
Homework 3 Solutions Ph 205b Baoyi Chen

1. We are dealing with a two-component real spinor field in 2+1-dimension.

(a) In order to write down the Lagrangian, we need to find a representation of the γ
matrices. In 2+1-dimension, we can take γ0 = σ2, γ

1 = iσ1 and γ2 = iσ3, where
σi are the Pauli matrices. We can check that

{γµ, γν} = −2gµν , (1)

where

gµν =

 -1 0 0
0 1 0
0 0 1

 . (2)

In this representation, all γ matrices are purely imaginary. If we write down the
Dirac Lagrangian for this field Φ,

L =
i

2
Φ̄γµ∂µΦ− 1

2
mΦ̄Φ , (3)

the equation of motion that follows from this Lagrangian (i.e. Dirac equation) is

(−iγµ∂µ +m)Φ = 0 , (4)

which is purely real. It is then consistent to require the spinor field Φ to be real,
which justifies our choices for the γ matrices.

(b) CPT symmetry is guaranteed by the CPT theorem. That is, the Lagrangian is
invariant under a simultaneous CPT transformation. Now let us discuss discrete
transformation.

Charge conjugation Because the spinor field is real-valued, this spinor field is
a Majorana spinor, therefore the charge conjugation symmetry is built in. Let
us show this precisely by solving for the Dirac equation. Considering a specific
plane-wave solution of the form

Φ(x) = u(p)eipx + v(p)e−ipx , (5)

where u(p) and v(p) are two-component constant spinors. Since Φ is real, Φ∗(x) =
Φ(x). This gives

v(p) = u∗(p) . (6)

Plugging Eq. (5) into Eq. (4), we get

(/p+m)u(p)eipx + (−/p+m)u∗(p)e−ipx = 0 . (7)

Thus we require

(/p+m)u(p) = 0 ,

(−/p+m)u∗(p) = 0 . (8)
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For m 6= 0, we can go to the rest frame, p = 0. We then have /p = γ0p0, and
Eqs. (8) are now easy to solve. We obtain

(m · 12×2 + p0σ2)u(p) = 0 , (9)

a nontrivial solution exists for det(m · 12×2 + p0σ2) = 0, which gives p0 = |m|.
Therefore the solution is given by

u(0) =

(
i
1

)
, m > 0 (10)

u(0) =

(
-i
1

)
. m < 0 (11)

Now that the spinors corresponding to an arbitrary three-momentum p can be
found by applying an appropriate boost. Given m, since we have only one solution
for u(0), we should also have only one solution for a fixed momentum. Now the
Fourier expansion of the field Φ should look like

Φ(x) =

∫
d3p

[
a(p)u(p)eipx + a†(p)u∗(p)e−ipx

]
. (12)

Notice that the two terms in the above expansion are obviously conjugate to each
other, which is how the expression should give a real Φ. Upon quantization, it is
then clear that for each momuntum p, there is exactly one creation operator â†

and one annilation operator â. Therefore the field describes particles which are
their own anti-particles.

Parity transformation For nonzero mass, we can go to the rest frame p = 0, and
compute the eigenvalues of the spin matrix,

Sz =
i

4
[γ1, γ2] = −1

2
σ2 . (13)

Unlike in 3+1-dimension, the Dirac equation now describes one single polarization
state for each momentum . Acting the spin operator on the solutions to the Dirac
equation gives

Szu(0) =
1

2

|m|
m
u(0) . (14)

Therefore this polarization state has angular momentum +1/2 when m > 0, and
−1/2 when m < 0. Since parity transformation reverses the angular momentum,
P symmetry is broken. Only when m = 0, P symmetry is restored.

Another way to see why P symmetry is broken for m 6= 0 is to study the real
Dirac equation under parity transformation directly. The real Dirac equation is
given by

{−iσ2∂0 + σ1∂1 + σ3∂2 +m}Φp(t, x1, x2) = 0 . (15)
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Under the parity transformation x1 → −x1 and x2 → x2
1, the Dirac equation

becomes
{−iσ2∂0 − σ1∂1 + σ3∂2 +m}Φ(t,−x1, x2) = 0 . (16)

Now we ask whether this equation can be brought to its original form Eq. (15) by
the mere applications of unitary operators. Such an operator, however, does not
exist and the wave function Φ(t, x1, x2) and Φ(t,−x1, x2) cannot be transformed
into each other. A unitary operator U made of σi’s that restores the signs in
Eq. (17) must have the properties {U, σ1} = 0, [U, σ2] = 0 and [U, σ3] = 0. These
requirements are impossible to meet in the algebra spanned by all pauli matrices
and their products.

In the absence of a mass term (m = 0), however, it turns out such transformation
exists. The relation

{−iσ2∂0 − σ1∂1 + σ3∂2}Φ(t,−x1, x2) = 0 . (17)

can be transformed by applying σ1 from the left

{−iσ2∂0 − σ1∂1 + σ3∂2}σ1Φ(t,−x1, x2) = 0 . (18)

which is exactly the Dirac equation for m = 0. That is, the massless Dirac
equation for the two-component real spinor is invariant under x1 → −x1 and the
solution is related by

Φ(t, x1, x2) = ησ1Φ(t,−x1, x2) , (19)

where η is a phase factor.

Time reversal We have already shown that for the two component real spinor
field, the real Dirac equation only describes a single polarization, and this state
has momentum +1/2 for m > 0 and −1/2 for m < 0. Since T symmetry also
reverses the angular momentum in nonzero mass case, the T symmetry is broken.
Only PT symmety exists for m 6= 0. T symmetry is restored for m = 0.

One can also show this by studying the time reversal of the real Dirac equation,
and constructing the unitary operator that transforms Φ(−t, x1, x2) to Φ(t, x1, x2).
This operation should leave the Dirac equation invariant. The whole procedure
will be completely analogous to the discussion from Eq. (15) to (19). It turns out
such operator only exists for the zero mass limit.

2. Srednicki 36.5

(a) The transformation matrix must be orthogonal to preserve the mass term, hence
the symmetry is O(N).

(b) A Majorana field is equivalent to a Weyl field, hence the symmetry is U(N).

1Note in odd dimensions, the parity transformation is usually defined as flipping all space coordinates
except the last one. This is because in odd dimension, the space part is even-dimentional and flipping all of
the coordinates is equivalent to a Lorentz transformation.
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(c) Combining the results of parts (a) and (b), the symmetry is O(N).

(d) A Dirac field is equivalent to two Weyl fields, hence the symmetry is U(2N).

(e) The symmetry is U(N). A Dirac fermion is equivalent to two Weyl fermions with
a mass term. But the mass term is different from that in Eq. 36.76. The correct
Lagrangian is given in Eq. 37.12, because the mass term is now mχξ+C.C, there
is no O(2N) symmetry. But still, the Dirac Lagrangian is invariant under the
unitary transformation of the Dirac spinor, therefore there is U(N) symmetry.
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