1z) becomes p4(z) —
(3aP 4 560 (S") A7) (05 (x) b3 o5 (x)). 50 that 8o = Sarep( "3 0+ 5(S7) 47 )05
Also, L(z) — L(A™'z) implies §£ = —dw,Pz,0"L = " (—dw,,g"*xPL); we then identify
K# = —dw,,g"zPL. Using eq. (22.27), we then have

"= a(ifm) Spa— K
—&»up[ﬁ (280 0) + 555 $(5")a go3+ng:}
= bwy,p l;l:pTW—l- a(ai £ 5(8")a QaB:|
~16w,, [x”T“"x"’TW ‘ 8(8“ )( )A%B], (36.81)

and we identify the object in square brackets as

MHYP = gVTHP _ gPTHY | BHVP (36.82)
where oL

B,u,vp = 4= SUP B . 36.83

BBupa) A 2659



c¢) Consider 9, M*?; we have 0,(z"TH’) = §,YTH + 2¥0,T* = T"? +0 = T", and so
0= G MHP =T"P — TP + 0, BFP.

d) We have O = TH + 18,(BP* — B — B'P*). Note that because (by definition)
S = — SV eq. (36.83) implies BP#¥ = —BPYE. Note also that the last two terms in O
are symmetric on g <> v. Thus we have ©# — @"* = TH — T"# + §,BP* which vanishes
according to the result of part (c).

Next consider 8,0 = §,T" + %Buap(B"’W — BHEPY — BYPE) = %8”8‘0(3"“” — B#PY — BYPIY,
Note that BP*¥ — BH#PY 4+ BYPF is antisymmetric on p «+ p, and therefore vanishes when acted
on by the symmetric derivative combination 8,0,.

Q% = 10 4 25,(B*% — B% — B¥f0) = T 4 15,(B" — B% — B¥0). The integral over
d®c of 58;(...) vanishes (assuming suitable boundary conditions at spatial infinity) because
it is a total divergence. Therefore P¥ = [ d®c T% = [ d® .

e) Recall from part (c) that 9,(z¥©"*) = 07 if 9,0 = 0. We have Z*F = x¥OH — zPOM,
and so 9,ZH"° = @Y7 — 07 = (.

THVP — gVTHP PR %w“@o( BOHP _ BHOP _ BPOIY _ %mpag( BOHY _ BHOV _ BYoi)
— MHVP _ pHvp | %mvaa(goﬁm — BHOP _ BPOKY _ %:1:'080(3"“" — BHOY _ BYOBY)

and so
EDI/p — M[)up _ Bl)up + %muai(Bi[}p . BD’ip . Bpi[)) + %Ccpa,;(BiDU . B[}iu . Buz’D) )
Now using z0;(...) = Gi[z"(...)] — (...)8iz” = &;[=z¥(...)] — (...)&", we get

EDvp — MOV,O _ B[}Vp _ %(BV0,0 _ B[}up _ B,OVO) + %(Bp()v _ BOpv _ Bup[}) + 83[ ) ]
= M%? — 3(B*? 4+ B%") — }(B"% + B"°) + 5(B*" + B**) + &i[. . ]
=M™ 45, ].

Since the last term is a total divergence, M"? = [ d% M = [ d% Z0vr,

(f) The improved energy-momentum tensor O is given by

1
O = T — Z0,(B — B — B'). (14)

Therefore the key task is to compute T"” and B* for the given theories. For a left-handed
Weyl field,

1 1
T = " e Opp — Smytp — SmypTyl | —igTetory, (15)
B = Lot lo"o? — 0245 (16)

For a Dirac field, - B B
TH = g (U420, — mUW) — iUy "W (17)
BH? = Ay (577) 4P, (18)



where 57 is given by .
Ly ~P 19

Plugging 7" and B*"* into Eq. (14) will give the corresponding energy-momentum tensor

o,

§7 =



