Homework 6 Ph 205b Baoyi Chen

1. (a) Gauge transformations take A, — A, + 0,f, where f is a scalar function of

spacetime. This means
F — 0,A, +0,0,f —0,A, — 0,0, f (1)
=F,.

Thus, the field strength is gauge invariant by itself, and we only need to worry
about the Chern-Simons term. Then

P A0,A, — eP(A, + 0,f)0,(A, + 0,f)
="’ A0,A, + P ALD,0,f + €PD, fO,A, + 0, f0,0,f  (2)
=e"PA0,A, + "0, f0,A,.
Also,
/d%e“”"@uf&,/lp =— /d%e“l’p(()y@#f/lp =0 (3)

after integration by parts, so we have
/d?’xe””pAM&,Ap — /dgace“””Au&,Ap, (4)

and we see that the action is gauge invariant. Now let’s find the EoM for A using
the Euler-Lagrange equation. First, we have
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_ Lpeeg,a,— 0,4 (5)
1 P (0, p— Y v)
1 v,
= Z—lkﬁﬂ pF,,p.
Next, using
8FPU _ SVUSH vV S
DA = 5p(50 (505p, (6)
we have
oL 1 0F,, 1
= FPo 4 “LePUr A
00,4, 20,4, T2
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= = (" = F"™) + She"™ A, (7)
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= Fm + §k6quAp,
which implies
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e = 0,F"  Ske?d, A
O g,y ~ O+ ke A,
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= 0,F" — Ske"?9, 4, (8)
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= 0,F" — Tk’ F,,



Putting the pieces together, we have that the equations of motion for the gauge
field are
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ZkE'u pF,,p = 8,/F'u — ZkG’u pFl,p
1
ke Fyy = O,F*"
2
OE,, = — 0, (9)
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(6 PP — gorsP VE,, = Eef@,,F“
1
PP = 2P0, F".
This implies

por Lo, (Lo, )
- %a,,a,((savag — 6760 FP
= (00, 9°0,F) (10)
= %[aaao(aﬂm — 7 A%) = 0%0,(0% A7 — 0”7 A*) F*]
= %(—aaagamﬁ +0°0,0° A”)

The final line of (10) is equivalent to

<k2 + 82)F;w = 07 (11)

so we see that [, satisfies the Klein-Gordon equation with mass Since
we are in 2 + 1 dimensions, these massive particles have polarization, which
comes from the fact that Ay is nondynamical and we can eliminate one more
component through gauge transformations.

(b) The Gauss law constraint comes from the Euler-Lagrange equation for A,. We

have or . .
— = —k"P9,A, = —kB. 12
gag ~ 2O =5 (12)
Furthermore,
oL 1
9, = 0,F" — —ke"’F,
(9, Ao) gne e
— O, F" — %kB (13)
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Then the analog of the Gauss law constraint is

V-E=kB.

Now let’s find the momentum conjugate to A;. We have from (7)
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(00 A;)

) 1 .
= F* 4 ke A,

which implies

) ) 1 ..
pl = —EZ + §k€ZjAj.
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Before we find the Hamiltonian, let’s rewrite the Lagrangian a bit. First, notice

E, F" = Fo F" + FyoF™ + F;;F",
but A .
FiOFZO - FOz'FOZ - _(aiAO - aOAi)2 - _E2
and

FijFij = F12F12 + F21F21 - 2(81./42 - 82141)2 = 232
Then we have

1 1 g . g
C = —5(—E2 + BQ) + 5]{/’(60”1408@‘14]‘ + EJOZAja()Ai + EZJOAingo).

The equation for the Hamiltonian is
H= plﬁoAZ - L.

We have ]
pz(?oAl = —E@OAZ + §kﬁijAj80Ai,

so (21) implies

. 1 1 )
H= —E'OA + 5(~E + B’) = Jk(" AdiA; + ¢°A,0;A).

Integration by parts gives us
EijOAiajAg — —Aoeijain = AOB

Thus, we have
. 1
H=—E'0yA; + 5(—E2 + B?) — AgkB.
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We can then write

H=—E(0;Ay — E;) + %(—EQ + B?) — AgkB

B4 %(—EQ + B?) — E'0,Ay — AokB (26)
1 .
— §(E2 + B?) + A(0;E' — kB)

We integrated by parts in the last step. Thus, we see that Ay acts as a La-
grange multiplier which enforces (14), and assuming the Gauss’s law constraint
(i.e. plugging back in the equation of motion for Ag) gives us

H = %(EQ + B?). (27)

I think this is actually what the problem wanted. Now, we can use (16) to write

. 1. .. .
E’L = 5]{36”14]' — pz’ (28)
which implies
1 - .
E? = —kQEUEZ'kAjAk - k/'priAj +p2
1 (29)
= ZszQ — ke"pA; + p?,

so the action can be written

[ . 1 )
S = /dgl' p@oAi - % (p2 - ]{JEZinAj + Zk2A2 + BQ) - Ao(&E’ - k?B):|

, 1 g 1 1 ,
= /dSI‘ pzaoAi - § (p2 - kEijiAj + Z]{JQAQ + Bz) - AO (ﬁkB - @mz - ]{?B):|

[ 1 . 1 -]
= /d?’l' pl(?oAi — 5 (p2 — k&”piAj + Zk2A2 -+ BQ) + AO (61;01 -+ §kB):| .
’ (30)

(d) The Poisson brackets are given by

1
{Ei(z), B(y)} = {—pi + §€ijAju €Ok Ar}
1
= —€uOu{pi, A1} + §€ij€klak{f4j> A} 31)

1
= —Eklakéil(SZ(fL“ — y) + §Eijt’klak(0)

= e 0p0* (2 — ).




(e) We can compute the propagator for the photon by writing down the Lagrangian
in momentum space and inverting the coefficient of A?. Because this theory is
gauge invariant (see part (a)), we will need to gauge fix. We can do this by adding
a gauge fixing term to the Lagrangian:

1 L1 1
£ == ——FMVFM + 56“ pA’ua,/Ap — 2_6

1 (0,A")%. (32)

Then the Lagrangian in momentum space looks like

1 1
L= —3 [Au (pQg“” —php” — Ep"p” + ike“”ppp> AV} ) (33)
Defining
1
(AT (p?) =i {pgg’” - (1 + Z) P+ ikE“””pp} : (34)

the most general form for A, (p?) allowed by Lorentz invariance is
A () = —i(agu + bpupy + ceuop”), (35)

Where a, b, and ¢ are functions of p? and k. Note that this is possible because k
has mass dimension one. Then we have

AMV[A_l]V/\ - (a'g,ul/ + bpupu + CEqupp)

1 .
X {pQg”’\ - <1 + —) p'p + Zke”‘ppp}

a ‘ 1 (36)
= apzéﬁ + [b— a— E — bp? (1 + E)] pup)‘
+ (cp* + iak)e/’)ppp + ickewpel”\Tp"pT
But
Euupel/)\TpppT = p,u,pA - p26f\u (37)
so we have
1
AL AT = (a—ick)p? + {b—a—g—bp2 (1+—) —i—ick}p p
+ (cp* + iak)eﬁppp.
To start, this implies
cp® +iak =0
.ak (39)
C = —ZF.
Furthermore, we must have
. 1
a—ick = el (40)



so we get

k? 1
@—a—=—
a= 2 — k2
This also implies from (39) that
vk
T E) )

In the Lorenz gauge, & — 0, so we should only worry about the terms with %
Then we have

a 1
—+bp*> =0
§ §
a
b= (43)
B 1
- (k2 —p?)

Altogether, the expression for the propagator is

2\ —1 Pubv ikeuuppp
Ay,y(p ) - ]m (g,u,u - p2 - p2 ) . (44)




