Ph250a: Solutions to Homework 3

Problem 1.

The field ¢(z) has Laurent series expansion
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where modes ¢, satisfy ¢,|0) = 0 for n > —h. Therefore,
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where singular terms in the Laurent series are zero due to condition ¢,|0) = 0 for n > —h
and non-singular are zero at z = 0 leaving only ¢_j, contribution. Action of L,, on the state
|¢) by definition is given by
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which is equal to
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by state-operator correspondence. Since ¢ is a primary field it has the following OPE with
T(z)
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Substituting this expansion in (4) we have
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Since the integrand is regular at z = 0 for n > 0 the integral vanishes.



Problem 2.

Let us assume that OPE T'(z) and ¢(0) has the following form
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where A, are operator valued coefficients of Laurent series. Using the same manipulation
as in previous problem we get
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This integral is non-zero only when integrand is proportional to —.
z
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where in the last step we used state-operator correspondence. From L,|¢) = 0 for n > 0 we
see that all terms with poles of order greater than 2 vanish in (7). From Ly|¢) = h|¢) we
see that Ay = h¢(0). And from L_4|¢p) = L_1¢(0)[0) = [L_1,#(0)]|0) = 9¢(0)|0) we find
that A_; = 9¢(0). Therefore the OPE looks like
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which implies that ¢ is a primary field of dimension h.



