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9.5 Path Integrals for Fermions

We now turn to the problem of extending the path-integral formalism to
cover theories containing fermions as well as bosons. It would be easy
to proceed in a purely formal way, by analogy with the bosonic case,
with the justification that this gives the ‘right Feynman rules. Instead, we
will here derive the path-integral formalism for fermions directly from the
principles of quantum mechanics, as we did for bosons.?

As before, we will start with a general quantum mechanical system, with
‘coordinates’ Q, and canonical conjugate ‘momenta’ P,, but now satisfying
anticommutation rather than commutation relations:

{Qa,Pb} =1i0g, (9.5.1)
{Gn0s} = {Pabs} =0. 9.5.2)

(These are Schrédinger-picture operators, or in other words Heisenberg-

picture operators at time ¢ — 0.) Later we will replace the discrete index g
with a spatial position x and a field index m.

We wish first to construct a complete basis for the states on which the
Qs and Ps act. Note that for any given a, we have

Qi=P2=0. (9.5.3)
It follows that there will always be a ket state |0) annihilated by all Q,:

040) =0, (9.5.4)
and a ‘bra’ state (0] annihilated (from the right) by all P,:

0P, =0. (9.5.5)
For instance, we can take

10) oc <HQa) Ifys (0l ec (g] (HR:) ;

where |f) and (g| are any kets and bras for which these expressions do
not vanish. (They cannot vanish for all |f) and (g] unless the operators
I[1: Q. and I, P, vanish, which we assume not to be the case.) These
States satisfy Egs. (9.5.4) and (9.5.5) by virtue of Eq. (9.5.3). They are not
i ique, because there may be other bosonic degrees of freedom
that distinguish the various possible |0) and (0], but for simplicity we will
limit ourselves here to the case where the only degrees of freedom are
those described by the fermionic operators Q, and P,, and will assume

that the states satisfying Egs. (9.5.4) and (9.5.5) are unique up to constant
factors, which we choose so that

010y = 1. C(9.56)
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(Note that this normalization convention could not be imposed if we had
defined (0| as the left-eigenstate of the Q, with eigenvalue zero, because in
this case (0]{Qq, P»}|0) would vanish, which with Eq. (9.5.1) would imply
that (0]0) = 0.)

As we saw in Section 7.5, in the Dirac theory Q, is not Hermitian, but
instead has an adjoint —iP,, in which case (0| can be regarded as simply
the adjoint of |0). However, there are fermionic operators (such as the
‘ghost’ fields to be introduced in Volume II) for which P, is unrelated to
the adjoint of Q,. In what follows we will not need to assume anything
about the adjoints of Q, or P,, or about any relation between |0) and (0].

A complete basis for the states of this system is provided by |0) and the
states (antisymmetric in indices a,b, - - *)

la,b,-=:) =Py Py---|0) (9.5.7)

with any number of different Ps acting on |0). That is, the result of
acting on these states with any operator function of the Ps and Qs can
be written as a linear combination of the same set of states. In particular,
if an index a is unequal to any of the indices appearing in | b,c, - - ), then

Qalbyc,-) =0, (9.5.8)
Pyl b,c, ) =|a,b,c- ). (9.5.9)
On the other hand, if a is equal to one of the indices in the sequence,

b,c,* -, we can always rewrite the state (possibly changing its sign) so that
ais the first of these indices, in which case we have

Qala,b,c,--')=i|b,c---),
P, a,b,c,--")=0.

(9.5.10) |

the states (also antisymmetric in the indices)

(@b, | = (0] (—iQp)(—iQa) .

Using Egs. (9.5.4)~(9.5.6) and the anticommutation relation (9.5.1), we $ z
that the scalar products of these states take the values

<C,d,la,b,>=<0|(—le)(—ch)Pan|0> :
={ (1) if {c,d,---}+# {a,b, -} ©

if c=a,d=b, etc.

where {- - -} here denotes the set of indices within the brackets, i 1rrespe
of order.

In deriving the Feynman rules, we would like to be able to res
sums over intermediate states like (9.5.7) as integrals over eigenst
the @, or the P,. However, it is not possible for these operators t
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eigenvalues (other than zero) in the usual sense. Suppose we try to find a
state |g) that satisfies (for all a)

Qalq) = qalq) . (9.5.14)
From Eq. (9.5.2) we see that

9aqb + qpga =0 (9.5.15)

which is impossible for ordinary numbers. However, nothing can stop us
from introducing an algebra of ‘variables’ (known as Grassmann variables)
da, Which act like c-numbers as far as the physical Hilbert space is
concerned, but which still satisfy the anticommutation relations (9.5.15).
We will require further that '

{da> a5} = {40, Ob} = {qa, Py} =0, (9.5.16)

where g and ¢’ denote any two ‘values’ of these variables. We can now
construct eigenstates |q) satisfying Eq. (9.5.14):

lg) = exp (—iZPaqa> |0) (9.5.17)

with the exponential defined as usual by its power series expansion. (To
verify Eq. (9.5.14), use the fact that all Pyq, commute with one another
and have zero square, so that

[Qe — g4l 19) = [Qa — q4] exp(—iPagq) exp (_iZPbe) 0)
bsa

= [Qa — qa] [1 —iPaq,] exp (~i ZPbe) 10)
bs#a

= [_i{Qa, Pa}Qa —qa] exp (“iZPb‘Ib) [0) =0
b#a

as required by Eq. (9.5.14).) We can also define left-eigenstates (g| (not
the adjoints of |g)), as

(gl = (0| (H Qa) exp <_iZQaPa> = (0] (H Qa) exp (‘HZPa%) >
’ ‘ ’ © (9518)

where [, is the product in whatever order we take as standard. By the
same argument as for Eq. (9.5.14), we see that

(91Qa = {(qlqa. (9.5.19)
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These eigenstates have the scalar product
(q'lg) = (0] (H Qa) exp (i > Py(gy — ‘1b)> 0)
a b
= (0] (H Qa> (H(l + iPy(qp *%))) [0) .
a b ‘

Moving each Q, to the right (starting with the rightmost) yields factors
(g}, — q4), which we move to the right out of the scalar product, so

(@'a) =T1(ga—ab) . (9.5.20)

We shall see that Eq. (9.5.20) plays the role of a delta function in integrals
over the gs.

- In the same way, we can construct right- and left-cigenstates of the P,:

Palp) = palp) (9.5.21)
(pl Pa = (plpa (9.5.22)

where the p, are like g, anticommuting c-numbers (taken for convenience

to anticommute with the g, and all fermionic operators as well as each
other), and

p) = exp (—iZ Qapa> (H Pb) 09, (9523) |
a b -

= e <—i2 p“Q”> (9.5.24)

with scalar product (now derived by moving the Ps to the left) ;

0'Ip) =TI, — pa) . (9.5.25) 4

The scalar products of these two sorts of eigenstate with each other are :

(glp) = (q] exp (—i > Qapa) (H P, a) 0)
= (H exp(—iqapa)> (gl (H P, a) 10)
= (H exp(—iqapa)> (Ol (H Qa) (HPa> '0>

(dlp) = v €xp ( - iz Qapa> = XN €Xp (iZPaQa) )

and so
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the product 9adpb - In an expansion of lg) in a sum of products of gs.
Therefore we can write any state |f) in the form

If) = folg)o + Zfa’@a + ZfabIQ>ab +ee,
a asb
where the fs are numerical coefficients, and a subscript a,b,--- on lq)
denotes the coefficient of goqp -+ in Iq).

In summing over states, it will be Very convenient to introduce g sort of
integration over fermionic variables, known as Berezin integration,!® that
is designed to pick out the coefficients of such products of anticommuting
c-numbers. For any set of such variables &y (either Ps or gs or both
together), the most general function f (&) (either a ¢c-number or a state-
vector like |g)) can be put in the form

f(¢) = (H fn) ¢ + terms with fewer ¢ factors (9.5.28)

and the integral over the ¢s is defined simply by

antisymmetric under the interchange of any two d¢s, so these ‘differentials’
effectively anticommute
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For instance, the most general function of a pair of anticommuting
c-numbers &; and &, takes the form

fé, &) =Cbcn+ b1+ b +d

because the squares and all higher powers of & and &, vanish. This
function has the integrals

/ dEL f(ELE) =G + c1, / & f(E1,6) = —Eren + o,

/dfz d¢s f(&1,€2) = c1a.

Note that the multiple integral is the same as a repeated integral:

/déz dé1 f(&1,82) = /dfz[/d& f(f1,€2)] ,

a result that can easily be extended to integrals over any number of
fermionic variables. (It was in order to obtain this result without extra
sign factors that we took the product of differentials in Eq. (9.5.29) to be in
the opposite order to the product of variables in Eq. (9.5.28).) Indeed, we
could have first defined the integral over a single anticommuting c-number
¢1, and then defined multiple integrals in the usual way by iteration. The
most general function of anticommuting c-numbers is linear in any one
of them

f(&1,82,--) =b(& ) + Eie(éy )

(because é% =0), and its integral over &; is defined as

/ Ao f (8,0 ) = cba ).

Repeating this process leads to the same multiple integral as defined by
Egs. (9.5.28) and (9.5.29). '
This definition of integration shares some other properties with multipl
integrals (from —oo to +c0) over ordinary real variables, but there are
significant differences.
Obviously, Berezin integration is linear, in the sense that

(s (e () oo

and also

/ (f[ d'fn) [F@a)] = [ / (ﬁ dzn) f(é)] @),

where a(¢’) is any function (including a constant) of any anticommu
c-numbers &, over which we are not integrating. However, linearity

1
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respect to left-multiplication is not so obvious, If we are integrating over
v variables, then since &, is assumed to anticommute with all &,, we have

a((-)¢) (H én> = (H fn) a(¢)

and so

/ (l;ldfn) [8((&)1(&)] = ae) / (l;[dén> ). (9533

It is therefore very convenient (though not strictly necessary) to take
the differentials d¢, to anticommute with all anticommuting variables
(including the ¢&,): .

(dEn)E + E(dEs) = 0 (9.5.34)

in which case Eq. (9.5.33) reads more simply

/a(f’) (H drfn) f(&) = a(é')/ (Hd€n> f(&. (9.5.35)

Another similarity with ordinary integration is that, for an arbitrary
anticommuting c-number ¢ independent of £,

/ (Hd¢n> fE+ey= / (Hdén) & (9.536)

since shifting ¢ by a constant only affects the terms in f with fewer than
the total number of £-variables.
On the other hand, consider a change of variables

fn - f;,, = ngpnmém > (9-5-37) ]

where & is an arbitrary non-singular matrix of ordinary numbers. The
product of the new variables is

1;[67/1 = m%: (];[ynm,,fm,,) .

But [T, &, here is just the same as the product (in the original order)
[T, &n, except for a sign e[m] which is +1 or —1 according to whether the
permutation n — m,, is an even or odd permutation of the original order:

Ma-| > (T19m )| T2 = et ) e

mymy-- n

This applies whatever order we take for the &,, as long as we take the &
in the same order. It follows that the coefficient of ], & in any function
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f(&) is just (Det &)1 times the coefficient of [, {x, a statement we write

as
/ (ﬁ d5;> f = (Detsy™ / (f[ d¢n> 7. 9.5.38)

This is the usual rule for changing variables of integration, except that
(Det &) appears to the power —1 instead of +1. We shall use Eq. (9.5.38)
and the linearity properties (9.5.31), (9.5.32), and (9.5.35) later to evaluate
the integrals encountered in deriving the Feynman rules for theories with
fermions. )

We can now use this definition of integration to write the completeness
condition as a formula for an integral over eigenvalues. As already men-
tioned, any state |f) can be expanded in a series of the states 10), |a), |a,b),
etc. and these states are (up to a phase) the coefficients of the products
1, qa» qadp, e€tc. in the Q-eigenstate \q). According to the definition of
integration here, we can pick out the coefficient of any product gpqcqa -
in the state |q) by integrating the product of |q) with all gq with a not
equal to b,c,d, - -. Thus, by choosing a function f(q) as a suitable sum of
such products of gs, we can write any state If) as an integral:

If) = / (1:[ dqa> ) f(a) = / lg) (l:[ dqa> f(q). (9.5.39)

(We can move |g) to the left of the differentials without any sign changes
because the exponential in Eq. (9.5.17) used to define |q) involves only
even numbers of fermionic quantities.) To find the function f(q) for a
given state-vector |f), take the scalar product of Eg. (9.5.39) with some.
bra {g'| (with ¢’ any fixed Q-eigenvalue). According to Egs. (9.5.35) and.
(9.5.20), this is -

(d1f) = / (H(Qa — q;)) (f[ d‘Jb> f(a)-
a b

Moving every factor (¢a —¢) to the right past every differential dgp yield
a sign factor (—)¥' = (—)N, where N is now the total number of
variables, so

(@1f) =~ / (1:[ dqb> (H(Qa — q;)) fla)-
b a

We can rewrite f(q) as f(q’ +(¢—¢')) and expand in powers of ¢ —q
terms beyond the Jowest order vanish when multiplied with the.pro




