1. (a) Gauge transformations take $A_{\mu} \to A_{\mu} + \partial_{\mu} f$, where f is a scalar function of spacetime. This means

$$F_{\mu\nu} \to \partial_{\mu}A_{\nu} + \partial_{\mu}\partial_{\nu}f - \partial_{\nu}A_{\mu} - \partial_{\nu}\partial_{\mu}f$$

= $F_{\mu\nu}$. (1)

Thus, the field strength is gauge invariant by itself, and we only need to worry about the Chern-Simons term. Then

$$\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} \to \epsilon^{\mu\nu\rho}(A_{\mu} + \partial_{\mu}f)\partial_{\nu}(A_{\rho} + \partial_{\rho}f)
= \epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} + \epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}\partial_{\rho}f + \epsilon^{\mu\nu\rho}\partial_{\mu}f\partial_{\nu}A_{\rho} + \epsilon^{\mu\nu\rho}\partial_{\mu}f\partial_{\nu}\partial_{\rho}f$$
(2)

$$= \epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} + \epsilon^{\mu\nu\rho}\partial_{\mu}f\partial_{\nu}A_{\rho}.$$

Also,

$$\int d^3x \epsilon^{\mu\nu\rho} \partial_{\mu} f \partial_{\nu} A_{\rho} = -\int d^3x \epsilon^{\mu\nu\rho} \partial_{\nu} \partial_{\mu} f A_{\rho} = 0$$
 (3)

after integration by parts, so we have

$$\int d^3x \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} \to \int d^3x \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho}, \tag{4}$$

and we see that the action is gauge invariant. Now let's find the EoM for A using the Euler-Lagrange equation. First, we have

$$\frac{\partial \mathcal{L}}{\partial A_{\mu}} = \frac{1}{2} k \epsilon^{\mu\nu\rho} \partial_{\nu} A_{\rho}
= \frac{1}{4} k \epsilon^{\mu\nu\rho} (\partial_{\nu} A_{\rho} - \partial_{\rho} A_{\nu})
= \frac{1}{4} k \epsilon^{\mu\nu\rho} F_{\nu\rho}.$$
(5)

Next, using

$$\frac{\partial F_{\rho\sigma}}{\partial(\partial_{\nu}A_{\mu})} = \delta^{\nu}_{\rho}\delta^{\mu}_{\sigma} - \delta^{\nu}_{\sigma}\delta^{\mu}_{\rho},\tag{6}$$

we have

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\mu})} = -\frac{1}{2} \frac{\partial F_{\rho\sigma}}{\partial(\partial_{\nu}A_{\mu})} F^{\rho\sigma} + \frac{1}{2} k \epsilon^{\rho\nu\mu} A_{\rho}$$

$$= -\frac{1}{2} (F^{\nu\mu} - F^{\mu\nu}) + \frac{1}{2} k \epsilon^{\rho\nu\mu} A_{\rho}$$

$$= F^{\mu\nu} + \frac{1}{2} k \epsilon^{\rho\nu\mu} A_{\rho}, \qquad (7)$$

which implies

$$\partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} A_{\mu})} = \partial_{\nu} F^{\mu\nu} + \frac{1}{2} k \epsilon^{\rho\nu\mu} \partial_{\nu} A_{\rho}$$

$$= \partial_{\nu} F^{\mu\nu} - \frac{1}{2} k \epsilon^{\mu\nu\rho} \partial_{\nu} A_{\rho}$$

$$= \partial_{\nu} F^{\mu\nu} - \frac{1}{4} k \epsilon^{\mu\nu\rho} F_{\nu\rho}.$$
(8)

Putting the pieces together, we have that the equations of motion for the gauge field are

$$\frac{1}{4}k\epsilon^{\mu\nu\rho}F_{\nu\rho} = \partial_{\nu}F^{\mu\nu} - \frac{1}{4}k\epsilon^{\mu\nu\rho}F_{\nu\rho}
\frac{1}{2}k\epsilon^{\mu\nu\rho}F_{\nu\rho} = \partial_{\nu}F^{\mu\nu}
\epsilon^{\alpha\beta}_{\mu}\epsilon^{\mu\nu\rho}F_{\nu\rho} = \frac{2}{k}\epsilon^{\alpha\beta}_{\mu}\partial_{\nu}F^{\mu\nu}
(\delta^{\alpha\nu}\delta^{\beta\rho} - \delta^{\alpha\rho}\delta^{\beta\nu})F_{\nu\rho} = \frac{2}{k}\epsilon^{\alpha\beta}_{\mu}\partial_{\nu}F^{\mu\nu}
F^{\alpha\beta} = \frac{1}{k}\epsilon^{\alpha\beta}_{\mu}\partial_{\nu}F^{\mu\nu}.$$
(9)

This implies

$$F^{\alpha\beta} = \frac{1}{k} \epsilon^{\alpha\beta}_{\mu} \partial_{\nu} \left(\frac{1}{k} \epsilon^{\mu\nu}_{\rho} \partial_{\sigma} F^{\rho\sigma} \right)$$

$$= \frac{1}{k^{2}} \partial_{\nu} \partial_{\sigma} (\delta^{\alpha\nu} \delta^{\beta}_{\rho} - \delta^{\beta\nu} \delta^{\alpha}_{\rho}) F^{\rho\sigma}$$

$$= \frac{1}{k^{2}} (\partial^{\alpha} \partial_{\sigma} F^{\beta\sigma} - \partial^{\beta} \partial_{\sigma} F^{\alpha\sigma})$$

$$= \frac{1}{k^{2}} [\partial^{\alpha} \partial_{\sigma} (\partial^{\beta} A^{\sigma} - \partial^{\sigma} A^{\beta}) - \partial^{\beta} \partial_{\sigma} (\partial^{\alpha} A^{\sigma} - \partial^{\sigma} A^{\alpha}) F^{\alpha\sigma}]$$

$$= \frac{1}{k^{2}} (-\partial^{\alpha} \partial_{\sigma} \partial^{\sigma} A^{\beta} + \partial^{\beta} \partial_{\sigma} \partial^{\sigma} A^{\alpha})$$

$$(10)$$

The final line of (10) is equivalent to

$$(11)$$

so we see that $F_{\mu\nu}$ satisfies the Klein-Gordon equation with mass $m^2 = k^2$. Since we are in 2+1 dimensions, these massive particles have 1 polarization, which comes from the fact that A_0 is nondynamical and we can eliminate one more component through gauge transformations.

(b) The Gauss law constraint comes from the Euler-Lagrange equation for A_0 . We have

$$\frac{\partial \mathcal{L}}{\partial A_0} = \frac{1}{2} k \epsilon^{0\nu\rho} \partial_{\nu} A_{\rho} = \frac{1}{2} k B. \tag{12}$$

Furthermore,

$$\partial_{\nu} \frac{\partial \mathcal{L}}{\partial (\partial_{\nu} A_{0})} = \partial_{\nu} F^{0\nu} - \frac{1}{4} k \epsilon^{0\nu\rho} F_{\nu\rho}$$

$$= \partial_{i} F^{0i} - \frac{1}{2} k B$$

$$= \nabla \cdot \vec{E} - \frac{1}{2} k B$$
(13)

Then the analog of the Gauss law constraint is

$$\nabla \cdot \vec{E} = kB. \tag{14}$$

Now let's find the momentum conjugate to A_i . We have from (7)

$$\frac{\partial \mathcal{L}}{\partial (\partial_0 A_i)} = F^{i0} + \frac{1}{2} k \epsilon^{\rho 0 i} A_{\rho}, \tag{15}$$

which implies

$$p^{i} = -E^{i} + \frac{1}{2}k\epsilon^{ij}A_{j}.$$
(16)

Before we find the Hamiltonian, let's rewrite the Lagrangian a bit. First, notice that

$$F_{\mu\nu}F^{\mu\nu} = F_{0i}F^{0i} + F_{i0}F^{i0} + F_{ij}F^{ij}, \tag{17}$$

but

$$F_{i0}F^{i0} = F_{0i}F^{0i} = -(\partial_i A_0 - \partial_0 A_i)^2 = -E^2$$
(18)

and

$$F_{ij}F^{ij} = F_{12}F^{12} + F_{21}F^{21} = 2(\partial_1 A_2 - \partial_2 A_1)^2 = 2B^2.$$
(19)

Then we have

$$\mathcal{L} = -\frac{1}{2}(-E^2 + B^2) + \frac{1}{2}k(\epsilon^{0ij}A_0\partial_i A_j + \epsilon^{j0i}A_j\partial_0 A_i + \epsilon^{ij0}A_i\partial_j A_0). \tag{20}$$

The equation for the Hamiltonian is

$$\mathcal{H} = p^i \partial_0 A_i - \mathcal{L}. \tag{21}$$

We have

$$p^{i}\partial_{0}A_{i} = -E^{i}\partial_{0}A_{i} + \frac{1}{2}k\epsilon^{ij}A_{j}\partial_{0}A_{i}, \qquad (22)$$

so (21) implies

$$\mathcal{H} = -E^i \partial_0 A_i + \frac{1}{2} (-E^2 + B^2) - \frac{1}{2} k (\epsilon^{0ij} A_0 \partial_i A_j + \epsilon^{ij0} A_i \partial_j A_0). \tag{23}$$

Integration by parts gives us

$$\epsilon^{ij0}A_i\partial_j A_0 \to -A_0\epsilon^{ij}\partial_j A_i = A_0 B.$$
 (24)

Thus, we have

$$\mathcal{H} = -E^i \partial_0 A_i + \frac{1}{2} (-E^2 + B^2) - A_0 k B. \tag{25}$$

We can then write

$$\mathcal{H} = -E^{i}(\partial_{i}A_{0} - E_{i}) + \frac{1}{2}(-E^{2} + B^{2}) - A_{0}kB$$

$$= E^{2} + \frac{1}{2}(-E^{2} + B^{2}) - E^{i}\partial_{i}A_{0} - A_{0}kB$$

$$\to \frac{1}{2}(E^{2} + B^{2}) + A_{0}(\partial_{i}E^{i} - kB)$$
(26)

We integrated by parts in the last step. Thus, we see that A_0 acts as a Lagrange multiplier which enforces (14), and assuming the Gauss's law constraint (i.e. plugging back in the equation of motion for A_0) gives us

$$\mathcal{H} = \frac{1}{2}(E^2 + B^2).$$
 (27)

I think this is actually what the problem wanted. Now, we can use (16) to write

$$E^{i} = \frac{1}{2}k\epsilon^{ij}A_{j} - p^{i}, \tag{28}$$

which implies

$$E^{2} = \frac{1}{4}k^{2}\epsilon^{ij}\epsilon_{ik}A_{j}A^{k} - k\epsilon^{ij}p_{i}A_{j} + p^{2}$$

$$= \frac{1}{4}k^{2}A^{2} - k\epsilon^{ij}p_{i}A_{j} + p^{2},$$
(29)

so the action can be written

$$S = \int d^3x \left[p^i \partial_0 A_i - \frac{1}{2} \left(p^2 - k \epsilon^{ij} p_i A_j + \frac{1}{4} k^2 A^2 + B^2 \right) - A_0 (\partial_i E^i - k B) \right]$$

$$= \int d^3x \left[p^i \partial_0 A_i - \frac{1}{2} \left(p^2 - k \epsilon^{ij} p_i A_j + \frac{1}{4} k^2 A^2 + B^2 \right) - A_0 \left(\frac{1}{2} k B - \partial_i p^i - k B \right) \right]$$

$$= \int d^3x \left[p^i \partial_0 A_i - \frac{1}{2} \left(p^2 - k \epsilon^{ij} p_i A_j + \frac{1}{4} k^2 A^2 + B^2 \right) + A_0 \left(\partial_i p^i + \frac{1}{2} k B \right) \right]. \tag{30}$$

(d) The Poisson brackets are given by

$$\{E_{i}(x), B(y)\} = \{-p_{i} + \frac{1}{2}\epsilon_{ij}A_{j}, \epsilon_{kl}\partial_{k}A_{l}\}$$

$$= -\epsilon_{kl}\partial_{k}\{p_{i}, A_{l}\} + \frac{1}{2}\epsilon_{ij}\epsilon_{kl}\partial_{k}\{A_{j}, A_{l}\}$$

$$= -\epsilon_{kl}\partial_{k}\delta_{il}\delta^{2}(x - y) + \frac{1}{2}\epsilon_{ij}\epsilon_{kl}\partial_{k}(0)$$

$$= \left[\epsilon_{ik}\partial_{k}\delta^{2}(x - y)\right]$$
(31)

(e) We can compute the propagator for the photon by writing down the Lagrangian in momentum space and inverting the coefficient of A^2 . Because this theory is gauge invariant (see part (a)), we will need to gauge fix. We can do this by adding a gauge fixing term to the Lagrangian:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\epsilon^{\mu\nu\rho}A_{\mu}\partial_{\nu}A_{\rho} - \frac{1}{2\xi}(\partial_{\mu}A^{\nu})^{2}.$$
 (32)

Then the Lagrangian in momentum space looks like

$$\mathcal{L} = -\frac{1}{2} \left[A_{\mu} \left(p^2 g^{\mu\nu} - p^{\mu} p^{\nu} - \frac{1}{\xi} p^{\mu} p^{\nu} + ik \epsilon^{\mu\nu\rho} p_{\rho} \right) A_{\nu} \right]. \tag{33}$$

Defining

$$[\Delta^{-1}]^{\mu\nu}(p^2) = i \left[p^2 g^{\mu\nu} - \left(1 + \frac{1}{\xi} \right) p^{\mu} p^{\nu} + ik \epsilon^{\mu\nu\rho} p_{\rho} \right], \tag{34}$$

the most general form for $\Delta_{\mu\nu}(p^2)$ allowed by Lorentz invariance is

$$\Delta_{\mu\nu}(p^2) = -i(ag_{\mu\nu} + bp_{\mu}p_{\nu} + c\epsilon_{\mu\nu\rho}p^{\rho}), \tag{35}$$

Where a, b, and c are functions of p^2 and k. Note that this is possible because k has mass dimension one. Then we have

$$\Delta_{\mu\nu}[\Delta^{-1}]^{\nu\lambda} = (ag_{\mu\nu} + bp_{\mu}p_{\nu} + c\epsilon_{\mu\nu\rho}p^{\rho})$$

$$\times \left[p^{2}g^{\nu\lambda} - \left(1 + \frac{1}{\xi}\right)p^{\nu}p^{\lambda} + ik\epsilon^{\nu\lambda\rho}p_{\rho}\right]$$

$$= ap^{2}\delta_{\mu}^{\lambda} + \left[b - a - \frac{a}{\xi} - bp^{2}\left(1 + \frac{1}{\xi}\right)\right]p_{\mu}p^{\lambda}$$

$$+ (cp^{2} + iak)\epsilon_{\mu}^{\lambda\rho}p_{\rho} + ick\epsilon_{\mu\nu\rho}\epsilon^{\nu\lambda\tau}p^{\rho}p_{\tau}$$

$$(36)$$

But

$$\epsilon_{\mu\nu\rho}\epsilon^{\nu\lambda\tau}p^{\rho}p_{\tau} = p_{\mu}p^{\lambda} - p^{2}\delta_{\mu}^{\lambda},\tag{37}$$

so we have

$$\Delta_{\mu\nu}[\Delta^{-1}]^{\nu\lambda} = (a - ick)p^2 \delta^{\lambda}_{\mu} + \left[b - a - \frac{a}{\xi} - bp^2 \left(1 + \frac{1}{\xi}\right) + ick\right] p_{\mu}p^{\lambda} + (cp^2 + iak)\epsilon^{\lambda\rho}_{\mu}p_{\rho}.$$

$$(38)$$

To start, this implies

$$cp^{2} + iak = 0$$

$$c = -i\frac{ak}{p^{2}}.$$
(39)

Furthermore, we must have

$$a - ick = \frac{1}{p^2},\tag{40}$$

so we get

$$a - a\frac{k^2}{p^2} = \frac{1}{p^2}$$

$$a = \frac{1}{p^2 - k^2}.$$
(41)

This also implies from (39) that

$$c = \frac{ik}{p^2(k^2 - p^2)}. (42)$$

In the Lorenz gauge, $\xi \to 0$, so we should only worry about the terms with $\frac{1}{\xi}$. Then we have

$$\frac{a}{\xi} + bp^{2} \frac{1}{\xi} = 0$$

$$b = -\frac{a}{p^{2}}$$

$$= \frac{1}{p^{2}(k^{2} - p^{2})}.$$
(43)

Altogether, the expression for the propagator is

$$\Delta_{\mu\nu}(p^2) = \frac{-i}{p^2 + k^2} \left(g_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} - \frac{ik\epsilon_{\mu\nu\rho}p^{\rho}}{p^2} \right).$$
 (44)