Homework 5 Solutions Ph 205a Tristan McKinney

1. (a)

Take everything to be in 1+1 dimenstions. Inserting the resolution of the
identity and remembering what (p|q) is gives us
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The remaining integral is Gaussian, and we get
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1. (b)

First, let’s prove that the propagator and the 2-point Green’s function are
equal:
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The last line comes from the fact that H [0) = 0 — ¢ 77 |0) = |0). Then
we have
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since ¥T(0,q) |0) = |¢). To confirm this in the case V = 0, expand in Fourier

series:
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This is (literally) the same integral we already evaluated in (1), so the solution
is the same:
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1. (c)

We could evaluate the Gaussian integral directly, but let’s just see what
happens for N=1. In this case, there is no integral, and ¢ = T". Then we have

Ki(¢,¢;T) = F(e)' exp [%(q’ - C])]
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Apparently when there is no potential the path integral will give the correct
answer with any choice of subdivision of the path. Then (7) will match (6)
if
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1. (d)

It is possible to do this using matrices, but let’s just start by seeing what
happens if we integrate over a particular ¢;:
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Expanding and factoring out the terms which don’t depend on ¢; gives us
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We can complete the square for g;:
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Then we have
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Now, take N to be even and do the integrals over ¢; for odd i. Then we
are left with the following:
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{dq} represents the remaining variables that have not yet been integrated
over, and j should be taken to run over only these variables. The remaining
integral is identical to our original integral, but with ¢ — 2¢. This makes
sense, because we are effectively doubling the time step between points. So
we see what will happen if we iterate this process: we will halve the number
of steps each time and produce a factor out front. Let’s evaluate the prefactor
P out front, taking N = 2M:
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First, note that the first two factors are identical to the free case, since
they just come from performing the Gaussian integrals. This implies that

they must give
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as N goes to infinity. Now let’s deal with the edge term. We have

Aﬁl exp [Q_Qf(q]v + CIO)} = exp [ (v + o) Z 2q]

q=0
QM—l
2—-1

~ exp {i—ef(q]v T q0)

2

iNe
— €xp [Tf(QN + QO)]
T

—ew [y

5 flav + qo)}

The remaining factor is
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Then the prefactor is
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and the final expression for the path integral should be
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