Ph250a: Solutions to Homework 2

Problem 1.

Action for the Maxwell field in any dimension is
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Variation of this action with respect to metric is given by
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From this we find the trace of energy-momentum tensor
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which is equal to —%FWF # for D = 3. By varying the action with respect to A, one finds
the usual Maxwell equations
0, F" =0 (4)
€upOulyp =0 (5)
which have solutions such that F,, '*” # 0 and therefore the trace of the energy momentum
tensor is non-zero even on-shell.

We can try to modify the energy momentum tensor by adding derivative of a 3-tensor
B, which is antisymmetric in first two indices

T — Ty + 0,B% (6)

But since F,, F*” is not a total derivative of any gauge invariant quantity it is impossible
to make energy-momentum tensor traceless.



Problem 2.

Under small dilation the field change as ( I use the conventions where field transformation
due to coordinate change is subtracted from the field transformation law see sec. 2.4.2 in
Di Francesco et. al CFT)
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where A is the dimension of the field. Using the Noether theorem
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It’s conservation law is
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Using equations of motion, results of the previous problem and energy-momentum conser-
vation we get in D = 3
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So the dilatation current will be conserved if we choose A = %



