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This year Quantum Theory will celebrate its 90th birthday.

Werner Heisenberg’s paper 
“Quantum theoretic reinterpretation 
of kinematic and mechanical relations”
was published in September 1925.



  

Quantum Mechanics was created by Heisenberg, Born, Pauli,
Schroedinger and Dirac in 1925-1926 and has remained 
essentially unchanged since then. 



  

Mathematical foundations of Quantum 
Mechanics have been clarified by von 
Neumann (1932). Although from a 
physical viewpoint he did not add 
anything new, von Neumann’s 
axiomatization of QM turned out quite 
useful.

Another axiomatization of QM was given by Mackey (1957). 



  

Kinematical structure of QM

● States are vectors in Hilbert space (up to a 
scalar multiple), or more generally “density 
matrices” (positive Hermitian operators with unit 
trace).

● Observables are arbitrary Hermitian operators. 
Possible values of A are its eigenvalues a

i
.

● Born rule:  



  

Combining Quantum Mechanics with relativistic invariance 
turned out to be a difficult problem, but it was solved in 
the end, on the physical level of rigor. Both QM and 
Relativity Theory emerged unscathed.

A mathematically satisfactory formulation of 
Relativistic Quantum Mechanics, i.e. Quantum Field Theory,
is still incomplete, but everybody is sure it can be 
accomplished without modifying the rules of QM.



  

Is Quantum Theory an exact theory, or only an 
approximation to some deeper theory?

The answer is not obvious. Many reasonably 
smart people thought about it, without coming to any 
definite conclusion.



  



  

Hidden variables?
Many people proposed that QT is incomplete, and that 
probabilities only arise because it does not take into 
account all relevant variables (Einstein, Bohm, etc.). 

But J.S. Bell (1964) showed 
that any theory with local 
hidden variables will badly 
violate some prediction of QT.



  

But since QT works quite well, this means that hidden 
variables would violate causality. Not very appealing.

“So for me, it is a pity that Einstein's idea doesn't work. 
The reasonable thing just doesn't work.”

J. S. Bell himself was not satisfied:

More recently, Gerard ‘t Hooft was the leading proponent 
of the idea that QT is not fundamental, but is only an 
approximation.



  

Arguments against exactness of QT

● No physical theory is exact, everything is an 
approximation.

● Where do probabilities come from?
● How does one explain the collapse of the wave-

function?
● There are persistent problems in combining QT 

and Einstein’s gravity theory (although most 
people blame gravity, not QT).



  

Actually, there are some things which we know to be exactly 
true.

Say, all electrons are identical and indistinguishable. 
Otherwise Pauli statistics would not even make sense.

Alternatively, since electrons are excitations of a quantum 
Dirac field, it is logically necessary for them to be 
indistinguishable.



  

Collapse of the wave function

The Copenhagen interpretation of QM: 
measurement induces a collapse of the wave function

What is measurement, and why is it different from 
ordinary evolution?



  

Possible responses

● No collapse ever happens (most common 
viewpoint), apparent collapse can be explained 
in terms of decoherence.

● Collapse is a real physical phenomenon which 
violates unitary evolution of the wave function 
(Penrose: perhaps this is a gravity effect).



  

The black hole evaporation problem

Stephen Hawking showed in 1974 that 
black holes produce thermal radiation.
As a result, they gradually evaporate. 

Hawking’s result uses both Quantum
Theory and Einstein’s gravity.

But the result is very hard to reconcile with causality. So one of 
the three (Einstein’s gravity, causality, or QT) must be modified.



  

Arguments for exactness of QM

● It works great! All of atomic theory, solid state 
physics, and elementary particle theory is 
based on QM, and so far not serious 
disagreements have been found.

● Nobody managed to propose a sensible 
modification or generalization of QM.



  

 
Testing Quantum Mechanics

How do we test QM? This is harder than it looks.

K. Popper: to test a theory, just test any 
of its predictions. If a prediction is falsified,
the theory is wrong.

But if a theory is already quite successful, we need to 
know where to look for deviations from it, or else we 
might easily miss them.



  

In other words, to test QM, we need a plausible alternative
 to QM.

Ideally, we would like to have a theory with a small 
parameter λ which reduces to QT if we set λ=0.

Then we make predictions using this new theory, find 
those which depend on λ, and try to compare with 
experiment.

If no deviations from QT are found, we can put an upper 
bound on λ. Say, λ<10-10 .



  

Modifications of Quantum 
Mechanics

There are not many proposals of this sort.

1. Ghirardi, Rimini, Weber (1985): QM plus objective 
collapse of the wave function. 

2. Weinberg (1987): nonlinear QM.



  

GRW proposal

GRW postulate that the Hilbert space of a multi-particle 
system has a preferred basis of states: states where the 
particles have definite positions. 

GRW propose that general wave-function spontaneously 
collapse towards such states. This happens randomly and 
has nothing to do with measurements.



  

Problems with the GRW scheme

● Makes sense only for spin-less particles.
● Makes sense only for non-relativistic QM.
● Violates energy conservation.



  

Weinberg’s nonlinear QM

Weinberg proposed a modification
of QM which avoids some of these 
pitfalls.

Main idea: states are still vectors in Hilbert space, but 
observables are not simply Hermitian operators.

Hermitian operators are still observables, but not the most 
general ones. 



  

Fix a basis ψ
i
 in Hilbert space. Then Hermitian operators

are represented by Hermitian matrices:
j

Weinberg proposed to generalize this to a sum of tensors
of all possible ranks:

The usual observables are a special case:



  

Features of Weinberg’s proposal

Noether theorem holds: every symmetry corresponds to a
conserved quantity.

In particular, energy is conserved if the Hamiltonian is 
time-independent.

Problem: the notion of an eigenvector and eigenvalue is not
defined. Theory makes no prediction about probabilities of
measuring a particular value of an observable A.



  

Perhaps we should look for modifications of QM more 
systematically.

Or perhaps we can prove that no sensible modification 
is possible (a no-go theorem).

Related question: can one have a consistent theory 
where some degrees of freedom are classical and some
are quantum? That is, is  universal?ℏ



  

Superselection sectors

A simple way to generalize QM is to allow “superselection 
sectors: the Hilbert space is written as a sum

and one does not allow states which are nontrivial 
linear combinations of states from different sectors.

One also does not allow operators which mix states 
from different sectors.



  

Typical example: each superselection sector contains 
states with a fixed electric charge, or baryon number.

In a sense, the charge labeling superselection sectors
is a classical observable, but it is not a dynamical 
observable.

Is there a way to mix classical and quantum dynamics?



  

In the absence of good physical ideas, one can try to use 
                                        
                                    MATH!



  

Deforming theories

One can try to classify all possible deformations of an 
existing theory within the space of all sensible theories.

If no deformations exist, one says that the theory is rigid.



  

Inventing Special Relativity

Einstein discovered Special Relativity using physical 
considerations. But one could also discover it using the
deformation approach (this was first noticed by F. Dyson).

Newton’s mechanics is invariant under Galilean 
transformations:

Here Λ is an orthogonal 3 x 3 matrix, and v is velocity.



  

The Galilean group is a Lie group of dimension 3+3=6.

Can it be deformed within the class of six-dimensional 
Lie groups?

The Galilean group can be described as the group of all 
linear transformations which leave invariant a contra-variant 
“metric”

Yes, and here is an easy way to see it.



  

If we deform this degenerate metric to a non-degenerate one,
we will also deform the group. 

Therefore consider a contra-variant metric

It has a real parameter 1/c2. A priori, it can be either 
positive or negative. This metric has an inverse:



  

If c2>0, the invariance group is the Lorentz group SO(3,1).

If c2<0, the invariance group is the 4d rotation group SO(4).
This case is unphysical.

The Galilean group is obtained in the limit c→∞.

The Lorenz group SO(3,1) is rigid: 
no further deformations are possible.



  

Pitfalls

If the class of objects considered is too narrow, we may 
miss some interesting deformations.

For example, why did we not consider translations?

Combining Lorenz transformations and translations we get
Poincare transformations:



  

The Poincare group is not rigid and can be deformed into
either SO(4,1) or SO(3,2).

SO(4,1) is the symmetry of the de Sitter space
(vacuum solution of Einstein equations with a positive 
cosmological constant).

SO(3,2) is the symmetry of the anti-de Sitter space
(vacuum solution of Einstein equations with a negative 
cosmological constant).

Poincare group is recovered in the limit of zero cosmological
constant.



  

To answer this question, we first need to describe the set of 
sensible physical theories.

Minimal requirements: 

(1) Both Classical Mechanics and 
Quantum Mechanics are elements of this set.

(2) Quantum Mechanics is a deformation of the Classical one.
 

IS QUANTUM MECHANICS RIGID?



  

Classical Mechanics

● Basic object: phase space (M,ω) where M is a 
manifold, ω is a symplectic structure:

● Observables are real-valued functions on M.
● States are points on M (more generally, 

probability measures on M).
● Evolution is Hamiltonian:



  

Quantum Mechanics

● Basic object: Hilbert space V (a complex vector 
space with a positive-definite Hermitian scalar 
product).

● Observables are Hermitian operators on V.
● States are rays in V (or more generally, density 

“matrices” on V).
● Evolution of observables is given by



  

CM and QM look very different; can we really think
of them as particular examples of a more general structure?

Similarities: Lie bracket on observables
(Poisson bracket in CM, commutator in QM).

There is a good reason for Lie bracket: Noether theorem
which states that conserved quantities are related to 
symmetries. Holds both in CM and QM

Equivalently, we want to be able to identify observables 
with infinitesimal symmetries of the system. Infinitesimal 
symmetries of anything form a Lie algebra.



  

But: 

Why do complex numbers appear in Quantum 
Mechanics but not in Classical Mechanics?

Why are observables in QM represented by 
Hermitian operators in Hilbert space?



  

The Born supremacy

I did not ask “Why are states represented by density matrices?”, 
or equivalently “Why the Born rule?” because there is already
a good answer.

A. M. Gleason (1957): the only 
sensible way to define probability of 
measuring a particular value of an 
observable is via the Born rule.



  

Elementary outcomes 

Elementary outcomes are “yes/no” observables. They 
correspond to projectors in V,  O2=O.

Projectors to orthogonal subspaces correspond to mutually 
exclusive outcomes.

A probability measure P(O) should satisfy P(O)≥0. If 
the projectors  O

i
 satisfy

then we must have 



  

Gleason’s theorem

If V has dimension 3 or greater, any probability measure 
on projectors has the form

where ρ is a density matrix on V.



  

Therefore let’s forget about states and focus on observables.

Observables in CM form a real vector space. They can also
be multiplied, and this operation is associative and 
commutative. 

In mathematical terms, observables in CM form a 
commutative algebra over reals.

There is also a Lie bracket, which satisfies the Leibniz rule:



  

But Hermitian operators do not form an associative algebra:
if A and B are Hermitian operators, AB is not Hermitian, if 
[A,B] is nonzero.

Put differently, multiplication of complex operators does not
have a physical meaning, because complex operators on V 
do not have a physical meaning.

This has bothered the Founding Fathers of QM, but a 
satisfactory answer never materialized.



  

Jordan algebras

Pascual Jordan (1933) proposed to
consider  the anti-commutator as the 
basic operation:

This operation is commutative, but not associative. Still:

(the Jordan identity).



  

A real vector space with a commutative “multiplication” 
satisfying the Jordan identity is called a Jordan algebra.

But what is the physical meaning of A B, and why should it∘
satisfy this weird identity?

Jordan’s idea: first, it is sufficient to consider A2=A A, ∘
because:



  

Higher powers of A can be defined recursively:

The Jordan identity then implies power-associativity:

Thus, if we are given a squaring operation, and if the 
corresponding bilinear operation A B satisfies the Jordan∘
 identity, we can consistently define f(A) for any real 
polynomial function f(x).



  

The ability to define real functions of observables is a very 
desirable property.

Jordan identity is sufficient for this, but is it necessary?

Jordan (1933): it is necessary if the squaring operation
is “formally real”:

P. Jordan, “Über Verallgemeinerungsmöglichkeiten des 
Formalismus der Quantenmechanik”.



  

Jordan’s theorem

Suppose the set of observables  A  is a real vector 
space such that

● f(A) can be consistently defined for any polynomial 
function f(x). That is if h(x)=f(g(x)), then 
h(A)=f(g(A)). 

● The squaring operation is formally real.

Then A  is a formally real Jordan algebra. 



  

Such algebras (in the finite-dimensional case) have been 
classified by Jordan, von Neumann and Wigner (1934).

There are four infinite families, and one isolated exceptional 
case.

Three of the infinite families arise from real, complex and 
quaternionic matrices.

One more infinite family is related to the algebra of Dirac’s 
gamma-matrices.

The exceptional one is related to octonions.



  

Not a very satisfactory outcome.

● Why does Nature only use one of five cases?

● Why should the squaring operation be formally real?

Indeed, if A and B do not commute, then the set-up for 
measuring A2+B2 has nothing to do with measuring A or B.



  

But the idea that the basic physical operations are squaring 
and the Lie bracket is sound.

They are defined both for QM and CM, and have a clear 
physical meaning.

We just need to understand why for CM the squaring 
gives rise to an associative multiplication, but for QM 
it does not.



  

Composability

Niels Bohr proposed that nontrivial constraints could come 
from the requirement of composability:

Given two physical systems with their sets of 
observables, one should be able to form a composite 
system. Observables for the composite should include 
products of observables of subsystems.

This idea was taken up by Bohr’s assistant Aage Petersen 
and Emil Grgin.



  

Theorem (Grgin and Petersen, 1972). 

Suppose the set of observables of every physical system is
a real vector space with two bilinear operations A B and ∘
[A,B], where A B is symmetric and [A,B] is a Lie bracket.∘

Suppose further that when forming a composite system
the spaces of observables are tensored, and the bilinear 
operations are linear combinations of products of bilinear 
operations for the subsystems.

Then there is a real number  λ, universal for all systems, such that



  

The case λ=0 is the case of Classical Mechanics.

The case λ>0 is the case of Quantum Mechanics. If we set
λ=ℏ2   then the Grgin-Petersen identity says that A B and ∘
[A,B] are expressed through an associative product:

The case λ<0 is similar to QM, but the “Planck constant” ℏ
is purely imaginary.



  

Remarks
● The Grgin-Petersen theorem “explains” where complex numbers in 

QM come from: they arise when we rewrite the properties of real 
operations A B and [A,B] in terms of a more familiar associative ∘
product. 

● It also explains why  is the same for all systems.ℏ
● Still need to explain why observables are matrices (rather than 

elements of more general associative algebras).
● Also need to explain why imaginary  is not OK.ℏ
● The conditions of the theorem are not physically motivated.



  

Synthesis

● Observables of any physical system form a real 
Lie algebra.

● There is also a squaring operation.
● When forming composite system, there should 

be a way to multiply observables of 
subsystems.

● Observables of two different subsystems 
commute. 



  

Theorem (A.K., 2013).

With these assumptions, the conclusions of the Grgin-Petersen 
Theorem hold.

Corollary.  

(Finite-dimensional) Quantum Mechanics is rigid.

Indeed, since all the data are given by an associative 
multiplication, every deformation of QM should arise 
from a deformation of the algebra. But algebras of 
matrices are known to be rigid.



  

This is a no-go theorem we have been looking for.

It shows that finite-dimensional QM cannot be modified 
without violating some basic physical requirements, like 
Noether theorem or the ability to form composite systems.



  

Adding a couple more reasonable requirements, we can 
even prove that for finite-dimensional systems the QM is 
the only sensible theory.

Namely, the Planck constant must be real and nonzero, and
the algebra of observables must be a sum of matrix algebras
over complex numbers.

These extra requirements are:

(1) Every observable has a nonempty set of possible values.

(2) If there is only one possible value, the observable must be
trivial (i.e. it is a c-number). 



  

Conclusions
● QM is likely to be an exact theory of Nature for finite-

dimensional systems.
● Complex numbers are needed for a good reason.  is ℏ

universal.
● Any modification of QM is likely to violate the Noether 

theorem, or destroy a probabilistic interpretation.
● One possible loophole: infinite-dimensional systems 

(perhaps more general algebras than the algebras of 
bounded operators in Hilbert space are needed).
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