Solutions to HW1

- 1.2. The equation of motion (1.2.23) implies $T^{00}=0$. From eq. (1.2.22) this is the same as $\partial_0 X^{\mu} \partial_0 X_{\mu} + \partial_1 X^{\mu} \partial_1 X_{\mu} = 0$. At the endpoint of a string, $\partial_1 X^{\mu} = 0$, thus the equation of motion implies $\partial_0 X^{\mu} \partial_0 X_{\mu} = 0$. That is, the velocity vector $\partial_0 X^{\mu}$ is light-like.
- 1.4. The mass $m^2 = 1/\alpha'$ corresponds to the operator N (see eq. (1.3.37)) having eigenvalue 2. There are two ways to get N = 2: (1) $N_1 = 2$, all other N_n vanish; (2) $N_2 = 1$, all other N_n vanish. The two kind of states are

$$C^{ij}=\alpha^i_{-1}\alpha^j_{-1}|0\rangle, \quad C^i=\alpha^i_{-2}|0\rangle.$$

The indices here are "transverse", i.e. run from 2 to D-1. C^{ij} is a symmetric tensor, which can be decomposed into a symmetric and traceless $C^{(ij)}$ and a scalar C.

On the other hand, we can consider massive representations of the Poincare group in D dimensions. Going to the rest frame, we see that the "little group" is SO(D-1) which rotates the coordinates x^1, \ldots, x^{D-1} . Let us denote the indices of the vector representation of SO(D-1) by upper case letters I, J, K, \ldots If the above spectrum of states is to be obtained from a representation of SO(D-1), it must contain a traceless symmetric tensor $B^{(IJ)}$. It decomposes under SO(D-2) into a traceless symmetric B^{ij} , a scalar B, and a vector B^{i0} . They can be identified with $C^{(ij)}$, C and C^i above. So the open-string states at level N=2 assemble into a traceless symmetric rank-2 tensor of SO(D-1).

The mass $m^2 = 2/\alpha'$ corresponds to N = 3. There are three kind of states at this level:

$$D^{ijk}=\alpha_{-1}^i\alpha_{-1}^j\alpha_{-1}^k|0\rangle,\quad D^{ij}=\alpha_{-2}^i\alpha_{-1}^j|0\rangle,\quad D^i=\alpha_{-3}^i|0\rangle.$$

The tensor D^{ijk} is symmetric, the tensor D^{ij} is not.

Clearly, to reproduce this spectrum, we need to have a traceless symmetric rank-3 tensor $E^{(IJK)}$ which decomposes into E^{ijk} (symmetric but not traceless) and E^{ij} (symmetric but not traceless). This accounts for D^{ijk} and the symmetric part of D^{ij} . The anti-symmetric part of D^{ij} and D^{i} form an irreducible representation of SO(D-1), namely an anti-symmetric tensor $E^{[IJ]}$. So the open-string states at level N=3 assemble into a traceless symmetric rank-3 tensor and an anti-symmetric rank-2 tensor of SO(D-1). They have exactly the same mass.