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(H(qa — qé)) flg) = (H(Qa - qé)) flqy, (9.5.40)

which partly justifies our earlier remark that Eq. (9.5.20) plays the role of
a delta function for integrals over the gs. Using Eq. (9.5.32), we now have

() =N [ / (lj[ dqb) (Ial(qa—qé)> f(q')J :

The term in the integrand proportional to 1194 has coefficient f(q), so
according to our definition of integration (g'|f) = =1 . Inserting
this back in Eq. (9.5.39) gives our completeness relation

0= [ (TI ) (),
b

Or as an operator equation

t=[la (ﬁ —dqa> (al 0.541)

In exactly the same way, we can also show that

1=/ (ﬁ dpa> (ol (9542)

We are now in a position to calculate transition matrix elements. As
before, we define time-dependent operators

Qa(t) = exp(iHt) Q, exp(—iHt) (9.5.43)
P,(t) = exp(iHt) P, exp(—iHt) (9.544)
and their right- and left-eigenstates
 1a37) = exp(iHt)|q) , Ip;t) = exp(iHt)lp),  (9.5.45)
(gt = (qlexp(—iH1), (3l = (plexp(—iHt).  (9.5.46)

The scalar product between g-eigenstates defined at- infinitesimally close
times is then

(@'s1 + dtlg; 1) = (¢’ exp(—iH dr)lq) .

Now insert Eq. (9.5.42) to the left of the operator exp(—iHdz). It is
convenient here to define the Hamiltonian operator H (P, Q) with all Ps
to the left of all Qs, so that (for dr infinitesimal)

(lexp (i (P, 01e)la) = (pla) xp ( — 1, ).
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(We could move the c-number H(p,g) to either side of the matrix element
without any sign changes because each term in the Hamiltonian is assumed
fo contain an even number of fermionic operators.) This gives

(d;t+dlg;7) = / (d'Ip) (H dpa> (p| exp(—iHd)|q)

= / (d'Ip) (fl dpa) (plq) exp ( —iH(p, q)df) :

Using Egs. (9.5.26) and (9.5.27), and noting that the products p.q, and
paq, commute with all anticommuting c-numbers, we find

(d;7+delg;T) = / (Hi dpa> exp {i > Paldy — 4a) — iH(p, q)dr}
a a
(9.5.47)
The rest of the derivation follows the same lines as in Section 9.1. To cal-
culate the matrix element {(q’;#'|04(P(t4), Q(t4)) Op(P(t8), Q(tB)) lg;1t)
of a product of operators (with { > t4 >tg > - > t), divide the
time-interval from t to ¢ into a large number of very close time steps; at
each time step insert the completeness relation (9.5.41); use Eq. (9.5.47)
to evaluate the resulting matrix elements (with 04, O, etc. inserted where
appropriate); move all differentials to the left (this introduces no sign
changes, because at each step we have an equal number of dps and dgs);
and then introduce functions ga(t) and p,(t) that interpolate between the
values of g, and p, at each step. We then find

(@341 {04(P (4, 00)), 05(P(ta). Q(tw)), ) las0)
= (f[dqa<r)dpa(r)>

() =dadat)=a; "

04(p(ta),a(t0)) 05 (p(ts), q(ts)) - |
exp [i / e {Zpamqa(r)—H(p(r),q('c))H G

The symbol T here denotes the ordinary product if the times are gL
the order originally assumed, t4 > tp > ---. However, the right-
side is totally symmetric in the 04, Up,- - (except for minus signs wh
anticommuting c-numbers are interchanged) so this formula hold
general times (between t and t'), provided T is interpreted as the 11
ordered product, with an overall minus sign if time-ordering the ope

involves an odd number of permutations of fermionic operators.
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But in fact these phases contribute only to the vacuum-vacuum transition
amplitude, and hence will not be of importance to us.

The transition to quantum field theory follows along the same lines as
described for bosonic fields in Section 9.2. The vacuum expectation value

of a time-ordered product of operators is given by a formula just like
Eq. (9.2.17):

(VAC, outIT {0,[P(ta), 0(ta)], 05[P(ts), 0t5)], -} VAc, in)
o [ [ T danx.9)] [ IT dowt 0] 0.4[pt00.4t20)

X, m

< Os[pa)] - exp i [ asf [ 2% 3 puie ) gm0
—H [q(r), p(‘l:)] + e termsH | (9.5.49)

where the proportionality constant is the same for all operators @4, Op,
etc., and the ‘e terms’ again arise from the wave function of the vacuum.
As before, we have replaced each discrete index like a with a space position
x and a field index m. We are also dropping the tilde on the product of
differentials, since it only affects the constant phase in the path integral.

A major difference between the fermionic and bosonic cases is that here
we will not want to integrate out the ps before the gs. Indeed, in the
standard model of electroweak interactions (and in other theories, such
as the older Fermi theory of beta decay) the canonical conjugates p,, are
auxiliary fields unrelated to the gm, and the Lagrangian is linear in the
dm, S0 that the quantity [dx >m Pmdm — H in Eq. (9.5.49) as it stands
is the Lagrangian L . Bach term in the Hamiltonian for a fermionic
field that carries a non-vanishing quantum number (like the electron field
in quantum electrodynamics) generally contains an equal number of ps
(proportional to ¢') and gs. In particular, the free-particle term Hy in the
Hamiltonian is bilinear in p and g, so that

/_ : dr{ / Bx me(x, T)gm(X, ) — Hy [q('c), p(r)] + ie terms}

== / 4% d*y Duvspy pn(x) 4n(y) (9.5.50)

with & some numerical ‘matrix’. The interaction Hamiltonian V = H —
Hy is a sum of products of equal numbers of fermionic gs and ps

b ~ (with coefficients that may depend on bosonic fields) so when we expand

Eq. (9.5.49) in powers of the ¥ we encounter a sum of fermionic integrals
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of the form

e}rnlmlnzmz'"n[v’mw(xl,.}}1;-)62,.})2 Ty XN, J’N) = / [ H de(Xa T):'

X | TT om0 %)] i (50) Py (92) s 362 Pry(92) =~ o) s (7)
X exp ( - iZ / d*x d4y9mx,ny Pm(x) Qn(}')) > (9.5.51)

one such term for each possible set of vertices in the Feynman diagram,
with coefficients contributed by each vertex given by i times the coefficient
of the product of fields in the corresponding term in the interaction,

To calculate this sort of integral, first consider a generating function for
all these integrals:

#6.8)= [ [ T1 dantx, ) dpu(x, )]

X,T,m

% exp (=13 [ a5y Dy pui) s

mn

Ry / 4% pn(x) fn(x) = i3 / 'y 8n(0) an(v)) , (95.52)

where f,(x) and g,(y) are arbitrary anticommuting c-number functions.
We shift to new variables of integration

P = )+ 3 [ 4 600) (@ Yy,

G0 = 00)+ 3 [ @5 @ Yy ).
m
Using the translation invariance condition (9.5.36), we then find

#F8) =exp (i [ @3ty @y £1(9) fuio)

mn

x [ I daix,7) dplyx, )

X,T,m

X exp (=i [ d'xdy Doy ) 409)
mn

The integral is a constant (ie., independent of the functions fan
which can be shown using Eq. (9.5.38) to be proportional to Det 2
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fnlmlnzmg'"nNmN(xla J’I, x2: y2 Tt XN, .VN)

oC Z 5pairing H (_ ig_l)

9.5.54
— : paired mx,ny ( )
pairings pairs

with a proportionality constant that is independent of the x, y,m, or n,
and also independent of the number of these variables. The sum is over
all different ways of pairing ps with gs, not counting as different pairings
that only differ in the order of the pairs. In other words, we sum over the

N permutations either of the ps or the gs. The sign factor Opairing 18 +1
if this permutation is even; —1 if it is odd.

This sign factor and sum over pairings are just the same as we encoun-
tered in our earlier derivation of the Feynman rules, with the sum over
pairings corresponding to the sum over ways of connecting the lines asso-
ciated with vertices in the Feynman diagrams, and the factors (2~

playing the role of the propagator for the pairing of gu,(x) with p,(y). In
the Dirac formalism for spin %, the free-particle action is

L[ % puts 9 ) ~ Hofate 0]

—_ / d*x B(x) [ 8, + m] p(x) ,

1)mx,ny

(9.5.55)
where in the usual notation the canonical variables here are
() =vm(x),  Pm(x) = —[P(x)y%n = o] (%) (9.5.56)
with m a four-valued Dirac index. Comparing this with Eq. (9.5.50) , we
find here

0 .
Dy = [y" (v“ﬁ +m— le) ] 84 (x — y)

mn

4
L / (;ZT'; <y0[iy"kﬂ+m—i€]>mn =) (9557)

(Though we shall not work it out in detail, the ie term here arises in much
the same way as for the scalar field in Section 9.2.) The propagator is then

4
(D Vxny = / (571; ([iy“kﬂ+m—i€]_1[—?0]) eFY) | (9,5.58)

mn

j . just as we found in the operator formalism. The extra factor —y?
- arises because this propagator is the vacuum expectation value of
T{wm(), ~[B()1°In}, D0t T{wm(x), Pu(y)}.

As one example of a problem that is easier to solve by path-integral
than by operator methods, let us calculate the field dependence of the

411
of gf and comparing with the direct expansion of Eq. (9.5.52), we see that
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vacuum—svacuum amplitude for a Dirac field that interacts only with an
external field. Take the Lagrangian as

& =—phroy+m+Tly, (9.5.59) 1 (?

where I'(x) is an x-dependent matrix representing the interaction of the .
fermion with the external field. According to Eq. (9.5.49), the vacuum |
persistence amplitude in the presence of this external field is i

(VAC, out|VAC, in)y o / 11 dqm(x 'c)] [ 11 dpm(x, r)]

X,m T,X;m

X exp { —i / d*x pT yO[y*0u +m+ T — ie] q} (9.5.60)

with a proportionality constant that is independent of I'(x). We write this
as

(VAC, out|VAC, in)p oc / [ H Adqm(x, *c)] [ H dpm(X, 'c)]

TXm TxXm |
X eXP{ —iy / d'xd*y pm(x) 4u(y) H [F]mx,ny} . (9.561)
mn
where .
H [Ty = (y" { aa# +mepT(x) — Dm Sx—y).  (9562)
To evaluate this, we change the variables of integration g,(x) to

3= Y [ dy H Ty n(9) 9569

The remaining integral is now I'-independent, so the whole dependence o :
the vacuum persistence amplitude is contained in the determinant arlsmg
according to Eq. (9.5.38) from the change of variables: 4

(VAC, out|VAC, in)p oc Det #'[[] . (9.5."6‘
To recover the results of perturbation theory, let us write

AN =2+ 917,

Gy = (1°T(0) 64 x—y),
and expand in powers of 4[I']. Eq. (9.5.64) gives then
(VAC, out|VAC, in)r- oc Det (2[1 + s iy))

(00 (_1)n+1 i )
= [Det 2] exp | > - Tr (279" .

n=1
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This is just what we should expect from the Feynman rules: the con-
tributions from internal lines and vertices in this theory are —jgp—1 and

—i%[I']; the trace of the product of n factors of -9-1g[r ] thus corre-
sponds to a loop with ' i

413

no vertices,

More to the point, a formula like Eq. (9.5.64) allows us to derive non-
perturbative results by using topological theorems to derive information

about the eigenvalues of kernels like o [T']. This will be pursued further
in Volume II.

~Integral Formulation of Quantum Electrodynamics

gauge, the Hamiltonian for
cles takes the form

= Hu+ [ &x[ 24 2V XA ~A 3] 4 Vg .

- (9.6.1)
ition

(9.6.2)

the interaction of photons with charged parti

H[Aa H_L: . ]

Here A is the vector potential, subject to the Coulomb gauge cond

V:A=0,

while IT, is the solenoidal part of its canonical conjugate, satisfying the




