Homework 2 Solutions Ph 205a Tristan McKinney

1.

We start by writing A(x) in terms of the Fourier transforms of the field:
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I'll proceed by using polar coordinates. Note that w; = |E| The integral
then becomes
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Rearranging the limits of integration gives us
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As it stands, this formula doesn’t look very Lorentz invariant. We can
put it in a nicer form by noticing that

S(z? = #2) = ——[5(z — 1) + 6(z + 1)]
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if we imagining that we are integrating over t. The second line is true because
the delta function constrains the x in the second term to be negative whenever
it is nonzero (since ¢ is positive). With this in mind, we can see that
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A(x) = sgn(t) (6)

2.

The lowering operators will annihilate the vacuum on the right and lowering
operators will do so on the left. This means we have
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Let’s try to use the hint from the problem to evaluate this (we could also
have used the hint in the last problem, if we were careful).
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Now we go to polar coordinates to find the integral over the delta function:
/dk2 dk35(—k?) = 27T/7“d7’5(k§ — k)
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Then our equation becomes
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If we define coordinates ky = k° + k', we see k° = (ky + k_)/2 and
k' = (k, — k_)/2, which implies the Jacobian of the transformation is 1/4.
Furthermore, the region we integrate over is just the whole quadrant with
kr > 0. Finally, we see k -z = —kyz_ — k_x,, where zo = (2° £+ z')/2.
Then we have
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This looks likes a product of Fourier transforms of the step function. Looking
this up gives us
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The middle two terms match the result from the last problem. The last
term should be interpreted in the following manner: if we integrate over

x4 and x_, there is only a contribution if z, = z_ = 0 is included in the
integration range. We can therefore write it as
Sz )o(xy) = 6(x0)0(z1), (14)
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since x4 = x_ = 0 implies xy = 1 = 0 and (by construction) the Jacobian
from changing variables in the measure is exactly compensated by factors
from the delta functions. Finally, z; is actually equivalent to |Z| here (we
rotated to place & along the x; axis), so we should write

5(a)d(as) = 5(x0)5(|). (15)

While this doesn’t look particularly Lorentz invariant, it actually is — it
simply says that there is a contribution to an integral only if the point xq =
Z = 0 is included in the integration region, and this statement does not
depend on our frame. Putting this all together, and remembering that as

we've defined things z,r_ = —x?/4, we find
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4. (a)

Let’s consider the properties of a near-identity infinitesimal rotation by writ-
ing R =1+ 1i0R. Then we have

RTR=1
(1+i0RT)(1+i0R) =1 (20)
SRT + 6R =0.

Then the generators of rotations (the matrices dR) must be antisymmetric.
This implies that they can be parameterized as

5Rab — Eab0607 (21>

which means we can write out the infinitesimal transformation of the fields
as

6¢a — 6abc¢bﬁc. (22>
To deduce the conserved currents, we see how the action changes under the
above transformation if we treat the parameters (8 as functions of spacetime:
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Now, if the fields follow a classical path (that is, if they satisfy the equations of
motion), the variation of the action must vanish even under the circumstances
where the [ are (infinitesimal) arbitrary functions of spacetime. This implies
that on the equations of motion,

Du(ehe g0 ¢%) = 0. (24)

That means our conserved currents are given by

J = e ghgr g, (25)

The above argument is just Noether’s theorem. See section 7.3 of Weinberg
I for a good summary.



4. (b)
We see that the Qs are given by
Q" = / dBretegbor. (26)

Then we have
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