Relativistic quantum meéchanics

wave equation and is altered from the Schrédinger form (1.2) upon
which the probability interpretation in the nonrelativistic theory
is based. This we do in analogy with the Schrodinger equation,
taking ¢* times (1.11), ¢ times the complex conjugate equation, and
subtracting:

o+l lo (@] -

VE(YAV — YV*) = 0

or
al ih [, 00 00" Ch B
3 [M (‘“ 5V —at—ﬂ + div g WAV — (9] =0 (112)
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We would like to interpret (ih/ 2mc?) (\//* 5 ¥ —a—t—> as a
probability density p. However, this is impossible, since it is not a
positive definite expression. Tor this reason we follow the path of
history! and temporarily discard Eq. (1.11) in the hope of finding an
equation of first order in the time derivative which admits a straight-
forward probability interpretation as in the Schrodinger case. We
shall return to (1.11), however. Although we shall find a first-order
equation, it still proves impossible to retain a positive definite proba-
bility density for a single particle while at the same time providing a
physical interpretation of the negative-energy root of (1.10). There-
fore Eq. (1.11), also referred to frequently as the Klein-Gordon equa-
tion, remains an equally strong candidate for a relativistic quantum
mechanics as the one which we now discuss. :

1.3 The Dirac Equation

We follow the historic path taken in 1928 by Dirac? in seeking a
relativistically covariant equation of the form (1.2) with positive
definite probability density. Since such an equation is linear in the
time derivative, it is natural to attempt to form a hamiltonian linear
in the space derivatives as well. Such an equation might assume &
form )
in % = ’%<al% s bt %) + pmey = Hy (1.13)
1 E. Schrodinger, Ann. Physik, 81, 109 (1926); W. Gordon, Z. Physik, 40, 117
(1926); O. Klein, Z. Physik, 41, 407 (1927).
2P, A. M. Dirae, Proc. Roy. Soc. (London), AllT, 610 (1928); ibid., A118,
351 (1928); “The Principles of Quantum Mechanics,” op. cit.
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The Dirac equation . 1

The coefficients a; here cannot simply be numbers, since the equation
would not be invariant even under a spatial rotation. Also, if we
wish to proceed at this point within the framework stated in Sec. 1.1,
the wave function ¢ cannot be a simple scalar. In fact, the proba-
bility density p = ¢*¥ should be the time component of a conserved
four-vector if its integral over all space, at fixed , is to be an invariant.

To free (1.13) from these limitations, Dirac proposed that it be
cousidered as a matrix equation. The wave function y, in analogy
with the spin wave functions of nonrelativistic quantum mechanics,
is written as a column matrix with N components

12

YN
and the constant coefficients a;, 8 are N X N matrices. In effect
then, Eq. (1.13) is replaced by N coupled first-order equations

N N
L . e 9 9 9 ,
oy = <a16_x‘ targst e %) vt E Barme’y:

=

N
= ) Hub, (1.14)
=1 .

Hereafter we adopt matrix notation and drop summation indices, |
in which case Eq. (1.14) appears as (1.13), to be now interpreted as
a matrix equation. "

If this equation is to serve as a satisfactory point of departure,
first, it must give the correct energy-momentum relation

E2 — p2c2 + m2c4

for a free particle, second, it must allow a continuity equation and a
probability interpretation for the wave function ¥, and third, it must
be Lorentz covariant. We now discuss the first two of- these
requirements,

In order that the correct energy-momentum relation emerge from
Eq. (1.13), each component ¥, of ¢ must satisfy the Klein-Gordon
second-order equation, or

0%,

72
& ot?

= (—A2V2 4 mict)yY, (1.15)
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Tterating Eq. (1.13), we find

3
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We may resurrect (1.15) if the four matrices a;, 8 obey the algebra.:

osay + aro = 20, v
a,-B + ﬂai =0 (116)

ol =g =1

What other properties do we require of these four matrices a;, 8, and
can we explicitly construct them? The «; and g must be hermitian
matrices in order that the hamiltonian H,, in (1.14) be a hermitian
operator as desired according to the postulates of Sec. 1.1.  Since, by
(1.16), o = g% = 1, the eigenvalues of «; and g are *1. Also, it
follows from their anticommutation properties that the trace, that is,
the sum of the diagonal elements, of each a;and Bis zero. For example,

a; = —faf
and by the cyclic property of the trace

Tr AB = Tr BA
one has
Tl‘ai = +TI‘BZO£,' = —l—Trﬂazﬂ = - Trai =0

Since the trace is just the sum of eigenvalues, the number of positive
and negative eigenvalues +1 must be equal, and the a; and B8 must
therefore be even-dimensional matrices. The smallest even dimen-
sion, N = 2, is ruled out, since it can accommodate only the three
mutually anticommuting Pauli matrices o; plus a unit matrix. The
smallest dimension in which the a; and 8 can be realized is N = 4,
and that is the case we shall study. In a particular explicit repre-
sentation the matrices are

0 [ _ ]. O )
R P O
where the o; are the familiar 2 X 2 Pauli matrices and the unit entries
in 8 stand for 2 X 2 unit matrices.

To construct the differential law of current conservation, we first
introduce the hermitian conjugate wave functions yf = (¥f + - - ¥i)
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and left-multiply (1.13) by ':

i O = E R (118)
Next we form the hermitian conjugate of (1.13) and right-multiply
by ¢:
Wt he v oyt
—ih Ty = =T )+ menytey (1.19)

B=1

where af = a;, 8 = 8. Subtracting (1.19) from (1.18), we find

3
g = ) fo 0 Wiak)
or
3 -
prd + divj = (1.20)

where we make the identification of probability density
. 4 ’
=Yty = 2 v, (1.21)
e=1

and of a probability current with three components
7 = cptaty (1.22)

Integrating (1.20) over all space and using Green’é theorem, we find |
9 Sty = |
afdgcw_o (1.23)

which encourages the tentative interpretation of p = ¢y as a positive
definite probability density.

The notation (1.20) anticipates that the probability current j forms
a vector if (1.22) is to be invariant under three-dimensional space
rotations. We must actually show much more than this. The |
density and current in (1.20) must form a four-vector under Lorentz
transformations in order to ensure the covariance of the continuity
equation and of the probability interpretation. Also, the Dirac
equation (1.13) must be shown to be Lorentz covariant before we may
regard it as satisfactory.
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1.4 Nonrelativistic Correspondence

Before delving into the problem of establishing Lorentz invariance
of the Dirac theory, it is perhaps more urgent to see first that the

" equation makes sense physically.

. 'We may start simply by considering a free electron and counting
the number of solutions corresponding to an electron at rest. Equa-
tion (1.13) then reduces to .

5 0P )
zh—(ﬁ = fmcty

since the de Broglie wavelength is infinitely large and the wave func-
tion is uniform over all space. In the specific representation of Eq.
(1.17) for 8, we can write down by inspection four solutions:

17 . 0]
l/ll — e—(imcllh)t (()) \bZ — 6—(imczlf1)l é
Lo, L0
- - (1.24)
0] ' 0]
11/3 —_ e+(imczlh)t ? ‘,bd — e+(imczlh)t 8
0. L1

the first two of which correspond to positive energy, and the second
two to negative energy. The extraneous negative-energy solutions
which result from the quadratic form of H? = p%® + m%*area major
difficulty, but one for which the resolution leads to an important tri-
umph in the form of antiparticles. We come to this point in Chap. 5.
Here we confine ourselves to the “acceptable” positive-energy solu-
tions. In particular, we wish to show that they have a sensible
nonrelativistic reduction to the two-component Pauli spin theory.
To this end we introduce an interaction with an external electro-

magnetic field described by a four-potential
Ar:(2,A)

The coupling is most simply introduced by means of the gauge-
invariant substitution

(1.25)

e
Uy i — AR
14 4 P
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made in classical relativistic mechanics to describe the interaction of a
point charge e with an applied field. In the present case

pt— th 9/0x, = p*

according to (1.5), and (1.25) takes the Dirac equation (1.13) to
z"hg—;l/ = <0a . <p — %A) + Bme? + e<I>> ¥ (1.26)

Equation (1.26) expresses the “minimal” interaction of a Dirac
particle, considered to be a point charge, with an applied electro-
magnetic field. To emphasize its classical parallel, we write in (1.26)
H=H,+ H', with H = —ee+A 4 ¢b. The matrix ce appears
here as the operator transeription of the velocity operator in the
classical expression for the interaction energy of a point charge:
Hélnssical = SV *A+ e

This operator correspondence Vo, = Ce is again evident in Eq. (1.22)
for the probability current. It also follows if we make the relativistic
extension of the Ehrenfest relations:!

d_ i 3
E:r _%[H)r] = Ca = Vg
and Dy =m -2
dt i’ ¢ ot
¢ m)=c|E+- B| 1.27)
@'\ = G Vor X :

with = = p — (¢/c)A the operator corresponding to the kinetic
momentum and
=—1%—th> and B = curlA
c at

the field strengths. Equation (1.27) is the operator equation of
motion for a point charge e. More general couplings in (1.26) would |
lead to specific dipole and higher multipole terms in analogy with the
classical development.

In taking the nonrelativistic limit of Eq. (1.26), it is convenient
to work in the specific representation of Eq. (1.17) and to express the

1 Pauli, Schiff, and Dirae, op. cit.
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wave function in terms of two-component column matrices ¢ and ¥:

v = [“’] (1.28)

X
‘We then obtain for (1.26)

ih—é’—[f]=cd-w[%]—|—e¢[{|—|—mcz[ ¢~]
alxld . L? X —X

In the nonrelativistic limilt the rest energy mc? is the largest energy
in the problem and we write

[ﬂ _ ometie [‘;] (1.29)

where now ¢ and x are relatively slowly varying functions of time
which are solutions of the coupled equations

2f1)-anel] vali]-mell] 0w

The second of Egs. (1.30) may be approximated, for kinetic energies
and field interaction energies small in comparison with mc?, to |

X =g (1.31)
Equation (1.31) reveals x as the “small’”’ components of the wave
function ¢ in comparison with the “large” components . Relative to
¢, x is reduced by ~v/c K1 in the nonrelativistic approximation.
Inserting (1.31) into the first of Hgs. (1.30), we obtain a two-component
spinor equation

L, 0p f[é°=md-=m
zh—a—t = (———2m + e<I>> @ (1.32)

This is further reduced by the identity for Pauli spin matrices

d-aé-b=a-bt+ié-axb
or, here,
gemém=mtid - mXm®
=w2—e—:fd-B (1.33)
Then we have

L0  [(p— (e/c)A)* 2
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3B+ etI’] o (1.34)
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which is recognized! as the Pauli equation. Equation (1.34) gives us
confidence that we are on the right track in accepting Eqs. (1.13) and
(1.26) as a starting point in constructing a relativistic electron theory.
The two components of ¢ suffice to accommodate the two spin degrees
of freedom of a spin one-half electron; and the correct magnetic
moment of the electron, corresponding to the gyromagnetic ratio g = 2,
automatically emerges. To see this explicitly, we reduce (1.34)
further, keeping only first-order terms in the interaction with a weak
uniform magnetic field B = curl A; A = 14B X r:

.. 0p 2 e
ih 5 = [2—"”—2—2—7%(L+2S)-B]¢ (1.35)
Here L = r x p is the orbital angular momentum, S = 14#é is the
electron spin, with eigenvalues +#/2, and the coefficient of the inter-
action of the spin with B field gives the correct magnetic moment
of the electron corresponding to a g value of 2.

Fortified by this successful nonrelativistic reduction of the
Dirac equation, we go on and establish the Lorentz covariance of the
Dirac theory, as required by special relativity. Next we must inves-
tigate further physical consequences of this theory; especially we
must interpret those “‘negative-energy” solutions.

Problems

1. Write the Maxwell equations in Dirac form (1.13) in terms of a six-component
field amplitude. What are the matrices corresponding to « and g? [See H. E.
Moses, Phys. Rev., 113, 1670 (1959).]

2. Verify that the matrices (1.17) satisfy the algebra of (1.16).
3. Verify (1.33).

4. Verify (1.27).

! I'bid.




