1 Scaling laws

If you read “Gulliver’s travels” by Jonathan Swift, you know that on his
journeys Gulliver met giants and Lilliputs. According to Swift, the linear
size of all objects in the land of giants is 12 times larger than normal, while
in the land of Lilliputs it is 12 times smaller than normal. Otherwise giants
and Lilliputs look and behave exactly like ordinary people. Is this possible?
Not really, as was first explained by Galileo (which was actually many years
before Swift published his book).

Lilliputs provided food to Gulliver in the amount which was 1728 = 123
times the amount needed for a single Lilliput. This appears correct, because
Gulliver’s volume is 1728 times larger than Lilliput’s, and there are 1728
times more cells in Gulliver’s body which all need feeding. Here we assumed
that the metabolism rate for Lilliputs is the same as for humans.

But this is not really correct. The energy provided by the food is mostly
turned into heat, eventually. The rate of heat loss is proportional to the
surface area (we control our body temperature by evaporating sweat from
the surface of the skin). Surface scales like length squared, so for a Lilliput
the surface area is 144 times smaller than for a human, while the heat released
is only 1728 smaller. So the temperature of a Lilliput must be much lower: it
cannot be warm-blooded. (This is one of the reasons there are no mammals
or birds which are the size of ants). Alternatively, a Lilliput must eat more
(relative to its size) than a human, to provide extra energy. Just like a mouse,
a Lilliput must nibble continuously.

Giants are in even more trouble. They produce 1728 times more heat
(assuming the same metabolism rate as for humans), but their surface area
is only 144 times larger. They will have trouble loosing all this heat, so they
are in danger of overheating. They could alleviate the problem by having
very creased skin and large ears, like elephants. Or they could eat less. But
then the metabolism rate in their cells must be much lower. So they cannot
be made of the same stuff as ordinary humans.

Giants are also in trouble for another reason. The strength of the bones
is determined by their cross-sectional area. Indeed, what matters is the
pressure, which is force divided by area. The weight of a giant is 1728 times
larger, but the the cross-sectional area of their bones is only 144 times larger.
Hence the pressure is 12 times larger than in human bones, and their bones
will simply crumble. (This is why whales stranded on the shore die: their
bones break under their own weight).



The cross-sectional area of the giants’ muscles is also 144 times larger
than that of human muscles, so they have 144 times more muscle fibers and
are 144 times stronger than humans. But their weight is 1728 larger! So they
will have trouble moving their own body around (for example, lifting arms
and walking may be a problem: imagine each of your arms and legs weighing
12 times more!) For the same reason Lilliputs should be 12 times stronger
than humans, relative to their weight. They should be able to lift objects
much heavier than their own weight, like ants, and jump much higher than
their own height, like grasshoppers.

Surface tension effects are also much more important at small scales: the
force due to surface tension is proportional to the length, while the gravity
force and inertia scale like mass, i.e. L3. Therefore surface tension is 144
times more important in the world of Lilliputs than for us. At human scales,
the effects of surface tension are negligible. Indeed, the force due to gravity
is of order pgL?, the force due to surface tension is of order oL, where o is
the surface tension, and their ratio is of order

pglL?/o.

For water o ~ 0.1N/m, so at the human scale L = 1m the ratio is about
105. For Lilliputs the ratio is 10%. For creatures the size of an ant the ratio is
between 10 and 1. (This is the reason some insects may use surface tension
to run on the surface of water).

2 Scaling laws in hydrodynamics

Let us estimate the relative importance of inertial (or kinetic) effects and
viscosity. The liquid pressure due to kinetic energy is

pv®
.

The pressure due to viscosity is of order

nv/L,
where L is the linear size of the object. The ratio is
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This is known as the Reynolds number. If it is large, the effects of viscosity
are small; if it is small, the effects of viscosity are large.

Let us compute some numerical values. The viscosity of air is 1.8-1075Pa-
sec, the viscosity of water is 0.001Pa - sec. Hence at human scale L = 1m
and velocity about 1m/sec the Reynolds number in the air is about 10°.
For a swimmer the Reynolds number is about 10° (the viscosity of water is
larger than the viscosity of air, but its density is also much larger). For a
microscopic organism in water with L = 10~°m which moves with a velocity
107%m/sec the Reynolds number is about 0.001, i.e. the effects of viscosity
are very important.

If we have a model of an airplane which is 1000 times smaller than the
real plane, and we want test it, to ensure that the Reynolds number is the
same as for the real plane we must either increase the velocity by the same
factor, or decrease the viscosity of the medium, or increase its density.

Reynolds number is important because at large Reynolds numbers (typi-
cally, a few thousand) the flow becomes turbulent (i.e. chaotic). Turbulence
leads to a qualitatively different flow.

Here is an example. At low Reynolds numbers, when the flow is laminar
(the opposite of turbulent) and viscosity effects dominate, we can estimate
the force of resistance on a moving object as follows. The pressure due to
viscosity is about

p~nu/L.

Hence the resistance force is about
F ~ pL? ~ nuL.

Note three things: the force is independent of the density of the medium,
is proportional to the velocity, and is proportional to the linear size of the
object.
At high Reynolds numbers we can neglect viscosity altogether, and the
resistance force is about
pL? ~ pv?L2.

It is proportional to the square of velocity and the square of the linear size.
This is a qualitative change compared to the low-Reynolds-number case.
Here is an application of these considerations. Suppose we want to pump
liquid through a pipe. How much pressure do we need for that? The Reynolds
number here is pvr/n, where r is the radius of the pipe. For low Reynolds



numbers the pressure due to viscosity is about nv/r. The corresponding force
is p times 27rL, where L is the length. Hence the external force must be
about nuL. The external pressure difference is obtained by dividing this by
the cross-sectional area of the pipe; the result is of order nvL/r?. It is more
useful to express v in terms of the flow rate @), i.e. the volume of liquid
which enters the pipe per unit time. We have Q = 2mr2v, hence the pressure
difference must be about
p ~nQL/r".

Thus if you decrease the radius of the pipe by a factor 2, the pressure gradient
needed to pump the same amount of liquid per unit time will grow by a factor
16. This is important for the physiology of blood circulation!

For large Reynolds numbers, on the other hand, the resistance pressure is
of order pv?, hence the resistance force is of order pv?Lr, hence the external
pressure difference driving the flow must be about

pv2L/r.
In terms of the flow rate @), this reads
pQ>L/r°.

Thus turbulence makes things even worse, in a sense, because the pressure
grows like the square of the flow rate (), and in addition is proportional to
ro.

Another application is the so-called terminal velocity. If you drop an
object, at first it will accelerate downward, but as its velocity increases, the
force of resistance also increases, and eventually the velocity approaches a
constant value. This constant value is known as the terminal velocity. The
terminal Reynolds number may be either in the laminar or the turbulent
regime: that depends on the mass of the falling object. Let us see how it
works.

Suppose first the terminal velocity is in the laminar regime. Then the
force balance requires
nuL ~ mg,
or
mg _ poyglL?

vV~
nL n



Here p, is the density of the object. The corresponding terminal Reynolds
number is mgp
R~ e popg L1,
This number should not be too large (say, less than 1000), otherwise the
terminal regime is turbulent. For example, for air n ~ 1.8 - 107°Pa - sec, so
for the Reynolds number to be less than 1000, the mass of the object should
be less than about 3-107*kg = 3-1078¢. A typical dust particle has mass
of order 107°g, so even a dust particle does not fall in a laminar regime.
An typical amoeba has a mass of order 107%g, so it would fall in a laminar
regime. The viscosity of water is much larger, but its density is also larger.
Thus in water anything heavier than a dust particle will reach a turbulent
regime.
In the turbulent regime, the balance of forces requires

pv?L? ~ myg.
Hence
Vo~ L_l @
p

Note than in both cases (laminar and turbulent) the terminal velocity is in-
versely proportional to the size of the object. (The slope is different though).
This makes sense, of course: the smaller the size of an object, the smaller
the effects of “air resistance”, and the greater the terminal velocity. Equiv-
alently, we can express m through the density of the object p, and its size,
m ~ p,L?, then the terminal velocity is proportional to L3/2/L = L'/2. Thus
if A and B are made of the same stuff and A is twice larger than B, then
the terminal velocity for A will be larger by a factor v/2. Or, since m ~ L?,
we have v ~ m!/%. For example, a typical elephant weighs about 5000kg, a
typical mouse weighs about 25¢g, hence an elephant is about 200000 times
heavier than a mouse. But if one drops an elephant and a mouse from an air-
plane, the terminal velocity of the elephant will be only about 8 times larger
than the terminal velocity of the mouse. Question for the reader: would the
elephant go supersonic?



